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Chapter 1

Forest Surveillance Challenges when using
Autonomous Vehicles

1.1 Motivation

Over the past few decades, wildfires have emerged as a significant global threat.
A combination of factors, including insufficient planning, more extreme weather
conditions, and a lack of forest maintenance, has led to consecutive disasters. As a
result, these events have imposed substantial financial burdens, claimed numerous
human lives, and caused extensive damage to forests. In Europe, particularly, several
countries witness an average yearly destruction of more than 50,000 hectares (ha)
of land due to wildfires, with some years surpassing 100,000 ha [1]. Among these,
Portugal has been the most severely impacted, with nearly 600,000 ha of land being
burned in 2017 [2], as shown in Figure 1.1.
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Fig. 1.1: A look at wildfires in Europe, with an emphasis on Portugal (obtained from
Statista).

According to a study conducted by the European Commission, Portugal expe-
rienced approximately 21,000 wildfires in 2017, which resulted in 117 deaths and
caused nearly 1,500 million euros in damage costs [3, ”Super Case Study 4”]. In

1

https://www.statista.com/statistics/1260777/area-burned-by-wildfire-in-european-countries/
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particular, the wildfire of Pedrógão Grande resulted in a burned area of roughly
45,000 acres and caused nearly 500 million euros in damage costs to the Portuguese
government [4]. This outbreak also had a significant impact on the population, either
directly through the destruction of agricultural resources and private property or in-
directly through the impact on public infrastructures such as roads, energy networks,
and telecommunications.

In light of such consecutive disasters, there has been a growing recognition of
the urgent need to find technological solutions to prevent wildfires. As a result,
governments and authorities have been interested in searching for solutions within the
scientific community. The Portuguese government, in particular, has been promoting
scientific research and innovation to improve the national forest defense system
against wildfires, opening calls for research and development projects on the subject
[5]. In particular, project Portuguese Fundação para a Ciência e a Tecnologia (FCT)
funded project FirePuma (https://doi.org/10.54499/PCIF/MPG/0156/2019), which
this document details the main outcomes.

1.2 Project Idea

Project FirePuma aimed at developing a surveillance system for the rural areas that
would take data either from the population or sensor networks and encompass all
stages until the design of optimized routes for autonomous vehicles to follow in their
inspection of the forest. Namely, three questions were the driver for the project:

• how to detect and eliminate false data crowdsourced from the population?

• how to efficiently maintain a map of the likelihood of fire or the uncertainty
regarding whether an area is safe or not?

• how to define at a mission level the optimal route for the autonomous mechanisms
in order to reduce the uncertainty of existence of fire in problematic areas?

The data, mapping and mission levels cannot work independently if one is build-
ing an efficient system for surveillance. Though all can have an impact on a future
strategy, they suffer from shortcomings only mitigated through integration. If esti-
mating the likelihood of fires based on whether and terrain conditions, the system
is oblivious to criminal malice or people with an economic agenda. On the other
hand, this can be mitigated if the information is merged with crowdsourced data from
citizens willing to cooperate in preventing fire destruction through early detection.
If using just citizens’ data, one is left with parts of the terrain that are not visited
often and where fires can gain momentum. Such a shortcoming can be avoided using
autonomous vehicles that can inspect remote areas. Nevertheless, these automatic
methods are insufficient on their own due to a high needed investment if considering
covering the whole area. In the context of Portugal alone, there are 9 221 200 ha (3.2

https://doi.org/10.54499/PCIF/MPG/0156/2019


1.2 Project Idea 3

million ha according to the PEFC Portugal website - https://www.pefc.pt/) which
renders these solutions expensive to be applied on their own to the whole territory.
Therefore, substantial gains can be attained if these 3 areas of research are combined.
The main objective would be to maintain a real-time map regarding the probability of
fires based on the probability of occurrence given weather and other conditions and
on the level of uncertainty measured from the last submitted data of citizens using
mobile applications. An optimal trajectory for surveillance can be computed using
autonomous systems by reducing the probability of fire through the minimization of
the uncertainty in the map.

Data Collection

Prior
Knowledge

Crowdsourced
Data

Data Processing

Estimation
Filter

Uncertainty
Map

Surveillance Mission

Trajectory
Planning

Fig. 1.2: FirePuma system blocks.

As depicted in Figure 1.2, the data collection and its processing to remove erro-
neous entries will be presented in Chapter 2. In particular, the team developed a LoRa
protocol for communication that is tailored to the specifications needed for a sensor
network to be deployed in the forest along with a prototype for the devices. The
main contribution of Chapter 2 is then a reputation-based method that works both
for synchronous and asynchronous communication that is able to detect intruders
and incorrect data.

The second stage of FirePuma is to use an estimation filter to maintain either
the support or the PDF that describe the evolution of a dynamical process. The
developed algorithms are presented in Chapter 3, which can then be used to design
an uncertainty map that serves to identify the areas with the most relevance for
the autonomous surveillance. We remark to the reader that the developed methods
can also be used for the estimation of the state of the drones and incorporate that
information in a controller with collision avoidance mechanism.

The last step in the system is to take the uncertainty map and view it as an utility
function that represents the importance of each location. In Chapter 4, we provide
an optimization-based method that designs the trajectories and provides the control
actions, which is efficient to be run in onboard embedded systems of each drone.
A summary of the outputs of the project and some conclusions are also offered in
Chapter 5.

https://www.pefc.pt/




Chapter 2

Resilient Data Acquisition using a LoRa-based
Wireless Sensor Network

The first block of project FirePuma concerns with the acquisition of data and its
processing to remove contributions that are either outliers or the input of malicious
contributors trying to steer the overall surveillance. The task associated with this
development has looked into the following problems:

• segmentation of images if cameras are to be used in [6], [7], [8] and [9];

• the development of a sensor network in [10] and [11];

• the desynchronization of transmitters to avoid packet collision [12];

• the efficient distribution of content [13] and packets [14], [15] in an unknown
topology;

• the elimination of erroneous data through the definition of reputation-based
mechanisms [16], [17] which were shown to be competitive and even outperform
outlier removal techniques [18];

• evaluation of the degree of privacy in the topology and used algorithm that can
be guaranteed for the proposed sensor network [19].

In the remainder of this chapter, we present the details of the final proposal that
result from condensing the contributions and learning outcomes from the mentioned
research.

2.1 Selection of Communication Protocol - LoRa

A sensor network to acquire forest data for a surveillance system must ensure eco-
nomic viability if FirePuma is ever to be implemented in practice. On that note, the
devices need to be sparsely deployed to reduce the required number for coverage
as well as minimal cost to maintain the economic viability of the project. From the

5



6 2 Resilient Data Acquisition using a LoRa-based Wireless Sensor Network

several options like Wireless Local Area Network (WLAN) (i.e.: Wireless Fidelity
version 6 (WiFi-6)), Bluetooth, Cellular (i.e.: Global System for Mobile Communi-
cation (GSM), Long Term Evolution Advanced (LTE-A), 5G) and Low Power Wide
Area Network (LPWAN) (i.e.: Sigfox, Narrowband Internet of things (NB-IOT),
Long Range (LoRa)) [20], [21], we evaluate briefly how they fair with respect to the
economic viability metric. Table 2.1 shows a list of the main specifications for all the
reviewed networks. Namely, the physical layer used by the technology, the spectrum
frequency in which the communications are handled, the maximum bandwidth al-
lowed per channel, the maximum theoretical throughput achievable, the Maximum
Output Power (MOP) and the maximum range where packets can still be transmitted
successfully. It should be noted that the MOP for WiFi-6 is strongly router-dependent
which makes it a less relevant comparison factor and is therefore not mentioned in
the table.

PHY Spectrum Bandwidth Throughput MOP Range

Bluetooth Bluetooth 5.0

LE 1M uncoded,

LE 1M coded,

LE 2M uncoded

2.4 GHz 2 MHz 1.4 Mbps 20 dBm < 100 m

WLAN WiFi 6.0 IEEE 802.11ax
2.4 GHz 40 MHz

9.6 Gbps — < 100 m
5 GHz 160 MHz

Cellular

GSM Based on GMSK
890-915 MHz,

935-960 MHz
200 KHz 270 Kbps — 1 to several km

LTE-A
DL:OFDM,

UL:SC-FDMA
Same as GSM 100 MHz

DL:1 Gbps,

UL:500 Mbps
30 dBm 1 to several km

5G 5G-NR
mmWave:

30-300 GHz
500 MHz 1 Gbps 28 dBm < 1 km

LPWAN

Sigfox BPSK 868 MHz 100 Hz 100 bps 14 dBm < 40 km

NB-IOT Same as LTE Same as LTE 180/200 KHz 100 Kbps 35 dBm < 35 km

LoRaWAN LoRa (CSS) 867-869 MHz 125 KHz 250 bps - 50 Kbps 14 dBm < 15 km

Table 2.1: Main specifications of the networks approached in this section (all values
refer to Europe specifications).

To complement the aforementioned Table 2.1, a radar graph is also presented
in Figure 2.1. In this graph, a comparison is presented related to the main groups
of technologies being analysed. As a result, and by using as metrics the range and
coverage, throughput, latency performance, cost efficiency and battery life, this graph
facilitates the reader to understand a technology choice for a certain application.
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Fig. 2.1: Performance comparison across the categories of range, throughput, la-
tency, technology cost and battery life between the main technologies approached:
Bluetooth, WLAN, Cellular and LPWAN.

In order to maintain the economic viability, the network protocol must have long
range capabilities (at least 1 km between the nodes and the gateway) and low power
consumption (allowing for battery operated sensor devices). Additionally, a low cost
technology is preferable. Since only sensor data with low sample size (mostly binary
values) and low sample rate needs to be transmitted, a network with high bandwidth
capabilities is not necessary. From Figure 2.1, it is clear that LPWAN is the most
promising network available. Within the LPWANs, Sigfox was ruled out first due to
its coverage requirement and limitation on the number of transmitted messages which
can be a security risk for this project since a node will be blocked out if it does not
comply with the regulations. In addition, the use of Sigfox comes with a subscription
fee which increases the technology cost [22]. For the remaining technologies, given
that all the requirements had been met, the main decision factor was the technology
cost. The implementation of a LoRa enabled network is several times more affordable
than its rival NB-IOT. Additionally, a LoRa gateway can easily be deployed in any
area whereas NB-IOT requires Long Term Evolution (LTE) coverage to function
which may not be available at the deployment site for this project. Hence, from
the analyzed networks, the LoRa specification from the LPWANs is the choice
which best fits the aforementioned requirements and it will be used to provide the
communications network for FirePuma.
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2.2 LoRa-based Wireless Sensor Network

The protocol Long Range Wide Area Network (LoRaWAN) was a possible option
as a LoRa network protocol as it comes with features like data encryption, de-
vice classes for different energy consumption applications and device addressing.
However, LoRaWAN also has some disadvantages: it requires the use of specific
LoRaWAN compatible devices, which are more expensive than just plain LoRa
modems; it imposes additional regulations on the transmission duty cycle (which
further decreases the allowed number of transmitted messages) and it introduces
additional delays due to the use of slotted receive windows in the end-devices. These
are relevant drawbacks since they can lead to nodes not being able to communicate
with the gateway which is a security flaw. For these reasons, a tailored protocol was
developed for FirePuma, which we detail in the remainder of this section using 𝑛𝑖
and 𝑔𝑖 to represent a node and a gateway with id 𝑖, respectively.

2.2.1 LoRa Technology Review

The LoRa physical layer is based on Chirp Spread Spectrum (CSS) modulation
technology, which is commonly used for radio applications. With CSS modulation,
wide band frequency impulses which increase or decrease over time are used to
transport the encoded data [23], with various parameters to be configured, namely:

a) Carrier Frequency. A specific band is reserved for LoRa communications with
the range 867 MHz to 869 MHz for Europe.

b) Transmission Power. Can be configured depending on the LoRa module from
2 dBm up to 20 dBm, but in Europe it is limited to 14 dBm or 25 mW.

c) Bandwidth. Values can range from 7.8 KHz up to 500 KHz with an increase in
signal bandwidth allowing the use of a higher effective data rate, thus reducing
transmission time at the expense of reduced sensitivity.

d) Coding Rate. As it is a fraction between the number of raw bits over the number
of encoded bits after Error Correction Code (ECC), and it works with chunks of
4 bits and can encode them into 5, 6, 7 or 8 bits.

e) Spreading Factor. The LoRa modulation is performed by representing each bit
of payload information by multiple chips of information. The rate at which the
spread information is sent is referred to as the symbol rate (𝑅𝑆). The spreading
factor represents the number of raw bits that can be encoded per symbol as well
as the number of chips contained in each symbol (2SF); meaning that increasing
the spreading factor will increase the number of chips per symbol which as a
result allows for smaller and even negative Signal-To-Noise Ratio (SNR) values
at the receiver, increasing the sensitivity, link budget and range.
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f) Implicit Header Mode. Option to decide to include in the packet the header
information: payload length, coding rate and if a Cyclic Redundancy Check
(CRC) is used.

g) Low Data Rate Optimization. Increases robustness of a LoRa link at higher
spreading factors and is mandatory for a symbol time (𝑇𝑆) larger than 16 ms.

h) Cyclic Redundancy Check. Enables the inclusion of a CRC for the packet.

A LoRa transmission rate is better characterized by

𝑅𝑏 = SF × BW
2SF × CR. (2.1)

The performance of the network regarding delay times requires the definition of
LoRa packet Time On Air (TOA). Using the SX1276 modem datasheet [24], the TOA
depends on a number of radio parameters: the Spreading Factor (SF), the Bandwidth
(BW), the use of CRC (CRC), the Coding Rate (CR), the use of Implicit Header
mode (IH) and the use of Low Data Rate Optimization (𝐷𝐸); as well as packet
parameters like the preamble length (𝑁PREAMBLE) and payload length (PL). In this
way, the symbol rate and symbol time are defined as:

𝑅𝑆 =
BW
2SP , (2.2a)

𝑇𝑆 =
1
𝑅𝑆

. (2.2b)

The preamble time can now be calculated as a function of the preamble length in
symbols:

𝑇PREAMBLE = (𝑁PREAMBLE + 4.25) × 𝑇𝑆 . (2.3)

To calculate the payload time, the number of symbols in the payload must first be
calculated:

𝑁PAYLOAD = 8+max
(⌈

8PL − 4SF + 28 + 16CRC − 20IH
4(SF − 2DE)

⌉
× (CR + 4), 0

)
, (2.4)

Where ⌈ ⌉ is used as a round up operation. The payload time is therefore given by:

𝑇PAYLOAD = 𝑁PAYLOAD × 𝑇𝑆 . (2.5)

Finally, the total TOA can be calculated by:
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𝑇PACKET = 𝑇PREAMBLE + 𝑇PAYLOAD . (2.6)

In this case of modem SX1276, the preamble size has the default value of 8
symbols and the payload length is of 18 bytes. Additionally, the CRC is enabled,
the DE parameter has a value of 0 as there is no low data rate optimization and the
IH parameter has a value of 1 as no explicit header is being used. The remaining
parameters are dependent on the implementation and configuration of the network
and must be decided according to the circumstances of each implementation.

2.2.2 Custom Network Protocol

The developed custom protocol was designed with the purpose of enabling bidi-
rectional communication between the base station and the sensor devices, decrease
payload size and its corresponding TOA given the data required for the FirePuma
system, which in turn saves power by decreasing the time that the modem is trans-
mitting.

The proposed protocol defines three device types: end-nodes (able to be bat-
tery operated, can be equipped with a number of sensors and/or actuators), range-
extenders (able to be battery operated, extend the range of the gateway) and gateways
(responsible for the communication with the end-nodes and bridging the network
to a base-station). Additionally, it must meet the following specifications: Device
addressing - so communication can be made between the base station and a single
node; Data encryption - so that the sensitive data in the payload is protected; Bidi-
rectional communication - so that both Upload Link (UL) and Download Link (DL)
messages are supported; Message delivery acknowledgement and retransmission
- given the use of a public frequency spectrum susceptible to interference; Detection
of Transmission Errors - using a CRC of the data to detect corrupted packets.

2.2.2.1 Device Addressing

Each node device has a unique identifier in the form of a byte value which is defined
at compile time (when the code is compiled and uploaded to the board) is what allows
device addressing to work. When sending a message, this identifier is included as
part of the message header (detailed in Section 2.2.4).



2.2 LoRa-based Wireless Sensor Network 11

2.2.2.2 Data Encryption

Data encryption in the implemented in the custom network protocol resorted to the
256-bits Advanced Encryption Standard (AES) encryption algorithm. AES uses a
fixed block size of 128-bits and a key size of 256-bits according to our selection. This
algorithm is based on the Substitution-Permutation Network (SPN) principle where
several rounds of substitution and permutation operations are applied to the plaintext
(the text to be encrypted) in order to generate the ciphertext (the encrypted text). The
number of rounds applied depends on the size of the used key and corresponds to 14
rounds for a 256-bit key. To this extent, every node device has a unique symmetric
256-bit encryption key, which is used for both UL and DL communications. The
gateway device has information of all the remaining keys at compile time. This allows
for end-to-end encryption between the nodes and the gateway.

2.2.2.3 Bidirectional Communication

Communication between the nodes and the gateway is defined in the following way:
nodes only send data to the gateway (corresponding to an UL message) and the
gateway only sends data to nodes (corresponding to a DL message). To achieve this,
a feature from the LoRa modem called IQ inversion is used. In sum, by enabling IQ
inversion, the preamble consisting on a defined number of chirps, used so the LoRa
modem can identify a packet, becomes inverted (the up-chirps are swapped for down-
chirps). Figure 2.2 illustrates the concepts of preamble, up-chirp and down-chirp.
Finally, the gateway uses no IQ inversion for packet reception and uses IQ inversion
for packet transmission. In contrast, nodes use IQ inversion for packet reception
and use no IQ inversion for packet transmission allowing for correct bidirectional
communication according to specifications.

Preamble Sync Data

Up-Chirp Down-Chirp

Fr
eq
ue
nc
y

Time

Fig. 2.2: LoRa modulation on an example packet. (No IQ inversion.)
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2.2.2.4 Message delivery acknowledgement and retransmission

In this project, it is important for a device in a network to know if a message
has been correctly received as the undetected loss of messages can be a security
vulnerability. To achieve this, every time a message is sent, the sender awaits for
an acknowledgement confirming the correct reception. In case the acknowledge
message is not received after a transmission, the sender will wait for a designated
amount of time (defined at compile time, meaning that after deployment, physical
presence at the node location is required in order to reprogram the node to change
this value) and try to re-transmit the message as depicted in Figure 2.3. This process
will be repeated up to a maximum number of retries (defined at compile time) after
which the message is discarded. It should be noted that the gateway cannot know
when an UL message is dropped. However, it knows when a DL message is dropped
and can inform the base-station of that occurrence. Additionally, we remark that
re-transmitting a message can interfere with the process of handling the remaining
messages of the queue for that node. For instance, if a message initially fails to be
transmitted by a sensor node and, during its retransmission, a new trigger of a sensor
occurs, then a new message will be generated and transmitted at the same time. To
handle this, a message queue is implemented, which is illustrated for a practical case
in Figure 2.4. In this example, a network with three nodes, where the nodes 𝑛1 and 𝑛2
are offline and the node 𝑛3 is online, is used. Additionally, the network is configured
with a retry timeout of 1200 ms, a maximum number of retries of 5 and queue
size of 5. This means that the gateway will only send a DL message every 1200 ms
and, in case of failure, a message will be re-transmitted up to 5 times before being
dropped. The executed test consists of sending a status request message to each node
sequentially three times every three seconds. As a result, Figure 2.4 shows the queue
size as a function of time where every data point represents a sent message. Each
data point is labeled with the corresponding message ID. Moreover, the DL message
commands sent from the server are also shown along with the responses to the status
request messages.

Node Gateway

Ti
m

e

Data (msgID = 1)

Ack (msgID = 1)

Node Gateway

Data (msgID = 3)

Ack (msgID = 3)

Node Gateway

Data (msgID = 2)

Data (msgID = 2)

Data (msgID = 2)

Ack (msgID = 2)

Ack (msgID = 3)

Data (msgID = 3)

Fig. 2.3: Sequence diagram for three different examples of how a message can be
successfully transmitted. (A packet that was received correctly is shown in blue and
a failed packet in red.)
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As depicted in Figure 2.4, the DL commands from the server are represented by
the orange dots and, as expected, appear separated by a three-second interval. The
blue dots represent a response to a sent message, which can either be a failure to send
the message or a successful response from the node. Looking at the message IDs, it
can be seen that the gateway sends messages corresponding to the nodes 𝑛1 and 𝑛2 5
times each. This happens due to the nodes being offline and the gateway retrying to
send the message before triggering a failure response message. In contrast, messages
sent to the node 𝑛3 are only sent once as the node successfully responds to the
received messages. It should be noted that around the 28 second mark, the final DL
message command is sent from the server. However, as shown, the queue size at that
time is already equal to the maximum queue size. As a result, this message cannot
be added to the queue, being immediately dropped and a failure response triggered
(represented by the blue dot labeled with the message ID 9).
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Fig. 2.4: Practical example of the message queue operation and message retransmis-
sion executed on a network with three nodes where the nodes 𝑛1 and 𝑛2 are offline
and only the node 𝑛3 is online.

2.2.2.5 Detection of Transmission Errors

The LoRa modem used (SX1276 Section 2.3) includes an option to enable a CRC.
By doing this, a 16-bit value calculated using the remainder of a polynomial division
of the payload contents is added to the packet. On reception, the same calculation
is repeated and if the result is different signals a corrupted packet. In addition, the
LoRa modulation process already includes cyclic ECC, which allows for the data
in corrupted packets to be recovered (up to a certain extent) giving LoRa some
tolerance to interference.

This protocol is intended for a local deployment where only one gateway is
utilized. The gateway is connected via serial to a processing unit which processes all
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communications. For nodes outside the range of the gateway, it is required the use
of range-extenders.

2.2.3 Network Topology

The sensor network to be deployed will only require nodes to send messages to the
gateway that is in charge of forwarding the data to the processing unit. Therefore,
we selected a star topology as it offers the best power savings, which is depicted in
Figure 2.5.

LoRa RF

Gateways

Gateway

End-nodes

Node 1

Node 2

Node n

. . .

LoRa RF

Base-stations

Processing Unit

Serial

Range-extenders

(Optional)

Fig. 2.5: WSN Architecture Diagram.

2.2.4 Message Formatting and Data Packets

A requisite for a successful communication is the correct formatting of messages to
be exchanged, which in the current protocol are:

• Status update message (UL);

• Sensor data message (UL);

• Status request message (DL);

• Control message (DL);

• Acknowledge message (UL, DL).

The aforementioned message types allow for the gateway to receive sensor data
and status data from the end-devices as well as to request a status update from any
node or to send a message to control an actuator. To meet all the specifications
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mentioned in Section 2.2.2, a custom packet format was defined with a plain header
containing a network ID, necessary to distinguish different networks as well as due
to the spectrum used to communicate. The network ID is therefore used to identify
the messages that come from devices in this network. Additionally, the header also
includes the node ID, which represents the destination ID in case of a DL message
or the sender ID in case of an UL message. The payload is encrypted using the AES
encryption algorithm [25] which only encrypts blocks of 16 bytes, explaining the
fixed size of current messages. The entire packet format is depicted in Figure 2.6 in
blue.

Network
ID

Node 

ID

Encrypted Payload

18 bytes

1 byte

Msg

ID Flag Payload

Length
I/O

ID

I/O

Value

Batery

Voltage ...

16 bytes

Example

Payload

Fig. 2.6: Packet and payload format.

Also depicted in Figure 2.6 is a payload example containing a unique message
ID used by the packet recipient to send back an acknowledgement, a flag byte to
indicate the message type and a payload length byte indicating its size. Finally, there
are bytes allocated for I/O (sensor ID and value in case of UL message or actuator
ID and value in case of DL message) and for the battery voltage if the sender device
is equipped with one. It should be noted that henceforward, since the encryption
algorithm imposes a payload size of at least 16 bytes there is room for additional
data to be included in the payload.

2.2.5 Network Manager Interface

In order to monitor the network, a tool was developed in the form of a python
graphical user interface that runs on the processing unit connected to the gateway.
The interface reads a yaml configuration file containing information regarding the
network devices (including sensor and actuator information) and is updated in real-
time whenever an UL message is received by the gateway.

The data monitored by the Network Manager Interface can be seen in Figure 2.7
and includes the following information:
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(a) Focus on the Info tab. (b) Focus on the Stats tab.

Fig. 2.7: Sensor Network Manager python interface.

• Gateway status;

• Number of active end nodes;

• Node status;

• Node location;

• Node last activity;

• Node sensors information;

• Node actuators information, including binary control options;

• Node statistics, including packets sent, average Received Signal Strength Indi-
cator (RSSI), average SNR, and current battery level;

• Node RSSI and SNR plots over the packets sent;

• Terminal output for debug purposes.

Additionally, there is an input field for sending DL messages, a “Rescan Network”
button that sends a status request to all nodes, an “Export Data” button that exports
a comma-separated values file containing all the communications made since the
interface boot time and a “Start Test” button which runs a predefined test on the
network.
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2.3 Hardware Equipment

The hardware equipment needed to deploy the Wireless Sensor Network (WSN)
can be characterized by two main components: the processing unit and the radio
transceiver. The processing unit is a Micro-Controller Unit (MCU) that can be the
ESP32 [26] or Arduino Uno [27] modules. As for the radio transceiver, the SX1276
chip by Semtech [24] was used. The Arduino Uno serves as the gateway having the
LoRa modem connected using the Dragino LoRa Shield. This assembly is depicted
in Figure 2.8a. Alternatively, the TTGO ESP32 SX1276 was utilized as the platform
for the nodes and can be seen in Figure 2.8b.

MCU

(ATmega328P)

LoRa modem
(SX1276)

Antenna

connector

USB

connector

(a) Arduino Uno (bottom) and Dragino
Shield (top).

MCU

(ESP32)

LoRa Modem
(SX1276)

Antenna

connector

Battery
connector

Usb

connector

(b) TTGO ESP32 SX1276.

Fig. 2.8: Hardware equipment used in the deployment of the network.

The SX1276 is equipped with the LoRa long range modem which has the main
characteristics of providing ultra-long range spread spectrum communication and
high interference tolerance whilst minimizing current consumption and is ideal for
applications requiring long range or robustness. It should be noted that the LoRa
modem communicates using the available Serial Peripheral Interface (SPI). SPI is
a synchronous serial data protocol used by MCUs for communication with one or
more peripheral devices. With an SPI connection there is a master device (usually
the MCU) which controls the peripheral devices. In order to do so, there are three
lines common to all devices: Master In Slave Out (MISO) (slave line for sending
data to the master), Master Out Slave In (MOSI) (master line for sending data to the
peripherals) and Serial Clock (SCK) (the clock pulse for synchronization purposes);
and one line specific to each device: Slave Select (SS) (allows each device to be
controlled individually while sharing the aforementioned lines) [28].
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2.4 Network Testing

In order to evaluate the performance and ensure the correct functioning of the
WSN, a network was established with a gateway based on the Arduino Uno with
the Dragino SX1276 Shield (Figure 2.8a) and 3 nodes based on the TTGO ESP32
SX1276 (Figure 2.8b). It was tested the following metrics: RSSI, SNR, packet loss
and packet delay. The sequence of steps consist in sending status request messages to
the nodes sequentially and repeatedly. The nodes will respond to the gateway request
by sending a corresponding status message. This allows the gateway to measure the
RSSI and SNR values on the received messages and it allows the delay and packet
loss to be calculated based on the corresponding sent and received messages.

2.4.1 Basic Experiment

The purpose of the basic test is to ensure the network works properly under ideal
conditions and to establish a base-line. The first type of measurement was related
to packet delay given by the TOA (𝑇packet) under different circumstances. It should
be noted that all communications in the network include an acknowledge message,
meaning that each message corresponds to two packets. The overall theoretical
Round-Trip Delay (RTD) is therefore equal to RTD = 2 × 𝑇packet. Given this, the
network was initialized with a bandwidth of 𝐵𝑊 = 125 KHz, a coding rate of
CR = 4/5 and a spreading factor of SF = 7 which correspond to the default values
for the SX1276 modem (Table 2.2).

Parameter Value

Spreading Factor 7

Bandwidth 125 KHz

Coding Rate 4/5

Table 2.2: LoRa modem initialization parameters.

The spreading factor was then varied across different values (SF ∈ {7, 9, 11}),
as were the bandwidth (BW ∈ {125 KHz, 250 KHz}) and the coding rate (CR ∈
{4/5, 4/8}), with each test run having only one parameter changed from the initial
configuration. Finally, the test was ran for each configuration, where 50 status request
messages are sent to node 𝑛1 (with a distance of 𝑑 = 40cm to the gateway) and the
response status messages are received. Table 2.3 shows the results obtained.
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CR BW (KHz) SF
Packet

Loss(%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

Theoretical

RTD (ms)

RTD

Diff. (ms)

4/5 125 7 0 -32.56 9.37 186.68 92.68 94.00

4/5 125 9 0 -32.84 12.81 457.54 329.72 127.82

4/5 125 11 0 -32.00 10.19 1426.18 1318.92 107.26

4/5 250 7 0 -33.26 10.13 133.46 46.34 87.12

4/8 125 7 0 -34.48 9.63 222.70 123.40 99.30

Table 2.3: Results obtained from sending the status request message to a node 50
times with different parameters. (Varied parameters shown in orange.)

As expected, the RTD follows the calculated theoretical value. Moreover, it can
be concluded that if the range has to be extended by increasing the spreading factor,
the RTD will also increase. Regarding the bandwidth, it also followed the theoretical
RTD which makes sense given that an increase in bandwidth also increases the
bit-rate, which in turn will decrease the delay. As for the coding rate, the results are
also as expected. By including more redundancy bits in the ECC, the payload size
increases and therefore the delay also increases. In this basic setup, there were no
packets lost from the 50 sent messages. The RSSI and SNR are not dependent on
the way the packet is transmitted as they are only affected by the conditions of the
environment (like the distance to gateway, the existence of line-of-sight between the
node and gateway and the amount of existing noise). Finally, there is an approximately
constant difference of approximately 100 ms in the measured RTD and the theoretical
one due to the processing times on the MCUs.

A second test was performed with the same nodes in the network and following
the parameters in Table 2.2 with 50 status request messages being sent to the nodes
𝑛1, 𝑛2 and 𝑛3, sequentially and repeatedly. The goal of this test is to evaluate the
behaviour of the network with multiple nodes. The results obtained are shown in
Table 2.4.

Aligned with the same conclusions from the previous test, in ideal conditions, all
the packets are successfully delivered to all three nodes resulting in a zero packet loss.
Additionally, the RTD delay stays consistent with the value on Table 2.3 (regarding
the initialization parameters) showing once again that the delay does not depend on
the distance or other parameters apart from the ones used in (2.6).

One observation is the way that the RSSI value changes with distance. As the
distance between a node and the gateway increases, the power of the transmitted
signal is the same. However, by having to cover a larger distance in the medium, the
signal loses more strength resulting in a received signal with a lower RSSI value.
This can be seen in Figure 2.9a where the RSSI values are plotted for each node.
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Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

1 1 0 0 -54.84 9.49 204.04

2 4 0 0 -63.72 9.14 202.68

3 7 0 0 -72.68 9.29 203.34

Table 2.4: Results obtained from sending the status request message to each node 50
times sequentially and repeatedly.
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Fig. 2.9: Results obtained from sending the status request message to each node 50
times sequentially and repeatedly.

Furthermore, as the distance increases, the RSSI deviation from the average also
increases, as the signal may be subjected to more interference. The values for the
SNR are also plotted in Figure 2.9b. Given that the SNR is a ratio between the signal
to noise power, it is reasonable that for the small distances in this test we obtained
high SNR. Moreover, the values in Figure 2.9b, seem to follow a normal distribution
around a constant value for each node, which can be caused by the noise interference
in the medium since the signal power is constant for each node.

2.4.2 Rural Experiment

In this test, the aim is to evaluate the performance of the network in rural conditions.
The nodes are located the farthest from the gateway (when compared to the basic
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and urban experiments) in this test so as to find the maximum range where commu-
nication is still possible. A location was selected where electromagnetic interference
is minimal and where the nodes can be in line of sight of the gateway or with only
some bushes or trees in the way while keeping a large distance to the gateway. In this
way, the performance of the network can be evaluated through larger communication
distances in both line of sight and lightly obstructed conditions.

Fig. 2.10: Measurement location for the rural experiment. “A” and “B” represent gate-
way locations while the labels with the distances represent node locations. (Adapted
from Google Maps.)

Depicted in Figure 2.10 are the device locations where the measurements took
place. The letters “A” and “B” show the gateway locations and the distance values
show the node locations. It should be noted that all node locations had line of sight
to the gateway with exception of the closest one (438 m) in which a few trees were
in the path.

The tests run in this experiment are similar to the ones in the basic experiment,
where for each node, 50 status request messages are sent and responses are recorded.
For each node location, a battery of 5 tests were run with different physical layer
configurations where the relevant parameters were varied: SP ∈ {7, 9, 11}, BW ∈
{125 KHz, 250 KHz}, CR ∈ {4/5, 4/8}. Given this, and similarly to the previous
experiment, the network was initialized with a bandwidth of BW = 125 KHz, a
coding rate of CR = 4/5, and a spreading factor of SF = 7, which match default
settings for the SX1276 modem (Table 2.2) and only one parameter is changed from
the initialization per run.

Tables 2.5 to 2.9 show in detail the results obtained from this experiment. For each
node location and physical layer configuration, information is provided regarding the
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Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

1 438 1.96 0 -98.76 8.16 186.30

2 612 3.84 0 -105.34 6.57 185.24

2 956 1.96 0 -106.42 4.66 185.20

Table 2.5: Results obtained with the following physical layer configuration: CR=4/5,
BW=125 KHz, SF=7.

Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

1 438 9.26 2 -100.18 8.70 458.39

2 612 0 0 -105.22 9.62 457.04

2 956 0 0 -106.00 5.84 456.92

Table 2.6: Results obtained with the following physical layer configuration: CR=4/5,
BW=125 KHz, SF=9.

Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

1 438 30.88 6 -100.60 8.65 1426.70

2 612 10.90 2 -106.12 7.01 1425.60

2 956 24.59 8 -106.59 3.95 1425.40

Table 2.7: Results obtained with the following physical layer configuration: CR=4/5,
BW=125 KHz, SF=11.

main performance evaluation parameters. Packet loss shows the percentage of packets
that were lost during a run including any packet retransmissions. On the other hand,
the message loss shows the percentage of lost messages out of the total 50. These two
metrics help to measure how packet retransmission affects the overall performance
of the network. Additionally, it is reported averages for the RSSI, SNR and RTD
values for each test run.

Looking at the average RTD value for each run and physical layer configuration, it
is noticeable that the RTD stays consistent regardless of the distance to the gateway,
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Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

1 438 0 0 -98.98 7.04 134.36

2 612 1.96 0 -103.74 3.83 133.12

2 956 1.96 0 -103.85 0.55 133.03

Table 2.8: Results obtained with the following physical layer configuration: CR=4/5,
BW=250 KHz, SF=7.

Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

1 438 5.66 0 -98.40 8.14 223.58

2 612 0 0 -104.04 6.78 222.02

2 956 3.92 2 -103.86 5.34 222.04

Table 2.9: Results obtained with the following physical layer configuration: CR=4/8,
BW=125 KHz, SF=7.

as expected from the basic tests. Moreover, the values obtained here follow the values
obtained on the basic experiment closely, reinforcing that the RTD value does not
depend on the distance to the gateway but only on the physical layer configuration.
Regarding the averages for RSSI and SNR, plots in Figure 2.11 help better compare
the results across different physical layer configurations.

In Figure 2.11a, it is shown that the tested physical layer configurations barely
affect the strength of the received signal. This is expected as the RSSI value is
determined only by the transmitted signal output power (the power at which the
the LoRa modem transmits modulated signal), the antenna gain of the transmitter
and receiver and by the gain loss due to the medium. As all these parameters are
constant on each test, the RSSI value is expected to remain constant as result. Due
to these same reasons, the plot clearly shows a decrease in the RSSI value as the
distance to the gateway increases. This happens due to the medium gain loss. In this
case, there is a drop in the RSSI value from the 438 m test to the 612 m test but
from the 612 m test to the 956 m test the RSSI value remains more or less constant.
This can be explained due to the few trees that block the line of sight at the 438 m
test. On the other hand, the remaining tests have line of sight to the gateway and
therefore the signal is only blocked by the air reducing the gain loss of the medium
when compared to obstacles such as trees. When it comes to SNR values, the results
shown in Figure 2.11b describe how the SNR value varies over distance and across
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Fig. 2.11: Results obtained from the field test.

physical layer configurations. As expected, as the distance increases the amount of
noise that the signal is subjected to also increases and the SNR decreases as a result.
However, in this case the SNR value never goes below 0, showing that there is little
to no noise on this rural environment, as there are no obstacles or other signals
being transmitted causing interference. Regarding physical layer configurations, all
of them follow the same trend of worse SNR values over distance.

Finally, Figure 2.12 shows data regarding the network performance on packet loss.
Overall, the packet loss is higher on the 438 m test. Intuitively, it would be expected
that packet loss increased with distance. This is generally true but it must be taken
into account that the 438 m test does not have an entirely clear line of sight to the
gateway and this is most likely the reason why the packet loss is higher on this test.

Packet Loss relative to distance and network configuration
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Fig. 2.12: Results obtained from the field test regarding packet loss over distance and
physical layer configuration.

In summary, the rural experiment showed communication to be possible with a
range close to 1km while still maintaining a relatively strong signal. This points to
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the possibility of even larger distances being covered by the WSN. However, when
compared to the advertised range of over 15 km, the results obtained fall short of
that number. Additionally, an overall message loss of 1.33% was obtained given that
out of the 50 messages per 3 nodes and per 5 physical layer configurations (750
in total) only 10 messages were dropped. Also in this subject, it should be noticed
that the implemented packet retransmission capability plays an important role in
reducing the message loss as often the message loss value is lower than the packet
loss value proving how this feature improves the robustness of the network. When
comparing the various tested physical layer configurations, interesting results were
obtained: increasing the spreading factor actually lead to an increase in packet loss,
which was not expected (the benefits of increasing the spreading factor may be more
visible at larger communication distances); additionally, changing the coding rate
and bandwidth had little effect on packet loss. In this way, the configuration which
best suits a rural environment is: a bandwidth of 𝐵𝑊 = 125 KHz, a coding rate of
CR = 4/5 and a spreading factor of SF = 7.

2.4.3 Urban Experiment

The rural experiment is the most interesting with respect to the envisioned application
of the surveillance system being designed. Nevertheless, it is also possible that
some cases of areas to be inspected can have buildings or target surveillance of
events in cities. Therefore, an urban case was also experimented which provide other
researchers with a complete picture in terms of communication characteristics in a
real-life test of both a rural and urban scenarios. Thus, this test is conducted at the
Alameda campus of Instituto Superior Técnico (IST) in the center of Lisbon. The
campus counts with two 12-story towers covered in glass and smaller buildings. The
gateway was placed on the 8𝑡ℎ floor of the IST North tower close to a south-oriented
window with the test node being moved over 5 different locations, some of which do
not have line of sight to the gateway. This information is depicted in Figure 2.13.

Figure 2.13 shows the location used for this experiment along with the node and
gateway locations where the measurements took place. It should be noted that the
location point E is on the 5𝑡ℎ floor of the North tower while the remaining positions
are at ground level. The remaining points were selected since they offer different
conditions in terms of line of sight to the gateway. The location point A has direct
line of sight to the gateway while B and C have a slightly obstructed view. Positions
D and E are inside a building and, therefore, completed obstructed.

In comparison with the rural experiment, the urban test also compares the ef-
fect of two different antennas on the node device while sending 25 messages each
(maintaining a 50-message test per configuration and per location). The battery of
5 tests encompass different physical layer configurations where the relevant varied
parameters are: SP ∈ {7, 9, 11}, BW ∈ {125 KHz, 250 KHz}, CR ∈ {4/5, 4/8}.
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Fig. 2.13: Measurement location for the urban experiment. “G” represents the gate-
way location while the other letters represent the test node location. (Adapted from
Google Maps.)

Given this, and similarly to the previous experiment, the network was initialized with
a bandwidth of BW = 125 KHz, a coding rate of CR = 4/5, and a spreading factor
of SF = 7, which match the default settings for the SX1276 modem (Table 2.2) and
only one parameter is changed from the initialization per run.

Tables 2.10 to 2.14 show the results obtained from this experiment in a similar
fashion to the rural case reporting the main performance evaluation parameters:
packet loss, message loss, average RSSI, average SNR and average RTD.

Regarding RTD, the results are as expected. For each physical layer configuration
the delay stays approximately constant. Moreover, the values obtained for each
physical layer configuration are close to the ones obtained when testing two devices
in close proximity. When comparing the RTD values for both antennas, it can be
concluded that the delay times are independent as the RTD is the same. With respect
to RSSI and SNR, Figure 2.14 helps visualizing the results.

In Figure 2.14a the behaviour of the RSSI is shown against multiple communica-
tion distances. Furthermore, to widen the scope of this analysis, two scenarios were
considered: an indoors scenario (where both the gateway and the node are inside a
building) and an outdoors scenario (where only the gateway is inside a building).
Immediately, a few observations can be made. The RSSI values for the node with the
small antenna are consistently lower than the ones for the node with the big antenna.
Since the two nodes stay at the exact same place, the medium is the same for both of
them and the difference in the RSSI values is most likely caused by different output
powers. Given that the same LoRa modem transmission power is selected for both
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Location
Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

A 1 171 0 0 -96.64 7.64 185.60

A 2 171 0 0 -102.04 5.98 184.36

B 1 73 0 0 -95.52 8.42 204.44

B 2 73 0 0 -101.80 6.95 203.16

C 1 193 0 0 -93.08 8.54 185.76

C 2 193 8 8 -103.78 6.81 184.52

D 1 110 8 8 -105.17 3.79 186.18

D 2 110 76.67 52 -110.57 -4.71 184.43

E 1 34 40 40 -103.27 0.32 185.67

E 2 34 81.25 76 -105.50 -3.50 184.50

Table 2.10: Results obtained with the following physical layer configuration: CR=4/5,
BW=125 KHz, SF=7.

Location
Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

A 1 171 0 0 -97.88 7.40 457.88

A 2 171 4 4 -103.08 5.04 456.54

B 1 73 0 0 -95.12 8.96 457.50

B 2 73 3.84 0 -101.56 8.09 456.15

C 1 193 0 0 -96.52 9.15 457.44

C 2 193 0 0 -106.76 5.93 456.24

D 1 110 0 0 -104.88 3.35 457.76

D 2 110 82.14 80 -109.80 -8.80 456.00

E 1 34 48 48 -102.23 0 457.93

E 2 34 76 76 -104.67 -6.50 456.33

Table 2.11: Results obtained with the following physical layer configuration: CR=4/5,
BW=125 KHz, SF=9.
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Location
Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

A 1 171 7.40 0 -98.28 7.13 1781.20

A 2 171 0 0 -104.12 5.85 1765.70

B 1 73 3.84 0 -96.40 8.17 1426.20

B 2 73 0 0 -101.88 7.40 1425.10

C 1 193 0 0 -97.76 7.23 1998.20

C 2 193 3.84 0 -106.68 6.84 1998.50

D 1 110 12 12 -108.04 2.92 1795.80

D 2 110 85.19 84 -113 -3.25 1795.80

E 1 34 32 32 -104.41 0.06 1426.10

E 2 34 68 68 -105.88 -4.37 1425.10

Table 2.12: Results obtained with the following physical layer configuration: CR=4/5,
BW=125 KHz, SF=11.

Location
Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

A 1 171 0 0 -96.44 7.30 133.76

A 2 171 4 4 -102.62 3.33 132.37

B 1 73 0 0 -94.28 8.57 133.96

B 2 73 0 0 -100.32 6.54 132.44

C 1 193 0 0 -95.16 8.63 133.72

C 2 193 0 0 -102.56 5.06 132.28

D 1 110 46.15 44 -105.0714 -0.18 133.71

D 2 110 100 100 - - -

E 1 34 77.78 76 -101.67 -3.50 134.33

E 2 34 89.36 80 -103.80 -6.20 132.20

Table 2.13: Results obtained with the following physical layer configuration: CR=4/5,
BW=250 KHz, SF=7.
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Location
Node

ID

Distance to

Gateway (m)

Packet

Loss (%)

Message

Loss (%)

Average

RSSI (dBm)

Average

SNR (dB)

Average

RTD (ms)

A 1 171 0 0 -95.80 7.91 222.80

A 2 171 0 0 -102.92 5.45 221.48

B 1 73 0 0 -95.76 8.49 222.84

B 2 73 3.84 0 -102.16 6.64 221.44

C 1 193 0 0 -96.56 8.39 222.88

C 2 193 0 0 -103.24 6.51 221.52

D 1 110 54.55 40 -107.87 -0.02 222.67

D 2 110 85.29 80 -112 -7.80 221.60

E 1 34 32 32 -103.41 0.59 222.76

E 2 34 96.15 96 -105 -5 222

Table 2.14: Results obtained with the following physical layer configuration: CR=4/8,
BW=125 KHz, SF=7.
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Fig. 2.14: Results obtained from the urban test.
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nodes, it means that the larger antenna has a higher gain. When it comes to node
location, it is also clear that the indoor test runs yielded worse results in comparison
with the outdoor setting. This is once again to be expected as there is no line of sight
to the gateway and there are several walls and other obstacles in the signal path.
Finally, the same conclusions taken from the previous experiment also apply here:
RSSI has a small dependence on the physical layer configuration and overall it gets
lower when the distance to the gateway increases.

As for the SNR, Figure 2.14b shows its behaviour for different communication
distances. Similarly to the RSSI, the SNR tends to be lower for the small antenna.
This should be explained by the fact that with the small antenna there is a lower signal
output power resulting in a higher noise level by comparison. Again, in the indoor test
runs, the results are worse. This happens due to the additional noise and interference
caused by all the obstacles to the signal propagation. One interesting observation is
that on the test run in location D, the SNR values obtained were generally better in
comparison to using location E (even though location E was further away from the
gateway). This could be explained by the difference in the medium through which
the signal must pass. In location E, the node was three floors below the gateway,
resulting in concrete obstacles while D is inside a different building (the buildings
had line of sight to each other), leading to less signal interference.

Figure 2.15 shows the packet loss for all the test locations across multiple physical
layer configurations. An expected trend is the higher packet loss for indoor test (34
m and 110 m) and the use of the small antenna since a lower antenna gain generates
a lower RSSI. Regarding message loss, it is noted how this value is often lower
than the packet loss, showing how packet retransmission is improving the network
reliability.

Packet Loss relative to distance and network configuration for the big antenna
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Fig. 2.15: Results obtained from the urban test regarding packet loss over distance
and physical layer configuration.



2.5 Desynchronization Problem 31

To sum up, the urban experiment explored the capabilities of the developed LoRa
based WSN in an urban environment, which can be quite challenging for a network
using LoRa as its high efficiency property makes use of a very low signal transmis-
sion power. In addition, two different antennas were also tested. The results in this
experiment showed how communication is possible from devices in different build-
ings and how well the network performs in better conditions, such as when the node
is outside and with line of sight to the gateway. Similarly to the rural experiment, the
default physical layer configuration appeared to show the best results overall. With
this configuration a maximum packet loss of 40 % for the big antenna and 81.25 %
for the small antenna was obtained for communication between devices in two dif-
ferent buildings with a communication distance of up to 110 m. For communication
where only the gateway is inside a building and with a communication distance of
up to 193 m, a maximum packet loss of 0 % and 8 % was obtained for the big and
small antennas respectively.

2.5 Desynchronization Problem

The proposed WSN based on LoRa was tested under periodic communication where
a single node would transmit. That raises the problem of having multiple collisions
between transmitters. A possible solution is to desynchronize in a distributed manner
the nodes of the sensor network as to avoid collisions. Moreover, if this is done so,
nodes can turn on only periodically in order to conserve battery power. Each sensor
can schedule its uptime to listen to only two neighbors, thus forming a ring. We can
have a protocol on top of the communication one that periodically broadcasts a fire
message or a pulse and listen to the medium for the messages of their neighbors.
Each node 𝑖 ∈ {1, · · · , 𝑛} has a phase variable 𝜃𝑖 (𝑡) that depends on the period

𝜃𝑖 (𝑡) =
𝑡

𝑇
+ 𝜙𝑖 (𝑡) mod 1, (2.7)

where 𝜙𝑖 ∈ [0, 1] is the so-called phase offset of node 𝑖 and mod notation stands
for the modulo arithmetic. Every node 𝑖 broadcasts a pulse when its phase reaches the
unity (i.e., every 𝑇 time units) and then resets it to zero. Every time a node receives
a pulse, it will adjust its offset 𝜙 according to an update equation. The work in [29]
showed that the problem of adjusting 𝜙 (𝑘 ) that stacks all phase offsets for individual
nodes 𝜙𝑖 for each cycle 𝑘 of pulse messages can be cast as the minimization of
a quadratic function, where the steady-state solution would render each transmitter
with equal phase offsets and able to use the medium without collisions. This contrasts
with the Pulse Coupled Oscillators algorithm implemented in IEEE 802.15.4 [30]
that corresponds to a consensus algorithm as in [31], [32].

Proposition 2.1 (Desynchronization as an optimization [29]) Let 𝜙 (𝑘 ) denote the
phases of all nodes at updating cycle 𝑘 . The state of desynchronization corresponds
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to the solution of the following optimization problem:

minimize
𝜙

𝑔(𝜙) :=
1
2
∥𝐷𝜙 − 𝑣1𝑛 + e𝑛∥22 (2.8)

where 𝑣 = 1/𝑛, 1𝑛 is the vector of ones, e𝑛 = (0, 0, · · · , 0, 1)⊺, and

𝐷 =



−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
...
. . .

. . .
...

0 · · · 0 0 −1 1

1 · · · 0 0 0 −1


. (2.9)

During the project, we investigated optimal solutions for the update rule as to
achieve fast convergence.

2.6 Optimal Fixed-parameter Nesterov-based Desynchronization
Algorithm

The state-of-the-art approach to solve this problem was known as Fast-Desync [29],
which corresponded to a time-varying parameter version of the Nesterov method as a
fast algorithm to desynchronize the transmitters. Fast-Desync has the advantage of
not requiring knowledge of the number of transmitters in the network at the expenses
of a sub-optimal choice of parameters. In this section, we present other optimization
algorithms and compute closed-form expressions for the parameters and worst-case
convergence rates.

In [33], it is shown that the Gradient descent, Heavy-ball and Nesterov methods
given by the iterations:

Gradient : 𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝛽∇𝑔(𝑥 (𝑘 ) )

Heavy-ball :
𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝛽∇𝑔(𝑥 (𝑘 ) )

+ 𝛾(𝑥 (𝑘 ) − 𝑥 (𝑘−1) )

Nesterov :
𝑥 (𝑘+1) = 𝜉 (𝑘 ) − 𝛽∇𝑔(𝜉 (𝑘 ) )
𝜉 (𝑘 ) = (1 + 𝛾)𝑥 (𝑘 ) − 𝛾𝑥 (𝑘−1)

(2.10)
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and can be analyzed as dynamical systems to compute optimal parameters 𝛽 and 𝛾.
This reformulation allows to use standard techniques from linear systems theory to
compute the convergence rate in the worst-case trajectory, i.e., the positive constant
𝜆 < 1 such that ∥𝑥 (𝑘 ) − 𝑥★∥ ≤ 𝑐𝜆𝑘 ∥𝑥 (0) − 𝑥★∥, for some constant 𝑐 > 0, where 𝑥★
corresponds to the steady state value for the system with initial conditions 𝑥 (0) .

However, the results presented in [33] apply to strongly convex functions, which,
since 𝑔 is quadratic, means that matrix 𝑄 must satisfy 𝑚𝐼𝑛 ⪯ 𝑄 ⪯ 𝐿𝐼𝑛, which
is equivalent to say that the eigenvalues of 𝑄 lie in the interval [𝑚, 𝐿] for 𝑚 >

0. In the next lemma, the results are generalized to the case when function 𝑔 is
only convex but the eigenvectors associated with the zero eigenvalues are part of
the minima. The result translates that the expressions in [33] for the parameters
of the optimization algorithms achieving the best worst-case convergence rate for
strongly convex functions are valid, provided that we consider the minimum non-
zero eigenvalue as a replacement for the minimum eigenvalue of𝑄 (which would be
zero).

Lemma 2.1 Consider a convex quadratic function 𝑔(𝑥) = 𝑥⊺𝑄𝑥+𝑐⊺𝑥 with Hessian
matrix 0 ⪯ 𝑄 ⪯ 𝐿𝐼𝑛 and a subspace S containing any vector 𝑠 resulting from a
linear combination of eigenvectors of 𝑄 associated with zero eigenvalues. If any
vector 𝑠 ∈ S is a minimizer of the function, i.e.,

∀𝑠 ∈ S : 𝑔(𝑠) = 𝑔★, (2.11)

where 𝑔★ is the global minimum of function 𝑔, then, optimal parameters achieving
the best worst-case convergence rate for linear first-order optimization algorithms
depend solely on 𝑚 and 𝐿, where 𝑚 is the minimum non-zero eigenvalue of 𝑄.

Proof. Given that any linear first-order algorithm can be described by a transition
matrix 𝑇

𝑇 = 𝐴 + 𝐵𝑄𝐶, (2.12)

where 𝐴, 𝐵 and𝐶 represent the operation of the particular algorithm, its convergence
rate depends on the spectra of 𝑇 . From the statement of the lemma, all vectors in
the null space of 𝑄 are global minima of function 𝑔. Thus, the error analysis needs
only to consider initial conditions that do not start in S. Moreover, from the results
in [33], the spectra of 𝑇 is given by the eigenvalues of 𝐴1 + 𝐵1𝜆𝑖 (𝑄)𝐶1, where 𝐴1,
𝐵1 and 𝐶1 correspond to the matrices 𝐴, 𝐵, 𝐶 applied to a function 𝑔 with domain
in R. Given any eigenvalue 𝜆𝑖 (𝑄), we only need to consider 𝜆𝑖 (𝑄) > 0 since the
initial conditions aligned with the eigenvectors of 𝜆𝑖 (𝑄) = 0 correspond to minima
of function 𝑔, and the conclusion follows. ⊓⊔

Using Lemma 2.1, and assuming a known number of transmitters in the network,
allows to compute optimal parameters for the three optimization algorithms, which
is given in the next theorem. The expressions are given in terms of 𝑛 which can be
hardcoded in the transmitters software.
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Theorem 2.1 Consider the Desync problem in (2.8) with 𝑛 transmitting sources.
Then,

Gradient descent with parameter:

𝛽 =


1

3−cos( 2𝜋
𝑛 )
, if 𝑛 is even
1

2−cos( 2𝜋
𝑛 )−cos

(
(𝑛−1) 𝜋

𝑛

) , if 𝑛 is odd (2.13)

achieves worst-case convergence rate 𝜌𝐺:

𝜌𝐺 =


1+cos( 2𝜋

𝑛 )
3−cos( 2𝜋

𝑛 )
, if 𝑛 is even

cos( 2𝜋
𝑛 )−cos

(
(𝑛−1) 𝜋

𝑛

)
2−cos( 2𝜋

𝑛 )−cos
(
(𝑛−1) 𝜋

𝑛

) , if 𝑛 is odd
(2.14)

Heavy-ball with parameters:

𝛽 =


1

(1+sin( 𝜋𝑛 ))2
, if 𝑛 is even

1(
sin( 𝜋𝑛 )+sin

(
(𝑛−1) 𝜋

2𝑛

))2 , if 𝑛 is odd (2.15)

and

𝛾 =


(

1−sin( 𝜋𝑛 )
1+sin( 𝜋𝑛 )

)2
, if 𝑛 is even(

sin
(
(𝑛−1) 𝜋

2𝑛

)
−sin( 𝜋𝑛 )

sin
(
(𝑛−1) 𝜋

2𝑛

)
+sin( 𝜋𝑛 )

)2

, if 𝑛 is odd
(2.16)

achieves worst-case convergence rate 𝜌𝐻 :

𝜌𝐻 =


1−sin( 𝜋𝑛 )
1+sin( 𝜋𝑛 )

, if 𝑛 is even

sin
(
(𝑛−1) 𝜋

2𝑛

)
−sin( 𝜋𝑛 )

sin
(
(𝑛−1) 𝜋

2𝑛

)
+sin( 𝜋𝑛 )

, if 𝑛 is odd

(2.17)

Nesterov with parameters:

𝛽 =


2

7−cos( 2𝜋
𝑛 )
, if 𝑛 is even
2

4−3 cos
(
(𝑛−1) 𝜋

𝑛

)
−cos( 2𝜋

𝑛 )
, if 𝑛 is odd (2.18)

and

𝛾 =
1 − 2

√
𝛽 sin

(
𝜋
𝑛

)
1 + 2

√
𝛽 sin

(
𝜋
𝑛

) (2.19)
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achieves worst-case convergence rate 𝜌𝑁 :

𝜌𝐻 = 1 − 2
√︁
𝛽 sin

( 𝜋
𝑛

)
(2.20)

Proof. We start by noting that function 𝑔 has an infinite number of global minima
corresponding to one solution rotated in the circle, meaning that 𝑔 is not strongly
convex. Therefore, taking any 𝑥★ and adding a scaled vector from the null space of
𝑄 results in a global minimum, i.e.,

∀𝑠 ∈ R : 𝑔(𝑥★) = 𝑔(𝑥★ + 𝑠1𝑛) (2.21)

Using Lemma 2.1, the algorithms convergence rates depend on 𝑚 = 𝜆2 (𝑄) and
𝐿 = 𝜆𝑛 (𝑄). Given the particular structure of 𝑄, both 𝑚 and 𝐿 have closed-form
expressions:

𝑚 = 2 − 2 cos
(

2𝜋
𝑛

)
(2.22)

whereas

𝐿 =

{
4, if 𝑛 is even
2 − 2 cos

(
(𝑛−1) 𝜋
𝑛

)
, if 𝑛 is odd

(2.23)

Using the optimal parameter value 𝛽 = 4
𝑚+𝐿 (see [33] or [34]) makes the conver-

gence rate 𝜌𝐺 = 𝜅−1
𝜅+1 for 𝜅 = 𝐿/𝑚. Replacing for the values of 𝑚 and 𝐿 from (2.22)

and (2.23), we obtain the expressions in (2.13) and (2.14).

The Heavy-ball parameters can be found when the eigenvalues of 𝑇2 and 𝑇𝑛 have

equal magnitude, resulting in 𝛽 = 4(√
𝐿+
√
𝑚

)2 and 𝛾 =

(√
𝜅−1√
𝜅+1

)2
. Replacing the values

of 𝑚 and 𝐿 and using the fact that 1 − cos(𝑥) = 2 sin2 (𝑥/2) yields the values for the
parameters in (2.15) and (2.16), and the worst convergence rate is given by 𝜌𝐻 =

√
𝛾

which yields (2.17).

The last algorithm corresponding to Nesterov and solving such that three of the
eigenvalues of𝑇2 and𝑇𝑛 have equal magnitude results in 𝛽 = 4

3𝐿+𝑚 and 𝛾 =
√

3𝜅+1−2√
3𝜅+1+2

.
Replacing the values of 𝑚 and 𝐿 and using the fact that 1 − cos(𝑥) = 2 sin2 (𝑥/2),
after some algebraic manipulations, yields the values for the parameters in (2.18)
and (2.19), and using the expressions in [34], the worst convergence rate is given by
𝜌𝑁 = 1 − 2√

3𝜅+1
which yields (2.20). ⊓⊔

The main consequence of Theorem 2.1 is that if the number of transmitters
to be desynchronized is known, it is possible to achieve optimal worst-case con-
vergence rates. In a sense, the Fast-Desync algorithm in [29] using parameters
0 ≤ 𝛽 ≤ 1

max𝜆𝑖 (𝑄) and 𝛾 (𝑘 ) = 𝑘−1
𝑘+2 is convergent because it uses the suboptimal

maximum eigenvalue of 𝑄 of 4 for the even case (in the odd case this is a rea-
sonable approximation only as 𝑛 ≫ 1) and disregards the minimum eigenvalue. In
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the next theorem, we find a novel explicit formula for the convergence rate of this
time-varying parameter version and show that the convergence rate is governed by
1 − 1/𝜅 in comparison with 1 − 1/

√
𝜅 when selecting the optimal fixed parameters

as seen in Theorem 2.1. Thus, the current proposal of using the fixed-parameter
Nesterov method for cases of known number of nodes 𝑛 outperforms the current
state-of-the-art.

Theorem 2.2 The Nesterov method with 𝛽 = 1
max𝜆𝑖 (𝑄) =

1
4 and 𝛾 (𝑘 ) = 𝑘−1

𝑘+2 has a
worst-case convergence rate, at time instant 𝑘 , 𝜆 (𝑘 )

𝐹𝐷
given by:

𝜆
(𝑘 )
𝐹𝐷

=


1, if 𝑘 = 0
𝜑, if 𝑘 = 1���𝜑 (
(1 + 𝛾 (𝑘−1) )𝜆 (𝑘−1)

𝐹𝐷
− 𝛾 (𝑘−1)𝜆 (𝑘−2)

𝐹𝐷

)��� , if 𝑘 ≥ 2
(2.24)

for 𝜑 = 1 − 1
𝜅

. Moreover, 𝜆 (𝑘 )
𝐹𝐷

is O(1/𝜅) whereas 𝜆𝑁 is O(1/
√
𝜅).

Proof. The Fast-Desync algorithm can be modeled through the Linear Time-
Varying (LTV) model for dynamical systems using the following matrices:

𝐴(𝑘 ) =


(1 + 𝛾 (𝑘 ) )𝐼𝑛 −𝛾 (𝑘 ) 𝐼𝑛

𝐼𝑛 0𝑛

 , 𝐵 =


−𝛽𝐼𝑛

0𝑛

 , (2.25)

𝐶 (𝑘 ) =

[
(1 + 𝛾 (𝑘 ) )𝐼𝑛 −𝛾 (𝑘 ) 𝐼𝑛

]
. (2.26)

The transition matrix corresponding to the evolution of 𝑥 (𝑘+1) − 𝑥★ is given by:

𝑇 (𝑘 ) = 𝐴(𝑘 ) + 𝐵𝑄𝐶 (𝑘 ) . (2.27)

Writing the error equation results in the relationship:

𝑥 (𝑘+1) − 𝑥★ = T (𝑘+1) (𝑥 (0) − 𝑥★) (2.28)

with matrix T (𝑘+1) being the transition matrix from the initial conditions to the
current time instant, i.e.,

T (𝑘 ) = 𝑇 (𝑘 ) · · ·𝑇 (1) . (2.29)

All matrices𝑇 (𝑘 ) admit the same eigenvalue decomposition using orthogonal matrix
𝑈, which allows writing T (𝑘 ) as

𝑈 0𝑛

0𝑛 𝑈

 (𝐴
(𝑘 ) + 𝐵Λ𝐶 (𝑘 ) ) · · · (𝐴(1) + 𝐵Λ𝐶 (1) )


𝑈 0𝑛

0𝑛 𝑈


⊺

, (2.30)
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since 𝑈⊺𝑈 = 𝐼. Since the spectrum of T (𝑘 ) is equivalent to that of (𝐴(𝑘 ) +
𝐵Λ𝐶 (𝑘 ) ) · · · (𝐴(1)+𝐵Λ𝐶 (1) ), we can study the spectrum of (𝐴(𝑘 )1 +𝐵1𝜆𝑖𝐶

(𝑘 )
1 ) · · · (𝐴

(1)
1 +

𝐵1𝜆𝑖𝐶
(1)
1 ) for all eigenvalues 𝜆𝑖 (𝑄), and where matrices with subscript equal to one

correspond to setting 𝑛 to one.

As a consequence of the previous transformation, the convergence rate at each
time instant 𝑘 is given by the product of all matrices from 1 to 𝑘 in the form:

𝑇
(𝑘 )

1 =


(1 + 𝛾 (𝑘 ) ) (1 − 𝛽𝜆𝑖 (𝑄)) −𝛾 (𝑘 ) (1 − 𝛽𝜆𝑖 (𝑄))

1 0

 (2.31)

and, since 𝛽 = 1/4, we get the worst-case value for 1 − 𝛽𝜆𝑖 (𝑄) = 1 − 1
𝜅
= 𝜑. In

addition, since 𝛾 (1) = 0 (by definition of the algorithm as there is no momentum
term at the first iteration), we get

𝑇
(1)

1 =


𝜑 0

1 0

 (2.32)

which means that any matrix T (𝑘 )1 will have the second column equal to zeros. As a
consequence, the eigenvalues are always going to be a zero and the first entry of the
matrix since it is a lower triangular. Therefore, the convergence rate for each time
instant 𝑘 evolves according to the sequence:

𝜆
(𝑘 )
𝐹𝐷

= 𝜑

(
𝜆
(𝑘−1)
𝐹𝐷

+ 𝛾 (𝑘−1) (𝜆 (𝑘−1)
𝐹𝐷

− 𝜆 (𝑘−2)
𝐹𝐷
)
)
. (2.33)

Since the minimum of the eigenvalues is achieved after 𝑛 iterations, i.e., when
variable 𝜆𝐹𝐷 goes from 1 to below zero, then we can propose the lower bound for
the rate that corresponds to:

𝜆
(𝑘 )
𝐹𝐷

= 𝜑

(
𝜆
(𝑘−1)
𝐹𝐷

− 𝛾 (𝑘−1) 1
𝑛

)
(2.34)

which has non-recursive definition given by

𝜆
(𝑘 )
𝐹𝐷

= 𝜑𝑘 (1 − 𝑘
𝑛
) (2.35)

thus, reaching the conclusion since the optimal fixed parameters achieves conver-
gence rate of 1 − 2√

3𝜅+1
. ⊓⊔

Remark 2.1 The result at Theorem 2.2 hints that the convergence rate is slower
as the size of the network increases. However, using the expression for the exact
convergence rate, we have depicted in Fig. 2.16 the comparison between the rates
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for three sizes of networks. In each case, the rate achieved with the optimal fixed
parameter is always faster than that using the time-varying version.

0 500 1000 1500 2000 2500
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

LTV Nesterov n = 20
Optimal LTI Nesterov n = 20
LTV Nesterov n = 100
Optimal LTI Nesterov n = 100
LTV Nesterov n = 500
Optimal LTI Nesterov n = 500

Fig. 2.16: Logarithmic evolution of the convergence rate for the time-varying Nes-
terov (LTVnesterov) and optimal fixed parameter Nesterov for networks sizes of 20,
100 and 500.

2.7 Desynchronization using Gauss-Seidel iterations

In the previous section, we have shown that the current state-of-the-art underperforms
in comparison with setting an optimal fixed-parameter for the Nesterov method with
the expressions being given in Theorem 2.1. However, in some scenarios, it will be
infeasible to have all transmitters know the number of nodes in the entire network.
In this section, we present results when viewing the problem in (2.8) as the solution
of a linear equation, as was done in [35] for the PageRank problem. We first present
the Gauss-Seidel algorithm for completeness and then apply it to ∇𝑔(𝜙) = 0 in order
to obtain a faster update rule without the need to set up parameters.

For a general system 𝐴𝑥 = 𝑏, with 𝐴 = 𝐿 +𝐷 +𝑈 decomposed in lower, diagonal
and upper matrices, the Gauss-Seidel method has the following update rule:

𝑥(𝑘 + 1) = (𝐿 + 𝐷)−1 (𝑏 −𝑈𝑥(𝑘)) (2.36)

which, by taking advantage of the triangular form of 𝐿 + 𝐷, can be sequentially
updated for each 𝑖 using forward substitution, leading to the desynchronization



2.7 Desynchronization using Gauss-Seidel iterations 39

algorithm:

𝜙
(𝑘+1)
1 =

1
2

(
1 − 𝜙 (𝑘 )2 − 𝜙 (𝑘 )𝑛

)
𝜙
(𝑘+1)
𝑖

=
1
2

(
−𝜙 (𝑘+1)

𝑖−1 − 𝜙 (𝑘 )
𝑖+1

)
, 2 ≤ 𝑖 ≤ 𝑛 − 1

𝜙
(𝑘 )
𝑛 =

1
2

(
−1 − 𝜙 (𝑘+1)

1 − 𝜙 (𝑘+1)
𝑛−1

) (2.37)

which requires communication with the immediate neighbors akin the original prob-
lem and exploits the inherent sequential behavior of the Desync algorithm. In this
setup, nodes use the most updated values for the phases.

The next theorem provides the exponential rate of convergence of the iteration in
(2.37).

Theorem 2.3 (Convergence Rate of Gauss-Seidel) The iterative method (2.37)
asymptotically converges to a desynchronization state with exponential convergence
rate 𝜆𝐺𝑆 , i.e.,

𝜙 (𝑘+1) − 𝜙★ ≤ 𝜆𝑘+1
𝐺𝑆 (𝜙

(0) − 𝜙★) (2.38)

where
𝜆𝐺𝑆 = |𝜆2 (𝑇𝐺𝑆) |

and

𝑇𝐺𝑆 =

𝑛−1∑︁
𝑗=0

(
1
2

) 𝑗+1
𝐸 𝑗𝐸⊺, (2.39)

𝐸 =


0⊺
𝑛−1 0

𝐼𝑛−1 0𝑛−1

 + e𝑛e⊺
1 (2.40)

with |𝜆𝑛 (𝑇𝐺𝑆) | ≤ |𝜆𝑛−1 (𝑇𝐺𝑆) | ≤ · · · ≤ |𝜆1 (𝑇𝐺𝑆) |.

Proof. The inequality in (2.38) comes directly from seeing the Gauss-Seidel algo-
rithm as a linear time-invariant system where 𝑇𝐺𝑆 := −(𝐷 + 𝐿)−1𝑈 is the transition
matrix for a general linear equality 𝐴𝑥 = 𝑏 as in (2.36).

The first step in the proof consists of writing the matrix 𝑇𝐺𝑆 for the Desync
problem. Given the partition 𝐴 = 𝐿 + 𝐷 + 𝑈, the matrix 𝑇𝐺𝑆 has the following
expression:

𝑇𝐺𝑆 = (2𝐼𝑛 − 𝐸)−1𝐸⊺

=
1
2
(𝐼𝑛 −

1
2
𝐸)−1𝐸⊺

(2.41)

with the strictly lower triangular matrix 𝐸 being defined as in (2.40).

We remark that
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(𝐼𝑛 + 𝑁)−1 = 𝐼𝑛 +
𝑛−1∑︁
𝑘=1
(−1)𝑘𝑁 𝑘

for a general strictly lower triangular matrix 𝑁 . Using the above equality and after
some algebraic manipulations, (2.41) simplifies to (2.39).

The second step is to show stability by proving that the spectral radius of 𝑇𝐺𝑆
is within the unit circle, i.e., 𝜌(𝑇𝐺𝑆) ≤ 1. Matrix 𝑇𝐺𝑆 is row stochastic since its
elements are trivially nonnegative and
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𝑇𝐺𝑆1𝑛 =
©­«
𝑛−1∑︁
𝑗=0

(
1
2

) 𝑗+1
𝐸 𝑗

ª®¬ (1𝑛 + 𝐷⊺e𝑛)

=
1
2
(1𝑛 + 𝐷⊺e𝑛) +

1
22



0

2

1𝑛−3

3


+ 1

23


02

2

1𝑛−3


+ 1

24


03

2

1𝑛−4


+ · · · + 1

2𝑛


0𝑛−1

2



=



1
1
2 +

2
22

2∑︁
𝑗=1

1
2 𝑗
+ 2

23

...

𝑛−2∑︁
𝑗=1

1
2 𝑗
+ 2

2𝑛−1

3
22 +

𝑛−1∑︁
𝑗=3

1
2 𝑗
+ 2

2𝑛



=



1
1
2 +

1
2

1 − 1
22 + 1

22

...

1 − 1
2𝑛−2 + 1

2𝑛−2

3
22 − 1

2𝑛−1 + 1
22 + 1

2𝑛−1


= 1𝑛.

(2.42)

By noticing that the first row is equal to two times the 𝑛th minus the 𝑛 − 1th rows,
the following equality is true
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𝑈𝑇𝐺𝑆 =


0 0⊺

𝑛−1

0𝑛−1 𝑇
𝑠𝑢𝑏
𝐺𝑆


where

𝑈 =


1 0⊺

𝑛−3 1 −2

0𝑛−1 𝐼𝑛−1


and the matrix𝑇 𝑠𝑢𝑏

𝐺𝑆
is a submatrix of𝑇𝐺𝑆 obtained by removing the first row and col-

umn. Since the matrix 𝑈 implements elementary row operations, the multiplication
has no effect on the spectra of 𝑇𝐺𝑆 , meaning that 𝜆𝑖 (𝑇𝐺𝑆) = 𝜆𝑖 (𝑈𝑇𝐺𝑆),∀1 ≤ 𝑖 ≤ 𝑛.
In particular, from the format of𝑈𝑇𝐺𝑆 , it follows that

{𝜆𝑖 (𝑇𝐺𝑆), 1 ≤ 𝑖 ≤ 𝑛} = {𝜆𝑖 (𝑇 𝑠𝑢𝑏𝐺𝑆 ), 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {0}

Similarly, 𝑇 𝑠𝑢𝑏
𝐺𝑆

remains row stochastic and its support graph is strongly connected
since the last row and columns are full (meaning that the correspondent node would
have edges to and from all the remaining nodes in the graph). As a consequence,
𝜆1 (𝑇 𝑠𝑢𝑏𝐺𝑆

) = 1 and |𝜆2 (𝑇 𝑠𝑢𝑏𝐺𝑆
) | < 1 by the Perron-Frobenius Theorem and the conclu-

sion about the convergence rate also follows. ⊓⊔

2.8 Simulation Results for Desynchronization Algorithm

In this section, simulations are presented using the toolbox in [36] in order to
illustrate whether the theoretical rates represent an advantage in practical sense. All
simulations have considered an initial starting phase state 𝜙 (0) = 1𝑛/𝑛 corresponding
to all nodes sharing the same phase and being completely synchronized.

Figure 2.17 compares the evolution of the convergence rates for Gradient with
𝛽 = 1

4 (which is equivalent to the PCO-based Desync when 𝛽 = 𝛼
2 as demonstrated

in [29]), Gauss-Seidel, Nesterov and Heavy-Ball for the fixed parameters 𝛽 =
1
4 , 𝛾 = 1

2 . This hints at the fact that indeed considering both optimization methods and
iterative algorithms for solving linear equations yields improvements in performance
in comparison with the PCO model. As expected, as the number of nodes increases,
so does the convergence rate, which is approaching the unity as 𝑛 grows to infinity.

An important remark is that the version of the Nesterov method proposed in
[29] has time-varying parameters (in particular 𝛾 = 𝑘−1

𝑘+2 ) that might contribute to
increase the speed of convergence. In order to compare the method proposed in [29],
a simulation of a 𝑛 = 5 node network was conducted and the logarithm of the error
norm is presented is Fig. 2.18.
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Fig. 2.17: The convergence rate 𝜆2 for the different algorithms depending on the
number of nodes 𝑛.
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Fig. 2.18: Logarithmic evolution of the error norm for the PCO-based, Nesterov and
Gauss-Seidel algorithms.

Figure 2.18 shows that the Gauss-Seidel iteration achieves a faster convergence
at a fixed rate in comparison with the algorithm in [29]. Both methods present a
clear advantage when compared to the PCO-based method with parameter 𝛼 = 0.2.
Additional simulations were conducted to assess the potential advantage of the
Nesterov method with a time-varying parameter. A network of 𝑛 = 20 nodes was
also simulated and the results are depicted in Fig. 2.19.
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Fig. 2.19: Logarithmic evolution of the error norm for the PCO-based, Nesterov and
Gauss-Seidel algorithms for the 20 node network.

The main observation from the evolution of the error in Figs. 2.18 and 2.19 is
that as 𝑛 increases, the behavior of the error norm changes. For small networks, the
Gauss-Seidel method outperforms the Nesterov algorithm. When increasing 𝑛, the
error decreases faster using the Gauss-Seidel up to a small tolerance and then the
Nesterov method becomes faster. The observed oscillations tend to fade for larger 𝑛.

The simulations presented so far only considered algorithms for which there is
no knowledge of the number of transmitters 𝑛. In the remainder of the simulations,
both the Gauss-Seidel and the LTV version of Nesterov from [29] are compared
against the Nesterov and Heavy-Ball algorithms selecting optimal parameters from
Theorem 2.1. The initial state is set to 1𝑛/𝑛 and we report the same error function
as previously.

In Fig. 2.20 it is depicted the error evolution for a small size network of 6 nodes. In
small networks, simulations show that the LTV Nesterov has the worst performance
while, as expected, the Heavy-Ball algorithm has the best performance given that it
is the fastest for quadratic functions of all methods. As proven in Theorem 2.2, the
convergence of LTV Nesterov is not monotonous. The Gauss-Seidel outperforms the
optimal Nesterov method but with a similar behavior.

In order to test for medium-sized networks, a similar simulation was conducted
for a 20 node network. The Gradient with optimal parameter is the slowest and the
oscillatory behavior of the LTV Nesterov is heightened and still underperfoms in
comparison with the Gauss-Seidel. For this case, both the Nesterov and the Heavy-
Ball methods achieve a better convergence since it scales with 1/

√
𝜅. Another curious

fact that starts to emerge is the bad performance of the Heavy-Ball in the beginning
of the simulation.
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Fig. 2.20: Logarithmic evolution of the error norm for the PCO-based (Gradient
Descent), Nesterov, LTV Nesterov, Heavy-Ball and Gauss-Seidel algorithms for a 6
node network.
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Fig. 2.21: Logarithmic evolution of the error norm for the PCO-based (Gradient
Descent), Nesterov, LTV Nesterov, Heavy-Ball and Gauss-Seidel algorithms for a
20 node network.
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Fig. 2.22: Logarithmic evolution of the error norm for the PCO-based (Gradient
Descent), Nesterov, LTV Nesterov, Heavy-Ball and Gauss-Seidel algorithms for a
200 node network.

In order to illustrate the behavior of the algorithms for large networks, a 200
transmitter network is also simulated with the error evolution being presented in Fig.
2.22. For such cases, the behavior of the Gauss-Seidel approaches the optimal Gra-
dient Descent albeit faster but both underperform in comparison with the Nesterov
and Heavy-Ball. The LTV Nesterov has a performance in between these two classes
and still maintains its oscillatory behavior. The initial increase in the error for the
Heavy-Ball is noticeable which might discourages its application for large networks
and error tolerances around 10−3 or 10−4 for which the Nesterov method produces
equivalent results without the initial increase in the error.

2.9 Resilient Data Acquisition with Reputation-Based Consensus

One important aspect of a sensor network is to be able to cope with incorrect
data generated by some of its nodes or by an attacker that might spoof messages.
In practice, if we have multiple sensors measuring common values, they might
perform a consensus protocol to achieve a better estimate. We note that simply
removing outliers or attackers can also be accomplished using a similar strategy
as was presented in [37] or by assessing the variance of transmitted data [38]. In
this section, we address the case where the WSN has nodes measuring temperature,
humidity and other parameters to provide data for estimating the risk distribution.
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Let us consider a network of agents forming a graph G = (V, E (𝑘 ) ), where V
is a nonempty set of nodes, and E (𝑘 ) ⊆ V × V is a set of edges and time 𝑘 and
with initial states 𝑥 (0)𝑣 ∈ R, for 𝑣 ∈ V. In the non-attacked scenario, agents can reach
consensus through the use of a distributed linear iterative algorithm with dynamics
given by:

𝑥 (𝑘+1) = 𝑊 (𝑘 )𝑥 (𝑘 ) , (2.43)

where 𝑥 (𝑘 ) is the vector collecting the 𝑛 agents states at time step 𝑘 > 0, and
the matrix 𝑊 (𝑘 ) ∈ R𝑛×𝑛 is such that: (i) 𝑊𝑢,𝑣 = 0 if the agents 𝑢 and 𝑣 do not
communicate, and (ii) the agents converge to the same quantity, i.e., lim

𝑘→∞
𝑥 (𝑘 ) = 𝑥∞.

We consider a set of attacked agents A ⊂ V. If the agents 𝑎 ∈ A do not follow
the consensus update rule, then each regular agent, 𝑣 ∈ V \ A, should identify and
discard the attacked agents’ values.

The assumption we made is typical in the state-of-the-art methods to ensure resilient
consensus. We remark that the assumption we do make is equivalent to the 𝑟-
robustness ((𝑟, 1)-robust) defined in [39].

The previous assumption is reasonable as each regular agent has to divide his
neighbors into the set of normal nodes and the set of attacked ones, comparing the
information that it receives. Thus, if the majority of the information is not legitimate
there is no redundancy to allow identifying the attacked neighbors.

2.9.1 Attacker model

Subsequently, we consider an attacker that may corrupt the state of the nodes in the
subset A by adding an unbounded signal. The attacked dynamics are a corrupted
version of (2.43) as follows:

𝑥 (𝑘+1) = 𝑊 (𝑘 )𝑥 (𝑘 ) + Δ(𝑘 ) , (2.44)

where Δ(𝑘 ) ∈ R𝑛, which entails the assumption that the attacker cannot corrupt
the communication between nodes to send different messages to distinct neighbors.
Observe that this assumption allows the attacker to change the state of a subset of
agents to (possibly) different values. Also, the attacker cannot create artificial nodes
nor change the network topology, i.e., the structure of𝑊 (𝑘 ) , and the dimension 𝑛 are
fixed in (2.44).
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2.9.2 Reputation-based consensus (RepC)

Next, we propose a reputation-based consensus algorithm (RepC). The idea is that
each time an agent obtains information from its neighbors, it measures how discrepant
is, on average, the state from one neighbor regarding the states of the remaining ones
and its own state. This metric also translates how much can a single node influence
the entire network [40]. The RepC is composed by two phases: (i) identification of
the attacked nodes; (ii) computation of the consensus.

We propose a fully distributed discrete-time consensus that works for synchronous
and asynchronous networks. Agents only need a low computational power to do
computations with the neighbors’ values. This method can also be complemented
with the one in [41], [42] to allow recovery.

2.9.2.1 Synchronous communication RepC

Given the maximum number of allowed attacked nodes 𝑓 , the identification of the
attacked nodes is performed by the iterative scheme in Algorithm 1.

Note that, in Algorithm 1, 𝑐 (𝑘+1)
𝑖 𝑗

= 0 if 𝑗 ∉ N𝑖 , and 𝑐 (𝑘+1)
𝑖𝑖

= 1, and where 𝑐 (0)
𝑖 𝑗

= 1
for 𝑗 ∈ N̄𝑖 and 𝑐 (0)

𝑖 𝑗
= 0 otherwise, and 𝑥 (0)

𝑖
is the initial value of each agent 𝑖. Further,

𝜀 ∈]0, 1[ is a confidence factor which guarantees that each agent does not discard
immediately values that are discrepant from its neighbors’ average.

Notice that the selected value for 𝜀 must be small to have a negligible impact on
the agents’ consensus states. Also, a large 𝜀 may cause an agent to do not detect
an attacked neighbor. This, in turn, makes the asymptotic consensus deviate from
the consensus without attacked agents toward a combination of the attacked agents’
asymptotic states. We illustrate this property in Section 2.10.

The proposed method computes a weighted average of the agents’ values. So, the
final state is a convex combination of the initial ones.

2.9.2.2 Asynchronous communication RepC

The asynchronous version of algorithm RepC consists of, at each instance of time,
the agents that communicate,A′ ⊂ A, follow Equation (2.45), where N̄𝑖 is replaced
by N̄𝑖 ∩ A′.

The iterative scheme (2.45) may also be used in the scenario where the network of
agents evolves with time. The results in Section 2.9.2 can be restated for this scenario
by considering that the set of neighbors of a node is dynamic, and by verifying, at
each time, that each agent has more than two neighbors and more than half of them
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Algorithm 1 Synchronous communication RepC
1: input: Network of agents G = (V , E (𝑘 ) ) , agents initial states 𝑥 (0) , number of time steps T,

and confidence factor 𝜀 ∈]0, 1[
2: output: agents final states 𝑥 (T)
3: for 𝑘 = 1, . . . , T do
4: for 𝑖 = 1, . . . , |V | do
5:

Reputation update:

𝑐̃
(𝑘+1)
𝑖 𝑗

=


1 −

∑︁
𝑣∈N̄𝑖

|𝑥 (𝑘)
𝑗
− 𝑥 (𝑘)𝑣 |
|N𝑖 |

, 𝑗 ∈ N𝑖

0, otherwise

Normalized Reputation update:

˜̃𝑐 (𝑘+1)
𝑖 𝑗

=


𝑐̃
(𝑘+1)
𝑖 𝑗

− minf
𝑣∈N̄𝑖

𝑐̃
(𝑘+1)
𝑖𝑣

max
𝑣∈N̄𝑖

𝑐̃
(𝑘+1)
𝑖𝑣

− minf
𝑣∈N̄𝑖

𝑐̃
(𝑘+1)
𝑖𝑣

, 𝑖 ≠ 𝑗

1, otherwise

Normalized Reputation update with confidence 𝜀:

𝑐
(𝑘+1)
𝑖 𝑗

=

{
˜̃𝑐 (𝑘+1)
𝑖 𝑗

, if ˜̃𝑐 (𝑘+1)
𝑖 𝑗

> 0,
𝜀𝑘+1, otherwise

Consensus state update:

𝑥
(𝑘+1)
𝑖

=
∑︁
𝑗∈N̄𝑖

𝑐
(𝑘)
𝑖 𝑗
𝑥
(𝑘)
𝑗

/ ∑︁
𝑗∈N̄𝑖

𝑐
(𝑘)
𝑖 𝑗

(2.45)

6: end for
7: end for

are regular agents. In Section 2.10.4 and 2.10.5, we illustrate the dynamic network
of agents and dynamic network with noisy agents scenarios.

First, we show that RepC converges. To simplify the proof, we assume that we
are in the scenario of synchronous communication. The general proof follows the
same steps, but it is more complex, and it needs more complex notation to denote
the set of neighbors with which a node communicates at each time. Let us define
𝑥
(0)
𝑖

= (𝑥 (0)
𝑖
−𝑥 (0)min)

/
(𝑥 (0)max−𝑥 (0)min), which yields a re-scaling of the agents’ states that

simplifies the methods’ proof of convergence. This re-scaling is to make the proof
less extensive.

Further, in the following proofs and for technical reasons, we assume that each
attacked agent shares a state converging to some value. Although, in practice, the
algorithm is still effective under other circumstances, as we illustrate in Section 2.10.

Moreover, to have guarantees of resilient consensus and derive theoretical result,
we make the following additional assumptions:
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• For each regular agent, 𝑣 ∈ V \ A, more than half of the neighbors are regular
agents, i.e., |N𝑣 ∩ A| < |N𝑣 |/2 and the network of normal nodes is connected.
• The attack cannot target the initial state, i.e., Δ(0) = 0 in (2.44). This scenario
would be undetectable. The sequences of state values for the attacked version would
be the same as a normal execution of the algorithm with the attack value as the initial
state.

Lemma 2.2 If for any 𝑖 ∈ V we have that |N𝑖 | > 2, then each agent that follows the
iterative scheme in (2.45) converges.

Proof. For the proof, suppose that the initial states are re-scaled to be in [0, 1]. We
have that



𝑥 (𝑘+1) − 𝑥 (𝑘 )



∞ = max

𝑖

���𝑥 (𝑘+1)
𝑖

− 𝑥 (𝑘 )
𝑖

��� and, hence, assuming w.l.o.g. that:

(†) ∥𝑐 (𝑘 )
𝑖
∥1 ≤ ∥𝑐 (𝑘+1)

𝑖
∥1���𝑥 (𝑘+1)

𝑖
− 𝑥 (𝑘 )

𝑖

��� consensus state
update definition

=

�����𝑐 (𝑘+1)
𝑖

· 𝑥 (𝑘 )

∥𝑐 (𝑘+1)
𝑖
∥1
−
𝑐
(𝑘 )
𝑖
· 𝑥 (𝑘−1)

∥𝑐 (𝑘 )
𝑖
∥1

�����
=

�����𝑐 (𝑘+1)
𝑖

· 𝑥 (𝑘 )

∥𝑐 (𝑘+1)
𝑖
∥1
−
𝑐
(𝑘 )
𝑖
· 𝑥 (𝑘 )

∥𝑐 (𝑘+1)
𝑖
∥1
+
𝑐
(𝑘 )
𝑖
· 𝑥 (𝑘 )

∥𝑐 (𝑘+1)
𝑖
∥1
−
𝑐
(𝑘 )
𝑖
· 𝑥 (𝑘−1)

∥𝑐 (𝑘 )
𝑖
∥1

�����
(†)
≤

�����𝑐 (𝑘+1)
𝑖

· 𝑥 (𝑘 )

∥𝑐 (𝑘+1)
𝑖
∥1
−
𝑐
(𝑘 )
𝑖
· 𝑥 (𝑘 )

∥𝑐 (𝑘+1)
𝑖
∥1
+
𝑐
(𝑘 )
𝑖
· 𝑥 (𝑘 )

∥𝑐 (𝑘 )
𝑖
∥1
−
𝑐
(𝑘 )
𝑖
· 𝑥 (𝑘−1)

∥𝑐 (𝑘 )
𝑖
∥1

�����
≤

max 𝑗∈N𝑖
|𝑐 (𝑘+1)
𝑖 𝑗

− 𝑐 (𝑘 )
𝑖 𝑗
|

∥𝑐 (𝑘+1)
𝑖
∥1

+
max 𝑗∈N𝑖

|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘−1)

𝑗
|

∥𝑐 (𝑘 )
𝑖
∥1

(†)
≤

max 𝑗∈N𝑖
|𝑐 (𝑘+1)
𝑖 𝑗

− 𝑐 (𝑘 )
𝑖 𝑗
|

∥𝑐 (𝑘 )
𝑖
∥1

+
max 𝑗∈N𝑖

|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘−1)

𝑗
|

∥𝑐 (𝑘 )
𝑖
∥1

,

(2.46)

because we are assuming that 𝑥 (𝑚)𝑣 , 𝑐
(𝑚)
𝑖 𝑗

∈]0, 1[. Now we need to compute
max 𝑗∈N𝑖

|𝑐 (𝑘+1)
𝑖 𝑗

− 𝑐 (𝑘 )
𝑖 𝑗
|. First, we notice that we cannot have that max 𝑗∈N𝑖

|𝑐 (𝑘+1)
𝑖 𝑗

−
𝑐
(𝑘 )
𝑖 𝑗
| = |𝜀𝑘+1 − 𝜀𝑘 |, because there is always a 𝑗 ∈ N𝑖 such that 𝑐 (𝑘+1)

𝑖 𝑗
> 𝜀𝑘+1 and

all the other 𝑘 ≠ 𝑗 ∈ N𝑖 are such that 𝑐 (𝑘+1)
𝑖 𝑗

≥ 𝜀𝑘+1. Therefore, we need to consider
only three cases:

1. 𝑐 (𝑘+1)
𝑖 𝑗

= 𝜀𝑘+1 and 𝑐 (𝑘 )
𝑖 𝑗

= ˜̃𝑐 (𝑘 )
𝑖 𝑗

;

2. 𝑐 (𝑘+1)
𝑖 𝑗

= ˜̃𝑐 (𝑘+1)
𝑖 𝑗

and 𝑐 (𝑘 )
𝑖 𝑗

= 𝜀𝑘 ;

3. 𝑐 (𝑘+1)
𝑖 𝑗

= ˜̃𝑐 (𝑘+1)
𝑖 𝑗

and 𝑐 (𝑘 )
𝑖 𝑗

= ˜̃𝑐 (𝑘 )
𝑖 𝑗

.

For case 1) we have that
���𝑐 (𝑘+1)

𝑖 𝑗
− 𝑐 (𝑘)

𝑖 𝑗

��� = ���𝜀𝑘+1 − ˜̃𝑐 (𝑘)
𝑖 𝑗

��� < ���˜̃𝑐 (𝑘+1)
𝑖 𝑗

− ˜̃𝑐 (𝑘)
𝑖 𝑗

��� , since 𝑐 (𝑘+1)
𝑖 𝑗

=

𝜀𝑘+1 implies that ˜̃𝑐 (𝑘+1)
𝑖 𝑗

≤ 0. Using the same reasoning, for case 2), we have that
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𝑖 𝑗

− 𝑐 (𝑘)
𝑖 𝑗

��� = ���˜̃𝑐 (𝑘+1)
𝑖 𝑗

− 𝜀𝑘
��� < ���˜̃𝑐 (𝑘+1)

𝑖 𝑗
− ˜̃𝑐 (𝑘)

𝑖 𝑗

��� . We only need to compute 3)

���˜̃𝑐 (𝑘+1)
𝑖 𝑗

− ˜̃𝑐 (𝑘 )
𝑖 𝑗

��� =
���𝑐 (𝑘+1)
𝑖 𝑗

− 𝑐 (𝑘 )
𝑖 𝑗

���
max𝑣∈N̄𝑖

𝑐
(𝑘+1)
𝑖𝑣

−minf
𝑣∈N̄𝑖

𝑐
(𝑘+1)
𝑖𝑣

≤ |𝑐 (𝑘+1)
𝑖 𝑗

− 𝑐 (𝑘 )
𝑖 𝑗
|

=
1
|N̄𝑖 |

∑︁
𝑣∈N̄𝑖

(
|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘 )𝑣 | − |𝑥 (𝑘−1)

𝑗
− 𝑥 (𝑘−1)

𝑣 |
)

by def.
of 𝛼
=

1
|N̄𝑖 |
|N̄𝑖 |

(
|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘 )𝛼 | − |𝑥 (𝑘−1)

𝑗
− 𝑥 (𝑘−1)

𝛼 |
)

=

(
|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘 )𝛼 | − |𝑥 (𝑘−1)

𝛼 − 𝑥 (𝑘−1)
𝑗
| + |𝑥 (𝑘−1)

𝛼 − 𝑥 (𝑘−1)
𝑗
| − |𝑥 (𝑘−1)

𝑗
− 𝑥 (𝑘−1)

𝛼 |
)

≤
(
|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘−1)

𝑗
| + |𝑥 (𝑘 )𝛼 − 𝑥 (𝑘−1)

𝛼 |
)

≤ 2 max
𝑗∈N̄𝑖

|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘−1)

𝑗
|,

(2.47)

where𝛼 = arg max
𝑣∈N̄𝑖

(
|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘 )𝑣 | − |𝑥 (𝑘−1)

𝑗
− 𝑥 (𝑘−1)

𝑣 |
)
. Now, plugging (2.47) in (2.46),

we have that

∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥∞ ≤
3

∥𝑐 (𝑘 ) )
𝑖
∥1

max
𝑗∈N̄𝑖

|𝑥 (𝑘 )
𝑗
− 𝑥 (𝑘−1)

𝑗
|

≤ 3
∥𝑐 (𝑘 )
𝑖
∥1
∥𝑥 (𝑘 ) − 𝑥 (𝑘−1) ∥∞ ≤

3
|N̄𝑖 |
∥𝑥 (𝑘 ) − 𝑥 (𝑘−1) ∥∞

Therefore, the iterative scheme converges whenever 3
|N𝑖 |+1 < 1, which is equivalent

to |N𝑖 | > 2. ⊓⊔

A regular agent should assess at least 3 states to distinguish whether nodes are
following the consensus update rule or not. With 2 neighbors, their reputation can
alternate between iterations.

The previous result states that RepC converges. It is still missing to show that
each regular agent converges to the same value, i.e., all regular agents agree. The
next lemma assesses that: (i) either an agent 𝑣 converges to a unique value; (ii) or for
any other agent, the reputation of agent 𝑣 is zero, i.e. 𝑐∞𝑢𝑣 = 0.

Lemma 2.3 Consider the iterative scheme 2.45. For any agent 𝑗 ∈ V one of the
following holds:
(𝑖) lim

𝑘→∞
𝑥
(𝑘 )
𝑗

= 𝑥∞; (𝑖𝑖) ∀𝑖∈N𝑗
lim
𝑘→∞

𝑐
(𝑘 )
𝑖 𝑗

= 0 (neighbors of 𝑗 assign it reputation
zero).
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Proof. By Lemma 2.2, we have that (2.45) converges for each agent 𝑖 ∈ V \A. We
just need to show that for a given node 𝑢 ∈ V \ A and for each of its neighbors
𝑣 ∈ N𝑢 either (𝑖) or (𝑖𝑖) happens. Let 𝑢 ∈ V \A and 𝑣 ∈ N𝑢, we show by induction
on the number of neighbors of 𝑢, |N𝑢 |, that for each neighbor either its reputation
is zero or it converges to the same value as 𝑢. The basis is when |N𝑢 | = 1, and we
have that 𝑥∞𝑢 =

𝑥∞𝑢 +𝑐∞𝑢𝑣𝑥∞𝑣
1+𝑐∞𝑢𝑣 . Thus, either 𝑐∞𝑢𝑣 = 0, or 𝑐∞𝑢𝑣 > 0 and 𝑥∞𝑣 = 𝑥∞𝑢 . When

|N𝑢 | = 𝑁 + 1, we have that 𝑥∞𝑢 =
∑
𝑗∈N̄𝑢

𝑐∞
𝑢 𝑗
𝑥∞
𝑗

/ ∑
𝑗∈N̄𝑢

𝑐∞
𝑢 𝑗
. Since the reputation

that 𝑢 assigns to itselft is 𝑐∞𝑢𝑢 = 1, we can rewrite the previous as

𝑥∞𝑢 =
𝑥∞𝑢 +

∑
𝑗∈N𝑢\{𝑣} 𝑐

∞
𝑢 𝑗
𝑥∞
𝑗
+ 𝑐∞𝑢𝑣𝑥∞𝑣

1 +∑
𝑗∈N𝑢\{𝑣} 𝑐

∞
𝑢 𝑗
+ 𝑐∞𝑢𝑣

(2.48)

Further, using the induction hypothesis, either (𝑖) or (𝑖𝑖) is true for any set of 𝑁
neighbors of 𝑢. Hence, for 𝑗 ∈ N𝑢 \ {𝑣} either 𝑥∞

𝑗
= 𝑥∞ or 𝑐∞

𝑢 𝑗
= 0. In any of the

cases, we have that

𝑥∞𝑢 +
∑︁

𝑗∈N𝑢\{𝑣}
𝑐∞𝑢 𝑗𝑥

∞
𝑗 = 𝑥∞

©­«1 +
∑︁

𝑗∈N𝑢\{𝑣}
𝑐∞𝑢 𝑗

ª®¬ (2.49)

By replacing (2.49) in (2.48), it follows that

𝑥∞𝑢 = 𝑥∞ =

𝑥∞
(
1 +∑

𝑗∈N𝑢\{𝑣} 𝑐
∞
𝑢 𝑗

)
+ 𝑐∞𝑢𝑣𝑥∞𝑣(

1 +∑
𝑗∈N𝑢\{𝑣} 𝑐

∞
𝑢 𝑗

)
+ 𝑐∞𝑢𝑣

,

implying that either 𝑐∞𝑢𝑣 = 0 or 𝑐∞𝑢𝑣 > 0 and 𝑥∞𝑣 = 𝑥∞𝑢 = 𝑥∞. By transitivity, we can
apply the same to each neighbor of all neighbors of 𝑢, and so forth. Thus, the result
yields for all 𝑖 ∈ V \ A. ⊓⊔

As a corollary, the detection yields no false positives.

Corollary 2.1 Let 𝑣 ∈ V \ A and 𝑢 ∈ V. By using the iterative scheme (2.45), if
𝑐∞𝑢𝑣 = 0 then 𝑢 ∈ A.

The proof of Lemma 2.2 also hints that half of each agent’s neighbors should not
be under attack so that each normal node identifies the attacked agents correctly.
This property emerges from the following.

Lemma 2.4 Suppose that the iterative scheme (2.45) converges to a value different
from that broadcasted by the attacked agents. If for each agent 𝑖 ∈ V \ A, less
than half of its neighbors are not attacked agents, i.e. |N̄𝑖 ∩ A| < |N̄𝑖 \ A|, then
lim
𝑘→∞

𝑐
(𝑘 )
𝑖𝑎

= 0, for 𝑎 ∈ A and lim
𝑘→∞

𝑐
(𝑘 )
𝑖𝑣

= 1 for 𝑣 ∈ N̄𝑖 \ A.
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Proof. By Lemma 2.2, we have that the each regular agent using the iterative scheme
in (2.45) converges to 𝑥∞. Let 𝑦 denote the value that all the attacked agents in A
share with the neighbors. For a regular agent (𝑖 ∉ A), an attacked agent’s reputation
(𝑎 ∈ A) satisfies

𝑐∞𝑖𝑎 = lim
𝑘→∞

𝑐
(𝑘 )
𝑖𝑎

= 1 − 1
|N𝑖 |

∑︁
𝑣∈N𝑖

����𝑦 − lim
𝑘→∞

𝑥
(𝑘 )
𝑣

����
=1 − |N𝑖 \ A||N𝑖 |

|𝑦 − 𝑥∞ | ,

and the limit of the reputation of a regular user, 𝑗 ∉ A, is given as

𝑐∞𝑖 𝑗 = lim
𝑘→∞

𝑐
(𝑘 )
𝑖 𝑗

= 1 − |N𝑖 ∩ A||N𝑖 |
|𝑥∞ − 𝑦 | .

Since |N𝑖∩A| < |N𝑖\A| and 𝑦 ≠ 𝑥∞, then 𝑐∞
𝑖 𝑗
> 𝑐∞

𝑖𝑎
, and because reputations values

are normalized to be between 0 and 1, we have that, for all 𝑖, 1 = 𝑐∞
𝑖 𝑗
> 𝑐∞

𝑖𝑎
= 0. ⊓⊔

Now, we need to show that a regular agent using RepC identifies the attacked
neighbors and study the method’s convergence rate.

Lemma 2.5 Let 𝑣 ∈ V \ A and 𝑢 ∈ V. By using the iterative scheme (2.45), if
𝑢 ∈ A and |A| ≤ 𝑓 then 𝑐∞𝑢𝑣 = 0.

Proof. Let 𝑎 ∈ A be an attacked node. We want to show that for a regular agent,
𝑣 ∈ V \ A, the reputation of agent 𝑎 strictly decreases with time. Let 𝑣 ∈ V \ A,
we have that |𝑥𝑎 − 𝑥 (𝑘+1)

𝑣 | − |𝑥𝑎 − 𝑥 (𝑘 )𝑣 | ≤ |𝑥 (𝑘+1)
𝑣 − 𝑥 (𝑘 )𝑣 |. ⊓⊔

Proposition 2.2 Consider the iterative scheme in (2.45) and let 𝑁 = min
𝑖∈V
|N𝑖 | and

𝜆 = 3
𝑁+1 . If 𝑁 > 3, then (2.45) converges with exponential rate and we have that

∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥∞ ≤ 𝜆𝑘 . Further, to achieve an error of at most 𝛿 > 0 between the
last two iterations, we need to run the iterative scheme at most 𝑘 = ⌈log𝜆 (𝛿)⌉ times.

Proof. Let 𝑁 = min
𝑖∈V
|N𝑖 | and 𝜆 = 3

𝑁+1 . Using the proof of Lemma 2.2, we have

that ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥∞ ≤ 3
| N̄𝑖 |
∥𝑥 (𝑘 ) − 𝑥 (𝑘−1) ∥∞ ≤ 𝜆𝑘 ∥𝑥 (1) − 𝑥 (0) ∥∞ ≤ 𝜆𝑘 . Hence,

the iterative scheme converges with an exponential rate of 𝜆𝑘 . To achieve an error
between iterations of at most 𝜀, we need to have that 𝜆𝑘 ≤ 𝛿, which is equivalent to
having that 𝑘 ≤ log𝜆 (𝛿) ≤ ⌈log𝜆 (𝛿)⌉ . Therefore, if we run the iterative scheme at
most ⌈log𝜆 (𝛿)⌉ times, we obtain an error between the last two iterations of at most
𝜀. ⊓⊔
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2.9.3 Complexity Analysis

Next, we investigate the complexity analysis of the proposed algorithm RepC when
the network communication is synchronous.

Proposition 2.3 Let G = (V, E) be a network of agents, 𝑙 = max
𝑣∈V
|N𝑣 |, then, for

𝑖 iterations and for each agent, the iterative scheme (2.45) has time complexity of
O(𝑙2𝑖).

Proof. Given a network of agents G = (V, E), for time step 𝑘 and agent 𝑣, the time
complexity of (2.45) is the sum of the time complexities of computing 𝑐 (𝑘 )𝑣𝑢 , ˜̃𝑐 (𝑘 )𝑣𝑢 ,
𝑐
(𝑘 )
𝑣𝑢 , for each 𝑢 ∈ N𝑖 , and 𝑥 (𝑘 )𝑣 . Computing 𝑐 (𝑘 )𝑣𝑢 costs O(|N𝑣 |2), because there are
O(|N𝑣 |2) pairs of neighbors values to compute the absolute difference. Each of the
remaining steps has time complexity of O(|N𝑣 |). Hence, the sum of each step time
complexity is 𝑂 ( |N𝑣 |2) + 4 × O(|N𝑣 |) = 𝑂 ( |N𝑣 |2). If 𝑙 = max

𝑣∈V
|N𝑣 |, then O(𝑙2) is a

bound for the complexity that each incurs. For 𝑖 iterations an agent incurs in O(𝑙2𝑖)
time complexity. ⊓⊔

2.10 Illustrative Examples

Subsequently, we illustrate the use of RepC for different kinds of attacks. Further,
in the examples, we use 𝜀 = 0.1.

2.10.1 Same value for attacked nodes

In the next examples, consider the network of Fig. 2.23 (a).
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(a) Network of agents G𝐴.
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(b) Network of agents G𝐵.

Fig. 2.23: Topologies used for the illustrative examples.
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First, we illustrate algorithm RepC in the scenario of a network of agents without
attacked nodes. The set of agents is V1 = {1, . . . , 5} and, thus, the set of attacked
agents isA = ∅. We set the parameter 𝑓 = 1. Fig. 2.24 depicts the state evolution of
each agent.

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢
♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢

○

○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

×

× × × × × × × × × × × × × × × × × × ×

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Number of Iterations

C
on
se
ns
us
V
al
ue □ x1

♢ x2

○ x3

× x4

● x5

Fig. 2.24: Consensus of network G𝐴 with agentsV1 and set of attacked agents ∅.

Here, we explore the scenario where an attacker targets one agent to share a
value close to the consensus, depicted in Fig. 2.23.
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Fig. 2.25: Consensus of network G𝐴 with agents V1 and set of attacked agents A1
(zoomed around the attacker’s value.)

The set of agents is V = {1, . . . , 5} and the set of attacked agents is A = {1}.
Fig. 2.25 depicts each agent consensus value. We can see that although the attacker
value is very close to the consensus value, the neighbors of the attacked node assign
zero to its reputation by using (2.45). Hence the attacked node shared values are
discarded.

Next, in Fig. 2.26 and 2.27, we depict the evolution of the reputations that agents
2 and 3 assign to their neighbors.
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Fig. 2.26: Evolution of the reputations that agent 2 assigns to each of its neighbors.
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Fig. 2.27: Evolution of the reputations that agent 3 assigns to each of its neighbors.

2.10.2 Different values for attacked nodes

Next, we illustrate the scenario where attacked nodes share different values. For
that end, we consider the set of agents V = {1, . . . , 10}, with A = {1, 8}, and
the network of agents depicted in Fig. 2.23 (b). We explore two scenarios with
two attacked agents: (i) both attacked nodes share values (distinct) smaller than
the consensus, see Fig. 2.28; (ii) one attacked node shares a value larger than the
consensus while the other uses a smaller value than the consensus, see Fig. 2.29.
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Fig. 2.28: Consensus of network G𝐵 with agentsV3 and set of attacked agents A3
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Fig. 2.29: Consensus of network G𝐵 with agentsV2 and set of attacked agents A2

2.10.3 Asynchronous Communication

We now illustrate the use of algorithm RepC in the case where the communication
between nodes occurs asynchronously. To simulate this scenario, at each time in-
stance, a random subset of agents communicates. The set of agents isV = {1, . . . , 5},
the network of agents is G𝐴, and the set of attacked agents is A = {1}. Fig. 2.30
depicts the state evolution of each agent when using the asynchronous version of
algorithm RepC. Each normal node identifies and discards the information of the
attacked agent.
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Fig. 2.30: Consensus of network G𝐴 with agentsV1, asynchronous communication,
and set of attacked agents A = {1}.

2.10.4 Dynamic network

Next, we test the scenario where the network of agents evolves with time and the
attacked agents share the same value. We consider two networks composed of 10



58 2 Resilient Data Acquisition using a LoRa-based Wireless Sensor Network

agents, as depicted in Fig. 2.31, with a set of agentsV = {1, . . . , 10} and of attacked
agents A = {1}.
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(a) Network of agents G𝐷 .
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(b) Network of agents G𝐶 .

Fig. 2.31

In the example, we consider that the dynamic network of agents for time instance

𝑘 > 0 is given by G (𝑘 )1 =

{
G𝐶 if 𝑘 ≤ 10
G𝐷 otherwise

. The consensus value of each agent,

using (2.45), is depicted in Fig. 2.32.
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Fig. 2.32: Consensus of dynamic network G (𝑘 )1 with agents V1, and set of attacked
agents A = {1}.

2.10.5 Dynamic network with noisy agents

Last, we consider the case where the network of agents evolves, and the attacked
agents share different values (drawn from uniform random variables with a fixed
mean). See examples in Fig. 2.33 and 2.34.



2.10 Illustrative Examples 59

× × × ×
× × × × × × ×

× × × × ×
×
×
×
× × ×

× × × × × × × ×

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

◇

◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◻

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▼▼▼▼
▼▼▼▼▼

▼
▼▼

▼
▼
▼
▼▼▼▼

▼
▼▼▼

▼▼▼▼▼▼▼

△
△△△△△△△△△△△△△△△△△△△△△△△△△△△△△

▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

5 10 15
0

1

2

3

4

5

Number of Iterations
C
on
se
ns
us
V
al
ue

× a1

○ x2

◇ x3

◻ x4

● x5

■ x6

▲ x7

▼ a8

△ x9

▽ x10

Fig. 2.33: Consensus of dynamic network G (𝑘 )1 with agents V1, and set of attacked
(noisy) agents A = {1, 8}.
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Fig. 2.34: Consensus of dynamic network G (𝑘 )1 with agents V1, and set of attacked
agentsA = {1, 8}, where agent 1 behaves as a noisy node and agent 8 as an attacked
node.

2.10.6 Stochastic communication

When the communication between agents is stochastic, we may still successfully
apply RepC. We consider the network G𝐸 in Fig. 2.35, with V1, and the set of
attacked agents A = {1}. Further, at each time step, only a random subset of agents
communicate between them. This case is depicted in Fig. 2.36, where the regular
agents effectively detect the attacked node, achieving the true consensus.

2.10.7 RepC vs. state-of-the-art

Here, we illustrate how the proposed algorithm competes with the state-of-the-art
approaches, based on the idea that each agent discards a set of maximum and
minimum neighbor values.



60 2 Resilient Data Acquisition using a LoRa-based Wireless Sensor Network

�

�

�

�

�

�

�

�

�

��

Fig. 2.35: Network of agents G𝐸 .
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Fig. 2.36: Consensus using a RepC method, with network G𝐸 , set of agentsV1, set
of attacked agents A = {1} and stochastic communication.

In the next examples, we use the two networks in Fig. 2.37.
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(a) Network of agents G𝐹 .

�

��

�

�

(b) Network of agents G𝐺 .

Fig. 2.37: Additional topologies for the examples.

In the first example, consider the set of agentsV2 = {1, 2, 3, 4}, with the complete
network (Fig. 2.37 (a)) and attacked agents A = {1}.

Using the state-of-the-art, i.e., when each agent discards the maximum and min-
imum neighbors’ values, we obtain the result depicted in Fig. 2.38. The method
cannot deter the attack, and the regular agents converge to the attacker value. Using



2.10 Illustrative Examples 61

RepC, as illustrated in Fig. 2.39, the regular agents converge to a value close to the
true value, with a small deviation caused by the influence of the 𝜀 parameter.
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Fig. 2.38: Consensus using a state-of-the-art method, with networkG𝐹 , set of agents
V2, and set of attacked agents A = {1}. The black line is the true consensus value.
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Fig. 2.39: Consensus using RepC, with network G𝐹 , set of agents V2, and set of
attacked agents A = {1}. The black line is the true consensus.

In the second example, we consider the network of agents depicted in Fig. 2.37 (b),
the set of agentsV3 = {1, 2, 3, 4, 5} and attacked agents set A = {1}. The example
portrays the scenario where an attacker stubbornly sends to the neighbors the true
consensus value.In Fig. 2.40, the agents cannot converge to the true consensus value
when using the state-of-the-art approach.

We present the consensus state of the agents when using RepC in Fig. 2.41, and
the agents converge to the true network consensus.

2.10.8 Consensus final error

To explore how different is the final consensus value produced by RepC and the
consensus value without attacked nodes, we use the complete network of 5 agents
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Fig. 2.40: Consensus using a state-of-the-art method, with network G𝐺 , set of
agentsV3, and set of attacked agents A = {1}. The black line is the true consensus
value.
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Fig. 2.41: Consensus using RepC, with network G𝐹 , set of agents V3, and set of
attacked agents A = {1}. The black line is the true consensus.

depicted in Fig. 2.23 (a), with agents’ initial states 𝑥 (0) = [ 1 0 3 1.2 2.5 ]⊺, where
agent 1 is under attack and shares values from a Gaussian noise with mean 𝜇 and
standard deviation 𝜎. The consensus, without attacked nodes, is 1.489. We compute
the absolute difference between the consensus value found with RepC in the non-
attacked case and the consensus value obtained with RepC when the attacker follows
the mentioned strategy. We ranged 𝜇 from 0 to 1 in steps of 0.005 and ranged 𝜎 from
0.1 to 1 in steps of 0.005, repeating each scenario 20 times, see Fig. 2.42.

We can see from Fig. 2.42 that, on average, we get a small final consensus error.
When 𝜇 is close to 1, and 𝜎 is close to 0.1, the attacked node state value is close
to what it would be in the non-attacked scenario (𝑥 (0)1 = 1), taking more time to be
classified as an attacker and yielding a slightly larger (final) consensus error.
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Fig. 2.42: Absolute difference between the consensus resulting from Algorithm
RepC when node one 1 is under attack to share the a Gaussian noise with mean 𝜇
and standard deviation 𝜎.





Chapter 3

Deterministic and Stochastic Estimation for
Linear Dynamical Systems

The second stage in FirePuma consists in using the acquired data and build an
utility map to represent the areas of interest. In essence, we would like to design
the mathematical tools to apply linear dynamics to the estimates (for instance to
account for how a variable like velocity changes the position) but also to incorporate
recently acquired measurements to remove uncertainty from those areas. In a broader
picture, this is the same problem that arises in the control of autonomous vehicles
as controllers often use the information about the state to decide on the actuation.
Therefore, a prior task is to obtain estimates for the state from measurements obtained
using the onboard sensors. In this chapter, we detail the technique mostly for linear
dynamics, albeit this can be extended for the nonlinear case by using the Taylor
expansion and resorting to the linear terms and bound in a suitable manner the sum
of the higher order elements, i.e., the Lagrange remainder.

The task associated with this development has looked into the following problems:

• deterministic estimation for linear systems by introducing the definition of
Constrained Convex Generators (CCGs) [43], [44];

• reduce the size of the data structures for CCGs [45];

• stochastic estimation for linear systems accounting for general noise and dis-
turbance Probability Density Functions (PDFs) using Characteristic Functions
(CFs) [46];

• comparison of different data structures to represent sets [47];

• extending the deterministic estimation to the case of uncertain linear systems
[48], [49] and [50];

• extending the estimation to nonlinear systems using an overbound for the La-
grange remainder [51] or the Koopman operator [52];

• computing the reachable set of neural networks [53];

65
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• calculating the Robust Positively Invariant (RPI) set to be used in MPC con-
trollers [54].

3.1 Deterministic Estimation for Linear Dynamical Systems

In this chapter, we start by considering a linear dynamical model with no uncertain-
ties:

𝑥(𝑘 + 1) = 𝐹𝑘𝑥(𝑘) + 𝐵𝑘𝑢(𝑘) + 𝑤(𝑘) (3.1)

where 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑛𝑢 and 𝑤(𝑘) ∈ R𝑛 are respectively the state, input and
disturbance signals. Following the derivation in [55], one can assume the model
for a vehicle like a quadrotor to be a double integrator subject to constraints on the
velocity and acceleration, which fits the formulation for a linear dynamical system.
The objective is to estimate the state 𝑥(𝑘) using a set reachability approach from
bearing and range measurements. Let us assume that there are 𝑗 nodes providing
measurements, which will be referred by towers. Under such conditions, we are
interested in 3 different problems, namely:

Problem 3.1 (State estimation using range/bearing data) Let us consider a
Linear Time-Varying (LTV) model for a vehicle as in (3.1) with position evolving in
R𝑝 and 𝑗 towers with known locations tower1, · · · , tower 𝑗 .

• If range measurements are available, they will be denoted by 𝑦𝑟 (𝑘) defined as
follows:

𝑦𝑟 (𝑘) =


∥𝑥 [1, · · · , 𝑝] (𝑘) − tower1∥2

...

∥𝑥 [1, · · · , 𝑝] (𝑘) − tower 𝑗 ∥2


+ 𝑣(𝑘), (3.2)

• If bearing measurements are available, they will be denoted by 𝑦𝑏 (𝑘) defined as
follows:

𝑦𝑏 (𝑘) =


ang(𝑥 [1, · · · , 𝑝] (𝑘) − tower1)

...

ang(𝑥 [1, · · · , 𝑝] (𝑘) − tower 𝑗 )


+ 𝑣(𝑘), (3.3)

where we used the notation 𝑥 [1, · · · , 𝑝] (𝑘) to select the entries 1 through 𝑝 that corre-
spond to the position of the vehicle and 𝑣(𝑘) ∈ R𝑛𝑣 is the noise signal. The transpose
of a vector 𝑣 is denoted by 𝑣⊺ and is used to define the Euclidean norm for vector 𝑥
is represented as ∥𝑥∥2 :=

√
𝑥⊺𝑥, while the operator ang(𝑣) returns either the angle

of vector 𝑣 in polar coordinates when 𝑝 = 2 or a vector of 2 angles in spherical
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coordinates for 𝑣. Let us define the vector of all available measurements at time 𝑘 by
𝑦(𝑘).

The problem is defined as computing a set of possible state values 𝑋 (𝑘) for 𝑘 > 0
such that 𝑥(𝑘) ∈ 𝑋 (𝑘),∀𝑤(𝑘) ∈ 𝑊 (𝑘),∀𝑣(𝑘) ∈ 𝑉 (𝑘), for some convex sets 𝑊 (𝑘)
and 𝑉 (𝑘), from range measurements (i.e., 𝑦(𝑘) = 𝑦𝑟 (𝑘)), bearing measurements

(i.e., 𝑦(𝑘) = 𝑦𝑏 (𝑘), or range and bearing measurements (i.e., 𝑦(𝑘) =

𝑦𝑟 (𝑘)

𝑦𝑏 (𝑘)

).

3.2 Generalization of the Constrained Zonotope Representation

In this section, we first review the Constrained Zonotope (CZ) representation intro-
duced in [56] to model polytopes, highlighting how the basic set operations can be
viewed in terms of convexity-preserving operations of a basic generator set.

Let us first review the definition of CZ from [56] and the basic set operations:
affine map (3.5), Minkowski sum (3.6) and intersection after a linear map (3.7).
In the following, we will use the notation ∥𝑥∥∞ := max𝑖 |𝑥𝑖 |, 0𝑛 to denote the 𝑛-
dimensional vector of zeros, the intersection after applying a matrix 𝑅 to the first set
by ∩𝑅 and the Minkowski sum of two sets by ⊕.

Definition 3.1 (Constrained Zonotope) A set 𝑍 is a CZ defined by the tuple
(𝐺, 𝑐, 𝐴, 𝑏) ∈ R𝑛×𝑛𝑔 × R𝑛 × R𝑛𝑐×𝑛𝑔 × R𝑛𝑐 such that:

𝑍 = {𝐺𝜉 + 𝑐 : ∥𝜉∥∞ ≤ 1, 𝐴𝜉 = 𝑏}. (3.4)

Definition 3.2 (Set operations) Consider three CZs as in Definition 3.1:

• 𝑍 = (𝐺𝑧 , 𝑐𝑧 , 𝐴𝑧 , 𝑏𝑧) ⊂ R𝑛;

• 𝑊 = (𝐺𝑤, 𝑐𝑤, 𝐴𝑤, 𝑏𝑤) ⊂ R𝑛;

• 𝑌 = (𝐺𝑦 , 𝑐𝑦 , 𝐴𝑦 , 𝑏𝑦) ⊂ R𝑚;

and a matrix 𝑅 ∈ R𝑚×𝑛 and a vector 𝑡 ∈ R𝑚. The three set operations are defined as:

𝑅𝑍 + 𝑡 = (𝑅𝐺𝑧 , 𝑅𝑐𝑧 + 𝑡, 𝐴𝑧 , 𝑏𝑧) (3.5)

𝑍 ⊕𝑊 =
©­­«
[
𝐺𝑧 𝐺𝑤

]
, 𝑐𝑧 + 𝑐𝑤,


𝐴𝑧 0

0 𝐴𝑤

 ,

𝑏𝑧

𝑏𝑤


ª®®¬ (3.6)
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𝑍 ∩𝑅 𝑌 =

©­­­­­«
[
𝐺𝑧 0

]
, 𝑐𝑧 ,


𝐴𝑧 0

0 𝐴𝑦

𝑅𝐺𝑧 −𝐺𝑦


,


𝑏𝑧

𝑏𝑦

𝑐𝑦 − 𝑅𝑐𝑧


ª®®®®®¬
. (3.7)

Given the Definition 3.2 for the three major set operations that will be required,
let us write the complete definition for these operations, which will make it easier to
introduce the novel definition for the proposed sets. The affine map for a CZ 𝑍 can
also be defined as:

𝑅𝑍 + 𝑡 = {𝑅𝐺𝑧𝜉 + 𝑅𝑐𝑧 + 𝑡 : ∥𝜉∥∞ ≤ 1, 𝐴𝑧𝜉 = 𝑏𝑧}
= {𝑅𝐺𝑧𝜉 + 𝑅𝑐𝑧 + 𝑡 : 𝜉 ∈ C𝑧 , 𝐴𝑧𝜉 = 𝑏𝑧}

(3.8)

where the second equation is implicitly assuming that C𝑧 is the unit ℓ∞-norm ball.
In a similar fashion, we can present the same extended definition for the Minkowski
sum and the intersection after linear map, where we use 𝜉𝑧 , 𝜉𝑤 and 𝜉𝑦 as the auxiliary
variables for the CZs 𝑍 ,𝑊 and 𝑌 :

𝑍 ⊕𝑊 = {𝐺𝑧𝜉𝑧 + 𝐺𝑤𝜉𝑤 + 𝑐𝑧 + 𝑐𝑤 :𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝐴𝑤𝜉𝑤 = 𝑏𝑤,

𝜉𝑧 ∈ C𝑧 , 𝜉𝑤 ∈ C𝑤}
(3.9)

𝑍 ∩𝑅 𝑌 = {𝐺𝑧𝜉𝑧 + 𝑐𝑧 :𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝐴𝑦𝜉𝑦 = 𝑏𝑦 , 𝜉𝑦 ∈ C𝑦 ,
𝑅𝐺𝑧𝜉𝑧 + 𝑅𝑐𝑧 = 𝐺𝑦𝜉𝑦 + 𝑐𝑦 , 𝜉𝑧 ∈ C𝑧}

(3.10)

From the above definition, it becomes clear that there is nothing forcing the use of
the unit ℓ∞-norm ball as the generator and one could resort to any unit ball following
a 𝑝-norm but also extend the definition to convex cones (and other convex sets).

Remark 3.1 The definition of CZ follow a more systematic representation of poly-
topes, which was already approached in a hyperplane representation within the
literature in [57]–[64].

We are now in condition of presenting the definition for CCGs and a proposition
establishing the equivalence between the set operations and its definition in the CCG
format that will explore the relationship identified in (3.8), (3.9) and (3.10).

Definition 3.3 (Constrained Convex Generators) A Constrained Convex Gener-
ator (CCG) 𝑍 ⊂ R𝑛 is defined by the tuple (𝐺, 𝑐, 𝐴, 𝑏, C) with 𝐺 ∈ R𝑛×𝑛𝑔 , 𝑐 ∈ R𝑛,
𝐴 ∈ R𝑛𝑐×𝑛𝑔 , 𝑏 ∈ R𝑛𝑐 , and C := {C1, C2, · · · , C𝑛𝑝 } such that:

𝑍 = {𝐺𝜉 + 𝑐 : 𝐴𝜉 = 𝑏, 𝜉 ∈ C1 × · · · × C𝑛𝑝 }. (3.11)

In the above, we have used × to represent the cartesian product of sets.

Given Definition 3.3, we could present a proposition asserting all set operations
for CCGs.
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Proposition 3.1 Consider three Constrained Convex Generators (CCGs) as in Def-
inition 3.3:

• 𝑍 = (𝐺𝑧 , 𝑐𝑧 , 𝐴𝑧 , 𝑏𝑧 , C𝑧) ⊂ R𝑛;

• 𝑊 = (𝐺𝑤, 𝑐𝑤, 𝐴𝑤, 𝑏𝑤, C𝑤) ⊂ R𝑛;

• 𝑌 = (𝐺𝑦 , 𝑐𝑦 , 𝐴𝑦 , 𝑏𝑦 , C𝑦) ⊂ R𝑚;

and a matrix 𝑅 ∈ R𝑚×𝑛 and a vector 𝑡 ∈ R𝑚. The three set operations are defined
as:

𝑅𝑍 + 𝑡 = (𝑅𝐺𝑧 , 𝑅𝑐𝑧 + 𝑡, 𝐴𝑧 , 𝑏𝑧 , C𝑧) (3.12)

𝑍 ⊕𝑊 =
©­­«
[
𝐺𝑧 𝐺𝑤

]
, 𝑐𝑧 + 𝑐𝑤,


𝐴𝑧 0

0 𝐴𝑤

 ,

𝑏𝑧

𝑏𝑤

 , {C𝑧 , C𝑤}
ª®®¬ (3.13)

𝑍 ∩𝑅 𝑌 =

©­­­­­«
[
𝐺𝑧 0

]
, 𝑐𝑧 ,


𝐴𝑧 0

0 𝐴𝑦

𝑅𝐺𝑧 −𝐺𝑦


,


𝑏𝑧

𝑏𝑦

𝑐𝑦 − 𝑅𝑐𝑧


, {C𝑧 , C𝑦}

ª®®®®®¬
. (3.14)

Proof. In order to prove (3.12), let us define the set resulting from the affine map as
{𝑧′ : 𝑧′ = 𝑅𝑧 + 𝑡,∀𝑧 ∈ 𝑍} which can be expanded as:

{𝑧′ : 𝑧′ = 𝑅𝑧 + 𝑡, 𝑧 = 𝐺𝑧𝜉𝑧 + 𝑐𝑧 , 𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝜉𝑧 ∈ C𝑧} (3.15)

where we used the notation 𝜉𝑧 ∈ C𝑧 to mean 𝜉𝑧 ∈ C1 × · · · × C𝑛𝑝 , |C𝑧 | = 𝑛𝑝 .
Replacing the value of 𝑧 in the expression we get:

{𝑧′ : 𝑧′ = 𝑅𝐺𝑧𝜉𝑧 + 𝑅𝑐𝑧 + 𝑡, 𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝜉𝑧 ∈ C𝑧} (3.16)

which is precisely the definition for the CCG on the right-hand side of (3.12).

For the Minkowski sum, we can do a similar analysis by first defining the set
corresponding to the application of this operation by {𝑧′ : 𝑧′ = 𝑧 + 𝑤,∀𝑧 ∈ 𝑍,∀𝑤 ∈
𝑊} and expand it as:

{𝑧′ : 𝑧′ = 𝑧 + 𝑤,𝑧 = 𝐺𝑧𝜉𝑧 + 𝑐𝑧 , 𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝜉𝑧 ∈ C𝑧 ,
𝑤 = 𝐺𝑤𝜉𝑤 + 𝑐𝑤, 𝐴𝑤𝜉𝑤 = 𝑏𝑤, 𝜉𝑤 ∈ C𝑤}.

(3.17)

By replacing the values of 𝑧 and 𝑤 we can further simplify the definition as:

{𝑧′ : 𝑧′ = 𝐺𝑧𝜉𝑧 + 𝑐𝑧 + 𝐺𝑤𝜉𝑤 + 𝑐𝑤,𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝜉𝑧 ∈ C𝑧 ,
𝐴𝑤𝜉𝑤 = 𝑏𝑤, 𝜉𝑤 ∈ C𝑤}.

(3.18)

Stacking 𝜉𝑧 and 𝜉𝑤 in a single vector, we obtain the following expression:
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𝑧′ : 𝑧′ =

[
𝐺𝑧 𝐺𝑤

] 
𝜉𝑧

𝜉𝑤

 + (𝑐𝑧 + 𝑐𝑤),

𝐴𝑧 0

0 𝐴𝑤



𝜉𝑧

𝜉𝑤

 =


𝑏𝑧

𝑏𝑤

 ,
𝜉𝑧

𝜉𝑤

 ∈ {C𝑧 , C𝑤}
}
,

(3.19)

which is the right-hand side of (3.13).

Lastly, the intersection after a linear map can be defined as {𝑧′ : 𝑧′ = 𝑧,∀𝑧 ∈
𝑍, 𝑅𝑧 ∈ 𝑌 }, which can also be expanded to:

{𝑧′ : 𝑧′ = 𝑧,𝑧 = 𝐺𝑧𝜉𝑧 + 𝑐𝑧 , 𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝜉𝑧 ∈ C𝑧 ,
𝑅𝑧 = 𝐺𝑦𝜉𝑦 + 𝑐𝑦 , 𝐴𝑦𝜉𝑦 = 𝑏𝑦 , 𝜉𝑦 ∈ C𝑦}.

(3.20)

Replacing the value of 𝑧 in the expression yields:

{𝑧′ :𝑧′ = 𝐺𝑧𝜉𝑧 + 𝑐𝑧 , 𝐴𝑧𝜉𝑧 = 𝑏𝑧 , 𝜉𝑧 ∈ C𝑧 ,
𝑅𝐺𝑧𝜉𝑧 + 𝑅𝑐𝑧 = 𝐺𝑦𝜉𝑦 + 𝑐𝑦 , 𝐴𝑦𝜉𝑦 = 𝑏𝑦 , 𝜉𝑦 ∈ C𝑦},

(3.21)

which by stacking the values of 𝜉𝑧 and 𝜉𝑦 into a single vector becomes:

{
𝑧′ : 𝑧′ =

[
𝐺𝑧 0

] 
𝜉𝑧

𝜉𝑦

 +𝑐𝑧 ,

𝐴𝑧 0

0 𝐴𝑦

𝑅𝐺𝑧 −𝐺𝑦



𝜉𝑧

𝜉𝑦

 =


𝑏𝑧

𝑏𝑦

𝑐𝑦 − 𝑅𝑐𝑧


,

,


𝜉𝑧

𝜉𝑦

 ∈ {C𝑧 , C𝑦}
}
,

(3.22)

which is the right-hand side of (3.14), thus concluding the proof. ⊓⊔

From the operations in Proposition 3.1 and the fact that by construction, CCG
as defined in Definition 3.3 are convex sets, it means that they are well-suited to
be applied to state estimation and fault detection of LTV models. Computationally
speaking, it is required to store which type of generator we are using for which
entries of the vector of auxiliary variables 𝜉. In the next section, we illustrate the use
of CCGs and will only use unit ℓ∞-norm balls, unit ℓ2-norm balls and cones as the
convex generators for designing an observer to estimate the state of a vehicle. Also
notice that it is always possible to over-approximate CCG sets by the hyper-cubes
resulting from interval analysis so the results in [65] regarding the boundedness of
the hyper-volume of these sets can be directly applied.
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We would like to point out that all the aforementioned set representations are
subsets of CCGs, namely:

• an interval corresponds to (𝐺, 𝑐, [ ], [ ], ∥𝜉∥∞ ≤ 1), for a diagonal matrix 𝐺;

• a zonotope is given by (𝐺, 𝑐, [ ], [ ], ∥𝜉∥∞ ≤ 1);
• an ellipsoid is defined by (𝐺, 𝑐, [ ], [ ], ∥𝜉∥2 ≤ 1), for a square matrix 𝐺;

• a CZ or polytope is (𝐺, 𝑐, 𝐴, 𝑏, ∥𝜉∥∞ ≤ 1);
• a convex cone in R𝑛 is (𝐺, 𝑐, [ ], [ ], 𝜉 ≥ 0);
• ellipsotopes are given by (𝐺, 𝑐, 𝐴, 𝑏, ∥𝜉∥ 𝑝1 ≤ 1, · · · , ∥𝜉∥ 𝑝𝑚 ≤ 1), for some
𝑝𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑚;

• AH-polytopes are given by (𝐺, 𝑐, [ ], [ ], 𝐴𝜉 ≤ 𝑏).

3.3 State Estimation using Constrained Convex Generators
(CCGs) with Range/Bearing Data

In this section, the state estimation strategy is presented by exploiting the properties
of CCGs introduced in Section 3.2 and over-approximations to the exact non-convex
measurement sets. The propagation equation of the estimates using the dynamical
model in (3.1) can be accomplished using the set operations in Proposition 3.1,
namely that with previous set-valued estimates 𝑋 (𝑘) can be propagated to obtain set
𝑋prop (𝑘 + 1) that contains all points that are consistent with the previous estimate
and the dynamics in the following fashion:

𝑋prop (𝑘 + 1) = 𝐹𝑘𝑋 (𝑘) + 𝐵𝑘𝑢(𝑘) ⊕𝑊 (𝑘), (3.23)

meaning that 𝑋prop (𝑘 +1) is the result of an affine map on 𝑋 (𝑘) using matrix 𝐹𝑘 and
vector 𝐵𝑘𝑢(𝑘) and then the Minkowski sum with the disturbance set.

The update set of the observer requires performing an intersection following the

linear map 𝐶 =

[
e1 · · · e𝑝

]⊺
, which is defined to obtain the first 𝑝 entries of vector

𝑥 that store the vehicle position, i.e., 𝑥 [1, · · · , 𝑝] (𝑘) = 𝐶𝑥(𝑘). This means that the set-
valued estimates for state at time 𝑘 + 1, 𝑋 (𝑘 + 1), can be obtained as an intersection
between propagated set 𝑋prop (𝑘 + 1) with the measurement set 𝑌 (𝑘 + 1) (which will
be defined for the three cases of range, bearing and range/bearing data) as follows:

𝑋 (𝑘 + 1) = 𝑋prop (𝑘 + 1) ∩𝐶 𝑌 (𝑘 + 1). (3.24)

Note that the set 𝑌 (𝑘 + 1) is going to be the intersection of the individual mea-
surement set for each tower. For simplicity of exposition, we will present the various
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𝑌 (𝑘 + 1) assuming a single tower (and drop the subscript for that matter) but we can
perform the intersection using the identity linear map over all the sets.

3.3.1 Bearing-only measurements

Let us define the minimum and maximum error on a single bearing measurement as
𝑏𝑙 and 𝑏𝑢, meaning that we have in two dimensions that ang(𝑥 [1,2] (𝑘) − tower) ∈[
𝑦𝑏 (𝑘) − 𝑏𝑙 𝑦𝑏 (𝑘) + 𝑏𝑢

]
.

Thus, the bearing-only measurement set 𝑌𝑏 (𝑘) is a cone, which can be expressed
by the CCG:

𝑌𝑏 (𝑘) =
©­­«

cos(𝑦𝑏 (𝑘) + 𝑏𝑢) cos(𝑦𝑏 (𝑘) − 𝑏𝑙)

sin(𝑦𝑏 (𝑘) + 𝑏𝑢) sin(𝑦𝑏 (𝑘) − 𝑏𝑙)

 , tower, 0⊺
2 , 0, {R

2
+}

ª®®¬ , (3.25)

where R2
+ is the nonnegative orthant in R2. The definition in (3.25) did an affine

transformation of R2
+ where 𝐺 was selected as to change the canonical vectors to the

desired ones corresponding to the minimum and maximum angles allowed by the

measurement 𝑦𝑏 (𝑘). We remark that setting 𝐴 =

[
0 0

]
in 𝑌𝑏 (𝑘) as we have done

can be omitted and treated as the empty matrix provided that dimensions are kept
consistent when using block diagonal operations. In 3 dimensions, one can address
each angle separately and then use the intersection to construct the shape.

3.3.2 Bearing and Range measurements

Prior to presenting the range-only measurements, it is easier to first look at a segment
of the annulus and then to resort to the equivalent of Zonotope Bundles [66] with
CCGs instead. Let us define the minimum and maximum error on a single range
measurement as 𝑟𝑙 and 𝑟𝑢, meaning that we have in two dimensions that ∥𝑥 [1,2] (𝑘) −

tower∥2 ∈
[
𝑦𝑟 (𝑘) − 𝑟𝑙 𝑦𝑟 (𝑘) + 𝑟𝑢

]
in addition to the constraint from the bearing.

Figure 3.1 hints at the need to first compute the four points that result from the
intersection of each of the circles and the minimum and maximum angles (getting
two outer points in the outer circle and conversely two inner points). The coordinates
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Fig. 3.1: Conservative case caused by a larger error in the angle.

of each point is simply 𝜌


cos(𝛼)

sin(𝛼)

 for 𝜌 ∈ {𝑦𝑟 (𝑘) − 𝑟𝑙 , 𝑦𝑟 (𝑘) + 𝑟𝑢} and 𝛼 ∈

{𝑦𝑏 (𝑘) − 𝑏𝑙 , 𝑦𝑏 (𝑘) + 𝑏𝑢}. We also need a fifth point with the maximum range
possible and 𝛼 = (2𝑦𝑟 (𝑘) − 𝑟𝑙 + 𝑟𝑢)/2. It is then straightforward to find the line
equation that is parallel to the outer points and passes through the fifth point as well
as the remaining line equations and write the trapezoidal shape as 𝑀𝑥 ≤ 𝑚. By
applying the formula from Theorem 1 in [56], we obtain the CZ (𝐺, 𝑐, 𝐴, 𝑏) that is
equivalent to the CCG representation 𝑍trap = (𝐺, 𝑐, 𝐴, 𝑏, {B∞}) whereB∞ is the unit

ℓ∞-ball. The outer circle is given by the CCG
(
(𝑦𝑟 (𝑘) + 𝑟𝑢)𝐼2, tower, 0⊺

2 , 0, {B2}
)
,

where B2 is the unit ℓ2-ball. Thus, the measurement set 𝑌𝑏𝑟 (𝑘) is given by:

𝑌𝑏𝑟 (𝑘) = 𝑍trap ∩𝐼2
(
(𝑦𝑟 (𝑘) + 𝑟𝑢)𝐼2, tower, 0⊺

2 , 0, {B2}
)
. (3.26)

3.3.3 Range-only measurements

The measurement set 𝑌 𝑟 (𝑘) when there are only range measurements available
cannot be approximated as done in the previous section. However, one can par-
tition the full circle into segments with 2𝜋/Δ angles and use as minimum and
maximum angles the values 2𝜋𝑞/Δ and 2𝜋(𝑞 + 1)/Δ for 𝑞 = 0, 1, · · ·Δ − 1
and repeat the computations done in Subsection 3.3.2 replacing the interval[
𝑦𝑟 (𝑘) − 𝑟𝑙 𝑦𝑟 (𝑘) + 𝑟𝑢

]
by

[
2𝜋𝑞/Δ 2𝜋(𝑞 + 1)/Δ

]
. These Δ sets 𝑌 𝑟1 (𝑘), · · · , 𝑌

𝑟
Δ
(𝑘)

need to be intersected independently with the propagated set 𝑋prop (𝑘) to obtain
𝑋 (𝑘) = ⋃Δ−1

𝑞=0 𝑌
𝑟
𝑞 (𝑘) ∩𝐼2 𝑋prop (𝑘). Naturally, this increases the computational com-

plexity as in the subsequent time step we may end up with Δ times more sets to
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propagate. Each set can be checked to see if it is empty and discarded if so to reduce
the amount of future computation with unnecessary sets. In the envisioned scenario
of a tower providing range measurements or a beacon emitting a sound or a signal
to help the vehicle in its localization, most of these sets will be empty as the beacon
will be far away.

3.4 Simulations for Estimation with Range/Bearing
Measurements

In this section, simulation results are presented with the objective of characterizing
the behavior of the proposed CCG definition with respect to 4 important factors: i)
size of the matrices and vectors used in the definitions; ii) computational time to
achieve the representation; iii) solver time to check that a point belong to the set and
also if it is empty; and, iv) comparison against the size of the estimate set produced by
the CZs. Notice that i) is not of particular interest unless the set representation needs
to be sent to other agents (as for example to implement a distributed state estimation
algorithm such as in [67]) whereas ii) is crucial when running the observer online
as the computation has to be faster than that of the sampling time. Lastly, checking
for a collision with another convex obstacle can be achieved by modeling it as a
CCG and checking whether the intersection is the empty set, which emphasizes
the importance of iii). Moreover, computing the centroid of the set, what is the
point maximizing some direction among other questions can all be formulated as
an optimization problem which means that it should be efficient to solve a program
constrained to a CCG.

In the following simulations, we adopted a double integrator dynamics (which is a
fair model provided hard constraints are enforced on the velocity and trajectory [55])
for a vehicle moving in R2 motivated by applications in maritime and underwater
vessels where range and bearing measurements are a relevant type of sensor informa-
tion. The continuous dynamics are discretized with a sample and hold strategy and
a sampling time of Ts = 0.1s and it is assumed to exist a state-feedback controller
on board corresponding to the solution 𝐾 of the discrete Linear Quadratic Regulator
with parameters 𝑄 = 10𝐼4 and 𝑅 = 𝐼2:

𝐾 =


2.5857 0 3.4434 0

0 2.5857 0 3.4434

 . (3.27)

Initial state is 𝑥(0) =
[
9 9 0 0

]⊺
(meaning that the vehicle is stopped at point with co-

ordinates
[
9 9

]
)⊺ and the initial estimate 𝑋 (0) =

(
5𝐼4,

[
10 10 0 0

]⊺
, 0⊺

4 , 0, {B∞}
)
,
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i.e., both position and velocity have an uncertainty of ±5 with the center of the

estimate representing a stopped vehicle at coordinates
[
10 10

]⊺
. Lastly, the source

of the readings is placed at the origin and the simulations were run in Matlab R2018a
running on a HP machine with a Intel Core i7-8550U CPU @ 1.80GHz and 12 GB
of memory resorting to the overloaded plot function by Yalmip to depict the sets and
using Mosek as the underlying solver. Videos of the simulations and figures can be
found in https://github.com/danielmsilvestre/CCGpaper.
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(a) Vehicle performing a 200 time instant
trajectory of a figure 8.
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(b) Vehicle performing a 250 time instant
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Fig. 3.2: Trajectory intended (light blue dots) and realized path done by the vehicle
(grey) and the set-valued estimates obtained from Range and Bearing measurements
drawn at each 15 iterations going from time instant 1 (lighter) to the end of the
simulation (darker).

Figure 3.2a depicts the vessel doing a figure-8 with both range and bearing mea-
surements during a simulation of 200 time instants corresponding to 20s. The sets
are shown every 15 iterations to avoid cluttering the image. Over the 200 iterations,
the construction of the sets took on average 8.1 × 10−3 seconds with a variance of
3.87 × 10−5, which is much faster than the 10−1 for the sampling time. In terms of
the sizes of the data structures, the CCG at time 𝑘 required storing 4 + 8𝑘 generator
variables, 1+9𝑘 linear equalities and an additional vector with 4+8𝑘 entries (one for
each generator variable) storing a numeric value starting by an identifier number for
the type of generator followed by a unique identifier so that we can group generator
variables that are defined within the same generator. This means a linear growth of
2𝑛𝑥 and 2𝑛𝑥 + 1 for this type of measurement. At each iteration, we solved a linear
objective function constrained on the point belonging to 𝑋 (𝑘). Over the 200 itera-
tions, it took on average 0.0151 seconds with the maximum being 0.0516 seconds.
For instance, a problem at iteration 200 took 0.024 seconds and a collision check
took around 0.0197 seconds. In addition, we compared the hyper-volume of the sets
produced by CZs against CCGs and on average throughout the whole simulation
they are larger 6.6% with a maximum 34.35%. This percentage increases with the

https://github.com/danielmsilvestre/CCGpaper
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difference 𝑏𝑢 − 𝑏𝑙 , i.e., with the error on the bearing measurement as seen in Figure
3.1.

In Figure 3.2b, we present a simulation with a different trajectory that promotes
a sharper turn that offers the possibility for a better estimate since the control law
is exciting the system from an earlier point in the simulation. This is confirmed by
the sizes of the sets that decrease after the turn. With respect to the performance
of constructing the sets and conservatism, the results are similar to those of Figure
3.2a.
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(a) Vehicle performing a 200 time instant
trajectory of a figure 8.
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(b) Vehicle performing a 300 time instant
trajectory of a spiral.

Fig. 3.3: Trajectory intended (light blue dots) with the actual trajectory done by
the vehicle (grey) and the set-valued estimates drawn at each 15 iterations going
from time instant 1 (lighter) to time instant 200 (darker) obtained using bearing-only
measurements from the two towers (red crosses).

We have also simulated a case where the observer has access to bearing-only
measurements corrupted by noise from two beacons assuming that the vessel is
within 10 distance units. This is a case that cannot be represented by a CZ unless
we assume some arbitrarily large constant to eventually bound the set as it is not

possible to represent unbounded sets. The beacons are placed at positions
[
10 15

]⊺
and

[
20 10

]⊺
as to make segments of the trajectory be served by a different beacon.

The estimation task has a better performance given that the measurement sets can be
described using fewer generator variables. The mean time to compute the sets was
0.0016s with the worst-case taking 0.007s, which reinforces the usability of CCGs
in real time. The number of generator variables increases as 4 + 2𝑘 given that the
set 𝑌 (𝑘) can be described with 2 variables. The reduced description of the sets also
decreases the time it took to check whether the set is empty or if a point belongs to
the set, achieving a mean solver time of 0.0035s with the worst-case being 0.0073s.
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The last simulation used a spiral trajectory in order get a richer set of measure-
ments. The results are depicted in Figure 3.3b and show that the set shrinks rapidly
and allows for a good estimation performance. No order reductions were performed
and the computational times are very similar to the case of the figure 8 with bearing
measurements.

3.5 Deterministic Estimation for Uncertain Linear Dynamical
Systems

The problem of state estimation in uncertain Linear Parameter-Varyings (LPVs) can
be cast as finding a set of possible values given the measurements, disturbance, noise
and initial state bounds when the model is given by:

𝑥(𝑘 + 1) =
(
𝐹 (𝜌(𝑘)) +

𝑛Δ∑︁
ℓ=1

Δℓ (𝑘)𝑈ℓ
)
𝑥(𝑘) + 𝐵(𝜌(𝑘))𝑢(𝑘) + 𝑤(𝑘)

𝑦(𝑘) = 𝐶 (𝜌(𝑘))𝑥(𝑘) + 𝑣(𝑘)
(3.28)

where 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑛𝑢 , 𝑤(𝑘) ∈ R𝑛, 𝑦(𝑘) ∈ R𝑛𝑦 and 𝑣(𝑘) ∈ R𝑛
𝑦 are the

system state, input, disturbance signal, output and noise, respectively. The parameter
𝜌(𝑘) is the part of the parameters that can be measured at time 𝑘 , which can be
treated as in the case of LTVs. The main challenge appears from considering the
𝑛Δ uncertainties denoted by Δℓ and the constant matrices 𝑈ℓ that account for how
the uncertainties affect the nominal dynamics matrix given by 𝐹 (𝜌(𝑘)). To lighten
the notation, we will consider 𝐹𝑘 := 𝐹 (𝜌(𝑘)) and similarly for all the remaining
matrices in (3.28). Notice that we have to explicitly consider 𝜌 to account for
nonlinearities that enter the model in a linear fashion as will happen with unicycle
model used in Section 3.7. Moreover, in order to have a well-posed problem, we
assume that all unknown signals are bounded within a compact convex set denoted
by the correspondent capital letter, i.e., 𝑥(0) ∈ 𝑋 (0), 𝑤(𝑘) ∈ 𝑊 (𝑘) and 𝑣(𝑘) ∈ 𝑉 (𝑘).
Without loss of generality, we will assume that ∀𝑘, |Δℓ (𝑘) | ≤ 1.

The problem addressed in this paper is summarized as:

Problem 3.2 Given compact convex sets 𝑋 (0), 𝑊 (𝑘) and 𝑉 (𝑘) for all 𝑘 ≥ 0 and
measurements 𝑦(𝑘), how to compute a set 𝑋 (𝑘) such that it is guaranteed that
𝑥(𝑘) ∈ 𝑋 (𝑘), ∀𝑘 ≥ 0.

Notice that Problem 3.2 is called state estimation although a converse definition
could be presented for the output of the system (this is of particular interest in
sensitivity analysis ([68]) and system distinguishability ([69])).
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3.6 State Estimation for Uncertain LPVs using Constrained
Convex Generators (CCGs)

The state estimation for the uncertain cases has to account for the polytopic un-
certainty in the dynamics in the propagation phase using the model, namely, set
𝑋prop (𝑘 + 1) after applying the dynamics to 𝑋 (𝑘) can be written as:

𝑋prop (𝑘 + 1) =cvxHull ©­«
⋃

Δ∈vertex( [−1,1]𝑛Δ )

(
𝐹𝑘 +

𝑛Δ∑︁
ℓ=1

Δℓ (𝑘)𝑈ℓ

)
𝑋 (𝑘)ª®¬

+ 𝐵𝑘𝑢(𝑘) ⊕𝑊 (𝑘),

(3.29)

where cvxHull is the convex hull function.

The update phase corresponding to intersection with the measurement set𝑌 (𝑘+1),
i.e., all state values that could result in the measurement 𝑦(𝑘 + 1), that corresponds
to:

𝑋 (𝑘 + 1) = 𝑋prop (𝑘 + 1) ∩𝐶 𝑌 (𝑘 + 1). (3.30)

3.6.1 Convex Hull for CCGs

Let us start by defining the convex hull of two sets:

cvxHull (𝑍1, 𝑍2) :=
{
𝑧 :𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2,

𝜆 ∈ [0, 1], 𝑧1 ∈ 𝑍1, 𝑧2 ∈ 𝑍2
}
.

(3.31)

Let us introduce a specific instance of norm cones that are going to be used in the
following result. For a norm unity ball C defined as ∥𝜉∥ 𝑝 ≤ 1, let us associate with
it the correspondent norm cone of order zero C (0) (𝜉, 𝜆, 𝑎, 𝑏) := ∥𝜉∥ 𝑝 + 𝑤0𝜆 ≤ 𝑣0
with the initialization of the row vector 𝑤0 and column vector 𝜆 as empty and scalar
𝑣0 = 1. In the base case, we can omit the arguments with a slight abuse of notation.
We can now define norm cones of higher order of this operation in a recursive manner

C (𝜏 ) (𝜉, 𝜆, 𝑎, 𝑏) := ∥𝜉∥ 𝑝 +
[
𝑎 𝑏𝑤𝜏−1

]
𝜆 ≤ 𝑏𝑣𝜏−1, such that the generator variables

are 𝜆 ∈ R𝜏 and 𝜉 with the same dimension as the zero order cone and constant
arguments 𝑎 and 𝑏.

We can now state the main theorem introducing the closed-form expression for
the convex hull of two CCGs and the complexity of this representation.

Theorem 3.1 Consider two CCGs as in Definition 3.3:

• 𝑋 = (𝐺𝑥 , 𝑐𝑥 , 𝐴𝑥 , 𝑏𝑥 , C (𝜏𝑥 )𝑥 ) ⊂ R𝑛;
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• 𝑌 = (𝐺𝑦 , 𝑐𝑦 , 𝐴𝑦 , 𝑏𝑦 , C
(𝜏𝑦 )
𝑦 ) ⊂ R𝑛;

such that 𝐴𝑥 ∈ R𝑛
𝑥
𝑐 ×𝑛𝑥𝑔 , 𝐴𝑦 ∈ R𝑛

𝑦
𝑐×𝑛

𝑦
𝑔 , 𝜉𝑥 ∈ C (𝜏𝑥 )𝑥 =⇒ 𝛼𝜉𝑥 ∈ C (𝜏𝑥 )𝑥 , for

𝛼 ∈ [0, 1] and similarly for C (𝜏𝑦 )𝑦 . The CCG corresponding to the exact convex hull
𝑍ℎ = (𝐺ℎ, 𝑐ℎ, 𝐴ℎ, 𝑏ℎ, Cℎ) ⊂ R𝑛 is given by:

𝐺ℎ =

[
𝐺𝑥 𝐺𝑦 𝑐𝑥 − 𝑐𝑦

]
, 𝑐ℎ =

𝑐𝑥 + 𝑐𝑦
2

,

𝐴ℎ =


𝐴𝑥 0 −𝑏𝑥

0 𝐴𝑦 𝑏𝑦

 , 𝑏ℎ =


1
2𝑏𝑥

1
2𝑏𝑦


Cℎ = {C (𝜏𝑥+1)

𝑥 (𝜉𝑥 , 𝜉𝜆,−1, 0.5), C (𝜏𝑦+1)
𝑦 (𝜉𝑦 , 𝜉𝜆, 1, 0.5),R},

(3.32)

which has 𝑛𝑥𝑔 + 𝑛
𝑦
𝑔 + 1 generators and 𝑛𝑥𝑐 + 𝑛

𝑦
𝑐 constraints.

Proof. Following Theorem 1 from ([70]), we write 𝑍ℎ as:

𝑍ℎ = {𝑝ℎ = 𝐺𝑥𝜉𝑥 + 𝜆𝑐𝑥 + 𝐺𝑦𝜉𝑦 + (1 − 𝜆)𝑐𝑦 :
0 ≤ 𝜆 ≤ 1, 𝐴𝑥𝜉𝑥 = 𝜆𝑏𝑥 , 𝐴𝑦𝜉𝑦 = (1 − 𝜆)𝑏𝑦 ,
∥𝜉𝑥 ∥ℓ𝑥 ≤ 𝜆, ∥𝜉𝑦 ∥ℓ𝑦 ≤ (1 − 𝜆)}

(3.33)

when in the presence of unit balls.

By performing the substitution 𝜉𝜆 = 𝜆 − 0.5, we obtain a generator variable that
belongs to the interval [−0.5, 0.5] and after reorganizing to write everything in terms

of 𝜉ℎ =
[
𝜉
⊺
𝑥 𝜉

⊺
𝑦 𝜉

⊺
𝜆

]⊺
, we obtain:

𝑍ℎ = {𝑝ℎ = 𝐺ℎ𝜉ℎ + 𝑐ℎ :
𝐴ℎ𝜉ℎ = 𝑏ℎ, ∥𝜉𝑥 ∥ℓ𝑥 ≤ 0.5 + 𝜉𝜆, ∥𝜉𝑦 ∥ℓ𝑦 ≤ 0.5 − 𝜉𝜆}.

(3.34)

where the norm cones correspond to C (1)𝑥 (𝜉𝑥 , 𝜉𝜆,−1, 0.5) and C (1)𝑦 (𝜉𝑦 , 𝜉𝜆, 1, 0.5). If
on the other hand, we have a norm cones of order 𝜏𝑥 and 𝜏𝑦 , respectively, we obtain
the expression C (𝜏𝑥+1)

𝑥 (𝜉𝑥 , 𝜉𝜆,−1, 0.5) and C (𝜏𝑦+1)
𝑦 (𝜉𝑦 , 𝜉𝜆, 1, 0.5). The number of

generators and constraints results from the size of matrix 𝐴ℎ, which concludes the
proof. ⊓⊔

Theorem 3.1 produces the exact convex hull as no approximation was required
and is available in the toolbox ReachTool that can be found in https://github.
com/danielmsilvestre/ReachTool. Figure 3.4 depicts an example of sets 𝑍1
and 𝑍2 with the respective set 𝑍ℎ as given by Theorem 3.1 and what one would get if
first converted the sets to CZs and then applied the exact convex hull given in ([71]).
As observed, the proposed method is tight for CCGs and offers better accuracy in

https://github.com/danielmsilvestre/ReachTool
https://github.com/danielmsilvestre/ReachTool
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comparison to the result from ([71]). Moreover, since CZs are an instance of CCGs
where the generator sets are ℓ∞ unit balls, a corollary from Theorem 3.1 is that the
optimal representation of the convex hull of two CZs is possible only in the more
general CCG format.

-1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

6

Fig. 3.4: Comparison between the set 𝑍ℎ and the convex hull that one would obtain
if first converted both 𝑍1 and 𝑍2 to CZs by overbounding all convex generators by
the ℓ∞ unit ball.

The convex hull operator increases linearly the number of auxiliary variables
to 𝑛𝑥𝑔 + 𝑛

𝑦
𝑔 + 1, however, this step has to be performed for all vertices which are

exponential in the number of uncertainties. Such an issue was already present in
([65]) for polytopic set descriptions using the optimal convex hull formulation.

In order to keep the computation time for each iteration bounded, we introduce the
order reduction in Algorithm 2, which computes a CCG with a specified number of
constraints 𝛾 using 𝑛+𝛾 generators which is of the form of a polytope. The procedure
starts by constructing a collections of hyperplanes tangent to the surface and then
converting to CCG representation. The min and max operations are element-wise.

3.7 Simulations for Estimation of an Uncertain LPV

In this section, simulations results are presented for a unicycle model of an au-
tonomous vehicle in discrete-time for which there is a digital compass as an onboard
sensor providing measurements of the orientation angle with a±5◦ error. Simulations
were run in Matlab R2018a running on a HP machine with a Intel Core i7-8550U CPU
@ 1.80GHz and 12 GB of memory resorting to Yalmip as the language to model opti-
mization problems and Mosek as the underlying solver. Videos, figures and code can
be found in https://github.com/danielmsilvestre/CCGExactConvexHull

https://github.com/danielmsilvestre/CCGExactConvexHull
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Algorithm 2 Order Reduction using points on the surface.
Require: Set 𝑋 (𝐾 ) ⊆ R𝑛 and desired order 𝛾.
Ensure: Calculation of𝑋 (𝑘 ) ⊆ 𝑋red (𝑘 ) ⊆ R𝑛 with 𝑛𝑔 = 𝛾+𝑛 generators and 𝑛𝑐 = 𝛾 constraints.

1: /* Get points 𝑝𝑖 on the surface such that 𝑝𝑖 = arg max 𝑣⊺
𝑖
𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝛾 for random 𝑣𝑖 */

2: [𝑣, 𝑝] = sampleSurface(𝑋 (𝑘 ) , 𝛾)
3: /* Compute box 𝑍̃ for the points 𝑝 */
4: 𝑍̃ =

(
1
2 diag(max 𝑝 − min 𝑝) , 1

2 (max 𝑝 +min 𝑝) , [ ], [ ], ∥ 𝜉 ∥∞ ≤ 1
)

5: /* Calculate 𝑏 and 𝜎 such that all entries 𝑣⊺
𝑖
𝑝𝑖 ∈ [𝜎, 𝑏]*/

6: 𝜎 = min 𝑣⊺ 𝑝
7: 𝑏 = diag(𝑣⊺ 𝑝)

8: 𝑋red (𝑘 ) =
( [
𝑍̃ .𝐺 0𝑛×𝛾

]
, 𝑍̃ .𝑐,

[
𝑣⊺ 𝑍̃ .𝐺 1

2 diag(𝜎 − 𝑏)
]
,
𝑏 + 𝜎

2
− 𝑣⊺ 𝑍̃ .𝑐, ∥ 𝜉 ∥∞ ≤ 1

)

We recover the example considering unicycle dynamics described in ([72]). The
vehicle schematic representation is given in Figure 3.5 and has the following dynam-
ics in discrete-time:

𝑝𝑖

𝑞𝑖

 (𝑘 + 1) =

𝑝𝑖

𝑞𝑖

 (𝑘) + Ts 𝐴𝑖 (𝜃𝑖)

𝑣𝑖

𝑤𝑖

 (𝑘) (3.35)

where the state (𝑝𝑖 , 𝑞𝑖) identify the position of the front of the 𝑖th vehicle and the
inputs (𝑣𝑖 , 𝑤𝑖) account for the linear velocity and rotation. Moreover, Ts = 0.1 stands
for the sampling time, 𝜃𝑖 (we omit the time dependence in 𝑘 for a more compact
presentation) for the orientation and matrix 𝐴𝑖 (𝜃𝑖) is given as:

𝐴𝑖 (𝜃𝑖) =

cos 𝜃𝑖 −𝑙 sin 𝜃𝑖

sin 𝜃𝑖 𝑙 cos 𝜃𝑖

 . (3.36)

In this simulation, we consider a single vehicle running for a total of 15 seconds and,
assuming that the compass takes measurements 𝜃1 of the true variable 𝜃1 that have
a maximum of ±5◦ following a uniform distribution. Therefore, at each iteration
time 𝑘 , matrix 𝐴1 in the dynamics is not available to the observer and we have to
consider 𝜃1 to generate the nominal dynamics and an uncertainty Δ1 with maximum
magnitude of 5◦, which fits (3.28).

The trajectory-tracking control law used is:
𝑣𝑖 (𝑘)

𝑤𝑖 (𝑘)

 =
𝐴−1
𝑖
(𝜃𝑖)

Ts
©­­«𝜏(𝑘 + 1) − 𝜏(𝑘)

2
− 0.5


𝑝𝑖 (𝑘)

𝑞𝑖 (𝑘)

 + 𝑑 (𝑘)
ª®®¬ (3.37)
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Fig. 1: Kinematic model of the unicycle

The coordinates of the point αi for each agent robot Ri

as shown in Figure 1, are described by:

αi =
[
pi

qi

]
=
[
xi + ℓ cos (θi)

yi + ℓ sin (θi)

]
(2)

The kinematics of (2) are determined by:

α̇i = Ai(θi)
[

vi

wi

]
(3)

Where

Ai(θi) =
[

cos (θi) −ℓ sin (θi)

sin (θi) ℓ cos (θi)

]
(4)

is the decoupling matrix of each Ri. It is easy to see
that the decoupling matrix is non-singular since det(Ai) =
ℓ ̸= 0. Therefore it is possible to design control strategies
for positioning αi at a desired location or even track a
trajectory. The idea of controlling the point αi instead of
(xi, yi) to avoid singularities in the control law is usual in
the literature [5].

B. Approximate Discrete-Time Model
In order to discretize the model (3) we use the Euler

approximation. This approximation is given by:

α+
i = αi + T α̇i (5)

where T > 0 is the sampling period. For the sake of
simplicity, in the rest of the paper, the following notation
is adopted α = α(kT ), α+ = α(kT +T ), this is α+ denotes
forward-shift.

The control vector u = [v, w]T holds its value between
two consecutive sampling instants. i.e., we consider a
zeroth order hold for the control vector.

Substituting (2) into (5), the discrete-time model be-
comes

α+
i =

[
p+
i

q+
i

]
=
[
pi

qi

]
+ TAi(θi)

[
vi

wi

]
(6)

It is possible now to design a control strategy for track-
ing a trajectory (or positioning αi at a desired location)
using the control law:

[
vi

wi

]
= A−1

i (θi)
T

([
ν1i

ν2i

]
−
[
pi

qi

])
(7)

where

A−1
i (θi) = 1

ℓ

[
ℓ cos (θ) ℓ sin (θ)

− sin (θ) cos (θ)

]
(8)

and νi is a new control variable

Let αid(k) be a prescribed trajectory and define the new
control variable νi by

νi = α+
id − ki(αi − αid) (9)

Proposition 1: Consider the closed loop system (6) - (7)
and let νi be defined by (9). Suppose |ki| < 1. Then
limk→∞ ||αi(k)− αid(k)|| = 0 exponentially.

Proof: The proof is simple and is omitted because of
lack of space.

Since we have a control law that allows tracking trajec-
tory we can use it in the leader robot for marching control.
Precise definitions of formation and marching control are
given in the next section.

III. Problem Statement

A. Discrete-Time Formation
Let α∗i be the desired relative position of Ri in a

particular formation. In this work, we can stablish the α∗i
as

α∗i = αi+1 + c(i+1)i
α∗n = α1 + c1n

(10)

where c(i+1)i = [h(i+1)i, v(i+1)i]T denote a vector rep-
resenting the desired relative position of robot Ri with
respect to robot Ri+1 in a particular configuration.

The goal is to design a control law ui(k) = fi(αi+1(k))
for each robot Ri such that:

lim
k→∞

(αi (k)− α∗i (k)) = 0, i = 1, ..., n (11)

i.e. the desired position of the robot Ri with respect to
the robot Ri+1 is achieved. Fig. 2 shows the position
of the vectors αi when the robots satisfy the desired
formation configuration.

Fig. 3.5: Schematic of the unicycle model for the vehicles.

where 𝜏(𝑘) accounts for the discrete sequence of waypoints in the trajectory. Once
again, we assume that there is a telemetry sensor that produces estimates corrupted
by noise of the value of 𝑝1 (𝑘) and 𝑞1 (𝑘) and add the corresponding disturbance term
𝑑 (𝑘) to account for those differences. Moreover, there are two beacons at positions[
5 25

]⊺
and

[
23 10

]⊺
that can be detected within a 5 and 2 units of distance which

allows to better localize the vehicle.

The vehicle performs a figure 8 trajectory such that it can only get measurements
from each beacon in one time interval. Figure 3.6 illustrates the volume evolution for
the set-valued estimates 𝑋 (𝑘) when using CZs ([56]) and CCGs when both used the
same order reduction method in Section 3.3. Since the vehicle is moving and most
of the time performing dead reckoning with the uncertain LPV model, the volume
keeps increasing and is lowered when the vehicle reaches the beacon areas. The
main trend to observe is that the added accuracy of the ℓ2 ball representing the range
measurement from the beacon contributes to a better performance of the CCG filter.

In Figure 3.7, it is illustrated the trajectory executed by the vehicle and the cor-
responding set-valued estimates using both the CZ and CCG approaches. We have
selected a small number of time instants to display the sets as to avoid cluttering the
image, but the full video can be found in the GitHub repository associated with the
paper.

A last relevant issue is the elapsed time in each iteration taken by both filters
with different set representations. Figure 3.8 shows the computation times across
iterations during the whole simulation. At the beginning, both filters have very
similar behavior pointing out to the fact that the CCG is yet to have round facets and
the order reduction produces equivalent representations. However, as the simulation
progresses the set is intersected with the range measurements. The curved boundaries
of the CCGs result in a more complex representation. When the vehicle finds the
second beacon and the set is considerably reduced in size, the CZ approach has
a better performance given that 𝑋 (𝑘) has a shape close to an interval, where its
accuracy is the worst. This result points out to the need to further develop order
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Fig. 3.6: Comparison of the volume for both set-valued estimates when using CZs
and CCGs for the figure 8 trajectory.
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Fig. 3.7: Trajectory executed by the vehicle and the correspondent set-valued es-
timates at multiples of 40 iterations when using CZs and CCGs for the figure 8
trajectory.

reduction methods for CCGs that can exploit the nature of the sets. This is not a
trivial task given the requirement of computing an outer-approximation to maintain
the guaranteed feature in the estimation using set-membership approaches.

In order to illustrate an example where both filters should be similar, we simulated
a spiral trajectory and increased the range of the beacons in 5 meters each. In this
case, the trajectory is not taking advantage of the two beacons. However, the fact
that the vehicle will receive the beacon more often should compensate. Figure 3.9
showcases that the volume is indeed much smaller for this trajectory since the vehicle
performs dead reckoning less often. In this setup, the main difference between the
two filters is precisely the representation of the circular shapes that benefits the
CCGs.
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Fig. 3.8: Elapsed time for each iteration of both methods taking into account the
constructiong of the set, approximation algorithm and volume computation.
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Fig. 3.9: Comparison of the volume for both set-valued estimates when using CZs
and CCGs for the spiral trajectory.

In Figure 3.10, it is depicted the same snapshots for the trajectory where it is
noticeable the rounded shapes corresponding to the range measurements. However,
as seen in Figure 3.11, the more complicated set representation also reduces the
performance of both filters. Similarly to the figure 8 trajectory scenario, both sim-
ulations illustrate a clear reduction in the conservatism without a very expressive
increase in elapsed time for the overall computations. We remark that in terms of
orders of magnitude, both filters in normal operation will take between 0.6 and 1.5
seconds, which is not viable for real-time applications and showcases the need to
further purse efficient order reductions methods. We did not use the methods from
CORA toolbox since we were obtaining even larger computing times.
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Fig. 3.10: Trajectory executed by the vehicle and the correspondent set-valued esti-
mates at multiples of 40 iterations when using CZs and CCGs for the spiral trajectory.
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Fig. 3.11: Elapsed time for each iteration of both methods taking into account the
constructiong of the set, approximation algorithm and volume computation in the
spiral trajectory scenario.

3.8 Order Reduction Method of CCGs with Ellipsoids

One of the problems of using any type of observer for deterministic estimation
is an inherent trade-off between accuracy and complexity of the data structure.
In particular, CCGs are exact but their representation datastructures increase in
size as more operations are executed. For systems with uncertainties, this is quite
problematic as we had to consider all vertices of the polytopic uncertainty. For
the previous simulations, we have used a straightforward method that samples the
surface, however it becomes impractical for large state-spaces. For that reason, we
have developed techniques to reduce the order of a CCG, which is defined as 𝑛𝑔

𝑛
. It

represents the computational burden required to describe the set. The approach in
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this section is a method to eliminate generators and another to reduce the number of
constraints.

3.8.1 Order Reduction

Before proceeding to the order reduction algorithm we need the following results.
First, an ellipsoid can overapproximate a CCG with the following procedure, which
amounts to enclose the overall generator set C1 × . . . × C𝑛𝑝 within an ellipsoid.

Lemma 3.1 Consider 𝑍 =

(
𝐺, 𝑐, 𝐴, 𝑏, {C1, · · · C𝑛𝑝 }

)
, where 𝐺 and 𝐴 have the

following structure

𝐴 :=
[
𝐴1 𝐴2 . . . 𝐴𝑛𝑝

]
, (3.38a)

𝐺 :=
[
𝐺1 𝐺2 . . . 𝐺𝑛𝑝

]
, (3.38b)

with 𝐴𝑖 ∈ R𝑛𝑐×𝑚𝑖 and 𝐺𝑖 ∈ R𝑛×𝑚𝑖 , and the ellipsoid 𝑍̄ given by

𝑍̄ := {𝐺̄𝜉 + 𝑐 : 𝐴̄𝜉 = 𝑏, ∥𝜉∥2 ≤ 1}, (3.39)

with

𝐴̄ :=
[
𝑎1√
𝑑1
𝐴1

𝑎2√
𝑑2
𝐴2 . . .

𝑎𝑛𝑝√
𝑑𝑛𝑝

𝐴𝑛𝑝

]
, (3.40a)

𝐺̄ :=
[
𝑎1√
𝑑1
𝐺1

𝑎2√
𝑑2
𝐺2 . . .

𝑎𝑛𝑝√
𝑑𝑛𝑝

𝐺𝑛𝑝

]
, (3.40b)

𝑎𝑖 := max
©­­«1,
√
𝑚𝑖

𝑚
1
𝑝𝑖

𝑖

ª®®¬ . (3.40c)

If constants 𝑑𝑖 , 𝑖 ∈ {1, . . . , 𝑛𝑝} satisfy 𝑑𝑖 > 0 and
∑𝑛𝑝

𝑖=1 𝑑𝑖 = 1, then, 𝑍 ⊂ 𝑍̄ .

Proof. Note first that, as shown in [73], 𝑎𝑖 is the lowest constant such that for all
𝜉𝑖 ∈ R𝑚𝑖 ,

∥𝜉𝑖 ∥2 ≤ 𝑎𝑖 ∥𝜉𝑖 ∥ 𝑝𝑖 . (3.41)

Choose any 𝑧 ∈ 𝑍 , consider the following generator transformation
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𝜉 :=



√
𝑑1
𝑎1
𝜉1

√
𝑑2
𝑎2
𝜉2
...

√
𝑑𝑛𝑝

𝑎𝑛𝑝
𝜉𝑛𝑝


. (3.42)

From the definition of the 2-norm and (3.41) we obtain

∥𝜉∥22 =

𝑛𝑝∑︁
𝑖=1

𝑑𝑖

𝑎2
𝑖

∥𝜉𝑖 ∥22 ≤
𝑛𝑝∑︁
𝑖=1

𝑑𝑖 ∥𝜉𝑖 ∥2𝑝𝑖 . (3.43)

Since the generator elements 𝜉𝑖 ∈ R𝑚𝑖 satisfy ∥𝜉𝑖 ∥ 𝑝𝑖 ≤ 1 and given that
∑𝑛𝑝

𝑖=1 𝑑𝑖 = 1
we have that

𝑛𝑝∑︁
𝑖=1

𝑑𝑖 ∥𝜉𝑖 ∥2𝑝𝑖 ≤
𝑛𝑝∑︁
𝑖=1

𝑑𝑖 = 1, (3.44)

and therefore ∥𝜉∥2 ≤ 1. If we consider 𝜉 as the new vector of generators, we have to
rewrite the matrices as:

𝐺𝜉 =

𝑛𝑝∑︁
𝑖=1

𝐺𝑖𝜉𝑖 =

𝑛𝑝∑︁
𝑖=1

𝐺̄𝑖

√
𝑑𝑖

𝑎𝑖
𝜉𝑖 = 𝐺̄𝜉, (3.45a)

𝐴𝜉 =

𝑛𝑝∑︁
𝑖=1

𝐴𝑖𝜉𝑖 =

𝑛𝑝∑︁
𝑖=1

𝐴̄𝑖

√
𝑑𝑖

𝑎𝑖
𝜉𝑖 = 𝐴̄𝜉, (3.45b)

and we can conclude that 𝑧 ∈ 𝑍̄ , given by (3.39) as we wanted to show. ⊓⊔

To determine the weights 𝑑𝑖 one can set 𝑑𝑖 = 1
𝑛𝑝

or, in the unconstrained case if
more precision is required, solve the following convex optimization problem.

Lemma 3.2 Given the ellipsoidal overapproximation (3.39), for an unconstrained
CCG choosing the weights 𝑑𝑖 for 𝑖 ∈ {1, . . . , 𝑛𝑝} that minimize the volume of 𝑍̄
amounts to solving the following convex optimization problem.

min
𝑑𝑖

− log

(
det

(
𝐺†⊺ diag

(
𝑑𝑖

𝑎2
𝑖

𝐼𝑚𝑖

)
𝐺†

))
s.t.

𝑛𝑝∑︁
𝑖=1

𝑑𝑖 = 1.

(3.46)

Proof. Given 𝑥 ∈ R𝑛 the vector 𝜉 with minimum 2-norm such that

𝑥 = 𝐺̄𝜉 (3.47)
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is given by
𝜉 = 𝐺̄†𝑥. (3.48)

Note that since
𝐺̄ = 𝐺 diag

(
𝑎𝑖√
𝑑𝑖
𝐼𝑚𝑖

)
, (3.49)

where in diag
(
𝑎𝑖√
𝑑𝑖
𝐼𝑚𝑖

)
, 𝑖 ∈ {1, . . . , 𝑛𝑝}, we have that

𝐺̄† = diag
(√
𝑑𝑖

𝑎𝑖
𝐼𝑚𝑖

)
𝐺†. (3.50)

Therefore ∥𝜉∥2 ≤ 1 is equivalent to

𝑥⊺𝐺†⊺ diag

(
𝑑𝑖

𝑎2
𝑖

𝐼𝑚𝑖

)
𝐺†𝑥 ≤ 1. (3.51)

The result ensues by noting that minimizing the volume of an ellipsoid given by
(3.51) is equivalent to maximizing

det

(
𝐺†⊺ diag

(
𝑑𝑖

𝑎2
𝑖

𝐼𝑚𝑖

)
𝐺†

)
, (3.52)

that log(·) is a monotonically increasing function and that − log(det(·)) is a convex
function. ⊓⊔

Based on Lemmas 11 and 12 in [74], a constrained ellipsoid can always be
expressed without constraints as in the following Lemma, which corresponds to
Lemma 13 in [74], making explicit the expressions for matrices 𝑇 and 𝑡.

Lemma 3.3 Given a constrained ellipsoid of the form

𝑋 = (𝐺, 𝑐, 𝐴, 𝑏, ∥𝜉∥2 ≤ 1) , (3.53)

it can be expressed with 𝑛𝑔 − 𝑛𝑐 generators as

𝑋 ≡ 𝑋̃ := (𝐺𝑇, 𝑐 + 𝐺𝑡, [ ], [ ], ∥𝜉∥2 ≤ 1) , (3.54)

where

𝑡 := 𝐴†𝑏, (3.55a)

𝑇 :=
√︁

1 − ∥𝑡∥2 null(𝐴), (3.55b)

𝐴† is the pseudo-inverse of 𝐴 and null(𝐴) is an orthonormal basis of the null-space
of 𝐴.
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Proof. To prove the lemma we must show that these sets are equivalent

{𝜉 : 𝐴𝜉 = 𝑏, ∥𝜉∥2 ≤ 1} ≡
{
𝑇𝜉 + 𝑡 : ∥𝜉∥2 ≤ 1

}
. (3.56)

This can be shown as follows. In the first set, we can perform the transformation
𝜉 = 𝜉 + 𝑡, and noting that, from (3.55a), 𝐴𝑡 = 𝑏 we obtain that

{𝜉 : 𝐴𝜉 = 𝑏, ∥𝜉∥2 ≤ 1} (3.57)

is equivalent to {
𝜉 + 𝑡 : 𝐴𝜉 = 0, ∥𝜉 + 𝑡∥2 ≤ 1

}
. (3.58)

Given that 𝐴𝜉 = 0, 𝜉 is in the nullspace of 𝐴, and therefore without loss of generality
we can make the transformation 𝜉 = 𝑇𝜉. Given that, from (3.55), 𝐴†⊺ null(𝐴) = 0
and 𝑡⊺𝑇 = 0, we have,

∥𝑇𝜉 + 𝑡∥2 =

√︃
∥𝑇𝜉∥22 + ∥𝑡∥

2
2. (3.59)

Then, from the fact that ∥𝑇𝜉∥2 =

√︃
1 − ∥𝑡∥22∥𝜉∥2 we have that (3.58) is equivalent to{

𝑇𝜉 + 𝑡 : ∥𝜉∥2 ≤ 1
}
, (3.60)

as we wanted to show. ⊓⊔

Finally, an ellipsoid can always be expressed with a vector of generators of size
rank(𝐺) with the following method

Lemma 3.4 An ellipsoid of the form

𝑋 = (𝐺, 𝑐, [ ], [ ], ∥𝜉∥2 ≤ 1) , (3.61)

can always be expressed with rank(𝐺) generators by taking the singular value
decomposition of 𝐺

𝑈𝑆𝑉⊺ = 𝐺 (3.62)

and computing
𝑋 ≡ 𝑋̃ := (𝑈𝑆, 𝑐, [ ], [ ], ∥𝜉∥2 ≤ 1) . (3.63)

Proof. Performing the generator transformation 𝜉 = 𝑉⊺𝜉, since V is orthonormal
we have that

∥𝜉∥2 ≤ ∥𝜉∥2 ≤ 1, (3.64)

thus concluding the proof. ⊓⊔

A similar exact order reduction method for ellipsoids was presented in [74].
However, since the order reduction method of Lemma 3.4 consists of performing a
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singular value decomposition on 𝐺 ∈ R𝑛×𝑛𝑔 its complexity is O(𝑛𝑛2
𝑔), whereas the

complexity of the method in [74] is O(𝑛3 + 𝑛3
𝑔).

Since we are interested in reducing the number of generators without changing
the effect of some or most of the generators, we adopt a method based on the
lift-then-reduce strategy for CZs [56] to partially reduce the order of a CCG.

Lemma 3.5 Consider a CCG and a partition of 𝐺 and 𝐴 as

𝐴 :=
[
𝐴̄1 𝐴̄2

]
, (3.65a)

𝐺 :=
[
𝐺̄1 𝐺̄2

]
, (3.65b)

where

𝐴̄1 :=
[
𝐴1 . . . 𝐴𝑛̄𝑝

]
, (3.66a)

𝐴̄2 :=
[
𝐴𝑛̄𝑝+1 . . . 𝐴𝑛𝑝

]
, (3.66b)

𝐺̄1 :=
[
𝐺1 . . . 𝐺 𝑛̄𝑝

]
, (3.66c)

𝐺̄2 :=
[
𝐺 𝑛̄𝑝+1 . . . 𝐺𝑛𝑝

]
, (3.66d)

for some integer 𝑛̄𝑝 such that 1 ≤ 𝑛̄𝑝 ≤ 𝑛𝑝 Given matrices 𝐺̃2 ∈ R𝑛×(𝑛+𝑛𝑐 ) and
𝐴̃2 ∈ R𝑛𝑐×(𝑛+𝑛𝑐 ) that yield the following ellipsoidal overbound

©­­«

𝐺̄2

𝐴̄2

 , 0, [ ], [ ], C𝑛̄𝑝+1 × . . . × C𝑛𝑝
ª®®¬ ⊂

©­­«

𝐺̃2

𝐴̃2

 , 0, [ ], [ ], ∥𝜉∥2 ≤ 1
ª®®¬ , (3.67)

the CCG can be overapproximated by( [
𝐺̄1 𝐺̃2

]
, 𝑐,

[
𝐴̄1 𝐴̃2

]
, 𝑏, C1 × . . . × C𝑛̄𝑝 × C̃

)
, (3.68)

where
C̃ := {𝜉 : ∥𝜉∥2 ≤ 1} ⊂ R𝑛+𝑛𝑐 . (3.69)

Proof. Choose any 𝑧 ∈ 𝑍 , which is equivalent to
𝑧

0

 ∈ 𝑍̄ :=
©­­«

𝐺

𝐴

 ,

𝑐

−𝑏

 , [ ], [ ], C1 × . . . × C𝑛𝑝
ª®®¬ . (3.70)
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Notice that 𝑍̄ can be expressed as 𝑍̄ = 𝑍1 ⊕ 𝑍2 where

𝑍1 :=
©­­«

𝐺̄1

𝐴̄1

 ,

𝑐

−𝑏

 , [ ], [ ], C1 × . . . × C𝑛̄𝑝
ª®®¬ , (3.71a)

𝑍2 :=
©­­«

𝐺̄2

𝐴̄2

 , 0, [ ], [ ], C𝑛̄𝑝+1 × . . . × C𝑛𝑝
ª®®¬ . (3.71b)

From (3.67) we have that 𝑍2 ⊂ 𝑍̄2 where

𝑍̄2 :=
©­­«

𝐺̃2

𝐴̃2

 , 0, [ ], [ ], ∥𝜉∥2 ≤ 1
ª®®¬ . (3.72)

Using the expression for the Minkowski sum in Proposition 3.1 we have that
[
𝑧⊺ 0⊺

]⊺
is in the set ©­­«


𝐺̄1 𝐺̃2

𝐴̄1 𝐴̃2

 ,

𝑐

−𝑏

 , [ ], [ ], C1 × . . . × C𝑛̄𝑝 × C̃
ª®®¬ , (3.73)

and we can conclude that 𝑧 is in the set given by (3.68) as we wanted to show. ⊓⊔

Since we aim to eliminate only some of the generators we require a heuristic
to select which generators to eliminate. Given Lemmas 3.1 and 3.3, one possible
heuristic to estimate the size of the contribution of each generator to the final set is
the following

Definition 3.4 Partition the matrix 𝑇 from (3.55) as

𝑇 :=



𝑇1

𝑇2
...

𝑇𝑛𝑝


, (3.74)

where 𝑇𝑖 ∈ R𝑚𝑖×(𝑛𝑔−𝑛𝑐 ) ,∀𝑖 ∈ {1, · · · , 𝑛𝑝}. Then, the weight of each generator is
defined as

𝑤𝑖 := 𝑎𝑖 ∥𝐺𝑖𝑇𝑖 ∥2,∀𝑖 ∈ {1, · · · , 𝑛𝑝}, (3.75)

where 𝑎𝑖 is defined in (3.40c).
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The transformation 𝑇𝑖 maps the new generators, constrained only by the two-
norm, back to the original generator space, while 𝐺𝑖 transforms from the space
of the original generators to the space of the set. Consequently, 𝑤𝑖 is an upper
bound on the radius of a spheroid enclosing the generator set C𝑖 , which serves as
an approximation of the volume contribution attributed to individual generator sets.
This approximation can be applied to any type of p-norm.

Given these methods, the order reduction algorithm to achieve a desired order 𝑟
is given by Algorithm 3. We note that in practice, as will be seen in Section 3.9,
it is often preferable to set 𝑑𝑖 = 1

𝑛𝑝
than to solve (3.46) due to the increase in

computational time that it involves. In this situation, the computational complexity
of the algorithm is O(𝑛𝑐𝑛2

𝑔 + 𝑛(𝑛𝑔 − 𝑟𝑛)2).

Algorithm 3 Order reduction algorithm 𝑍̃ = ord red(𝑍, 𝑟).
Require: 𝑍 , 𝑟
1: Reorder the generators such that 𝑤𝑖+1 ≤ 𝑤𝑖 .
2: Set 𝑛̄𝑝 as the lowest number with 𝑟𝑛 ≤ ∑𝑛̄𝑝

𝑖=1 𝑚𝑖 .
3: Partition 𝐴 and 𝐺 as in (3.65a) and (3.65b)
4: Compute the overapproximation (3.67) using Lemma 3.1 either by setting 𝑑𝑖 = 1

𝑛𝑝
or by

solving (3.46), and Lemma 3.4.
5: Compute (3.68)

Remark 3.2 The adoption of the 2-norm is motivated by its compatibility with
Lemma 3 and Definition 3, enabling the derivation of a heuristic for estimating the
size of the reduced generator set. It is worth noting that our approach is flexible, as
demonstrated by the potential adaptation of Lemma 1 to accommodate a variety of
p-norms, thereby extending the applicability of the method to different norm settings.

3.8.2 Constraint Reduction

As in [56] to remove the constraint 𝑖 and the generator 𝑗 from the CCG we consider
the following overapproximation, which adapts Proposition 5 in [56] to CCGs:

Lemma 3.6 A CCG satisfies

(𝐺, 𝑐, 𝐴, 𝑏, C) ⊂ (𝐺 − Λ𝐺𝐴, 𝑐 + Λ𝐺𝑏, 𝐴 − Λ𝐴𝐴, 𝑏 − Λ𝐴𝑏, C) (3.76)

for every Λ𝐺 ∈ R𝑛×𝑛𝑐 and Λ𝐴 ∈ R𝑛𝑐×𝑛𝑐 .

Proof. 𝑧 ∈ (𝐺, 𝑐, 𝐴, 𝑏, C) if there exists 𝜉 ∈ C such that
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𝑧

0

 =


𝐺

𝐴

 𝜉 +

𝑐

−𝑏

 . (3.77)

For any such 𝜉 
𝑧

0

 =


𝐺

𝐴

 𝜉 +

𝑐

−𝑏

 +

Λ𝐺

Λ𝐴

 (𝑏 − 𝐴𝜉). (3.78)

Therefore, 𝑧 ∈ (𝐺 − Λ𝐺𝐴, 𝑐 + Λ𝐺𝑏, 𝐴 − Λ𝐴𝐴, 𝑏 − Λ𝐴𝑏, C). ⊓⊔

In this paper, instead of considering the Hausdorff distance to select which gen-
erator to remove as in [56], for each constraint 𝑖 we consider removing the generator
𝑗 = arg max𝑘 |𝑎𝑖𝑘 |. To remove one constraint we select the one which yields the
smaller 2-norm of the overapproximation when removed. To remove the constraint 𝑖
and the generator 𝑗 we select, from [56],

Λ𝐺 := 𝐺𝐸 𝑗𝑖𝑎−1
𝑖 𝑗 , (3.79)

Λ𝐴 := 𝐴𝐸 𝑗𝑖𝑎
−1
𝑖 𝑗 , (3.80)

where 𝑎𝑖 𝑗 is the element of 𝐴 in the 𝑖th row and 𝑗 th column and 𝐸 𝑗𝑖 ∈ R𝑛𝑔×𝑛𝑐 is
zero except for a one in the ( 𝑗 , 𝑖) position. Note that the 𝑖th row and 𝑗 th column of
𝐴−Λ𝐴𝐴, the 𝑗 th row of𝐺−Λ𝐺𝐴 and the 𝑖th element of 𝑏−Λ𝐴𝑏 are zero. Therefore,
constraint 𝑖 and generator element 𝑗 may be removed from the set by removing these
rows and columns and considering a generator set C̃ which is the projection of C in
the hyperplane given by fixing the dimension 𝑗 . That is, suppose that the generator
𝑗 corresponds to the generator set 𝑙, that is,

𝑙−1∑︁
𝑖=1

𝑚𝑖 < 𝑗 ≤
𝑙∑︁
𝑖=1

𝑚𝑖 , (3.81)

then, if 𝑚𝑙 = 1, computing C̃ amounts to remove C𝑙 from C, that is

C̃ := C1 × . . . × C𝑙−1 × C𝑙+1 × . . . × C𝑛𝑝 . (3.82)

If 𝑚𝑙 > 1 then we must replace C𝑙 by C̃𝑙 where

C̃𝑙 := {𝜉 : ∥𝜉∥ 𝑝𝑙 ≤ 1} ⊂ R𝑚𝑙−1 (3.83)

that is,
C̃ := C1 × . . . × C̃𝑙 × . . . × C𝑛𝑝 . (3.84)

In summary, the constraint reduction algorithm is given by Algorithm 4, which has
a complexity of O((𝑛𝑐 − 𝑛̃𝑐)𝑛2

𝑐𝑛
2
𝑔).
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Algorithm 4 Constraint reduction algorithm 𝑍̃ = con red(𝑍, 𝑛̄𝑐).
Require: 𝑍 , 𝑛̄𝑐
1: for 𝑘 ← 1 to 𝑛𝑐 − 𝑛̄𝑐 do
2: Set 𝑍prev = 𝑍 ≡ (𝐺, 𝑐, 𝐴, 𝑏, C)
3: Set 𝑤𝑒𝑖𝑔ℎ𝑡 = ∞
4: for 𝑖 ← 1 to 𝑛𝑐 − 𝑘 + 1 do
5: Set 𝑗 = arg max𝑙 |𝑎𝑖𝑙 |
6: Compute 𝑍prev ⊂

(
𝐺̃, 𝑐̃, 𝐴̃, 𝑏̃, C̃

)
as follows:

7: Compute Λ𝐺 := 𝐺𝐸 𝑗𝑖𝑎
−1
𝑖 𝑗

.
8: Compute Λ𝐴 := 𝐴𝐸 𝑗𝑖𝑎

−1
𝑖 𝑗

.
9: 𝐺̃ is 𝐺 − Λ𝐺𝐴 removing column 𝑗.

10: 𝑐̃ = 𝑐 − Λ𝐺𝑏

11: 𝐴̃ is 𝐴 − Λ𝐴𝐴 removing column 𝑗 and row 𝑖.
12: 𝑏̃ is 𝑏 − Λ𝐴𝑏 removing row 𝑖.
13: C̃ is (3.82) or (3.84).
14: Using Lemmas 3.1 and 3.3 compute:
15:

(
𝐺̃, 𝑐̃, 𝐴̃, 𝑏̃, C̃

)
⊂

(
𝐺̄, 𝑐̄, [ ], [ ], ∥ 𝜉 ∥2 ≤ 1

)
16: Compute new weight = ∥𝐺̄ ∥2
17: if new weight < weight then
18: Set 𝑍 =

(
𝐺̃, 𝑐̃, 𝐴̃, 𝑏̃, C̃

)
19: Set weight = new weight
20: end if
21: end for
22: end for

3.8.3 Guaranteed State Estimation with Order Reduction

In this section, we aim to leverage the order reduction procedure to have a bounded
complexity in the guaranteed state estimation method. For simplicity, we will con-
sider a Linear Time-Invariant (LTI) model given by :

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 , (3.85a)
𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 , (3.85b)

where 𝑥𝑘 ∈ R𝑛, 𝑢𝑘 ∈ R𝑛𝑢 , 𝑤𝑘 ∈ 𝑊 ⊂ R𝑛, 𝑦𝑘 ∈ R𝑛𝑦 , and 𝑣𝑘 ∈ 𝑉 ⊂ R𝑛𝑦 represent the
system state, input, disturbance signal, output, and noise, respectively. The recursive
estimate for the state given 𝑋𝑘 ⊂ R𝑛 such that 𝑥𝑘 ∈ 𝑋𝑘 and a measurement 𝑦𝑘+1, is
the set 𝑋𝑘+1 ⊂ R𝑛 such that 𝑥𝑘+1 ∈ 𝑋𝑘+1 that can be computed as

𝑋𝑘+1 = (𝐹𝑋𝑘 ⊕𝑊 + 𝐵𝑢𝑘) ∩𝐶 (𝑦𝑘+1 −𝑉). (3.86)

In this implementation, we assume that the sets 𝑊 and 𝑉 are represented as CCGs.
In particular, we consider that

𝑊 := (𝐺𝑤, 𝑐𝑤, [ ], [ ], C𝑤) , (3.87a)
𝑉 := (𝐺𝑣, 𝑐𝑣, [ ], [ ], C𝑣) , (3.87b)
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with 𝐺𝑤 ∈ R𝑛×𝑛𝑤 and 𝐺𝑣 ∈ R𝑛𝑦×𝑛𝑣 .
In order to maintain the complexity of the set description manageable and to

keep the computational burden low we adopt the following event-triggering order
reduction mechanism, where 0 < 𝛽 < 1 must be small enough.

Algorithm 5 Set-valued CCG observer with event triggered order reduction
Require: 𝑋0, 𝑉 ,𝑊 , 𝑇𝑐 , 𝛽
1: Set 𝑋𝑟

0 = 𝑋0
2: for 𝑘 ≥ 0 do
3: 𝑋𝑘+1 = (𝐹𝑋𝑘 ⊕𝑊 + 𝐵𝑢𝑘 ) ∩𝐶 (𝑦𝑘+1 − 𝑉 )
4: 𝑋𝑟

𝑘+1 =
(
𝐹𝑋𝑟

𝑘
⊕𝑊 + 𝐵𝑢𝑘

)
∩𝐶 (𝑦𝑘+1 − 𝑉 )

5: Try to compute under a time of 𝑇𝑐:
6: 𝑋𝑜𝑟

𝑘+1 = con red (𝑋𝑘+1, 𝛽𝑛𝑐 ) .
7: 𝑋𝑜𝑟

𝑘+1 = ord red
(
𝑋𝑜𝑟
𝑘+1, 𝛽

𝑛𝑔

𝑛

)
.

8: if Computation was successful then
9: 𝑋𝑟

𝑘+1 = 𝑋𝑜𝑟
𝑘+1

10: else
11: 𝑋𝑘+1 = 𝑋𝑟

𝑘+1
12: end if
13: end for

The approach in Algorithm 5 guarantees that the computation time at each step
does not exceed 𝑇𝑐 but may be too conservative. A less conservative solution that
does not guarantee a fixed upper bound on the computation time but ensures that the
computation time is approximately 𝑇𝑑 is given by Algorithm 6.

Algorithm 6 Set-valued CCG observer with event triggered order reduction
Require: 𝑋0, 𝑉 ,𝑊 , 𝑇𝑑
1: Set 𝑋𝑟

0 = 𝑋0
2: for 𝑘 ≥ 0 do
3: start the clock.
4: 𝑋𝑘+1 = (𝐹𝑋𝑘 ⊕𝑊 + 𝐵𝑢𝑘 ) ∩𝐶 (𝑦𝑘+1 − 𝑉 )
5: 𝑋𝑜𝑟

𝑘+1 = con red
(
𝑋𝑘+1, 𝑛𝑐 − 2𝑛𝑦

)
.

6: 𝑋𝑜𝑟
𝑘+1 = ord red

(
𝑋𝑜𝑟
𝑘+1,

𝑛𝑔−2(𝑛𝑤+𝑛𝑣 )−(𝑛𝑐−2𝑛𝑦 )
𝑛

)
.

7: if Elapsed time is greater than 𝑇𝑑 then
8: 𝑋𝑘+1 = 𝑋𝑜𝑟

𝑘+1
9: end if

10: end for
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3.9 Numerical Results for the Order Reduction Method

In order to assess the performance of the proposed methods, we start by considering
the order reduction applied to random CZs in R10 on an Intel Core i7-12700H
processor at 2.70 GHz. We consider that each element of 𝐺 is drawn from a normal
distribution centred at zero with a standard deviation of 1

𝑛𝑔
, where 𝑛𝑔 is the number

of generators, each element of 𝐴 is drawn from a normal distribution centred at zero
with a standard deviation of one, and each element of 𝑏 is drawn from a uniform
distribution from −0.5 to 0.5. The order of a set representation is given by 𝑛𝑔

𝑛
. We

consider an order reduction of the form

𝑍̃ = ord red(𝑍,
𝑛̃𝑔

𝑛
). (3.88)

Finally, we overbound the result with a CZ by changing the generator vector noting
that

{𝜉 : ∥𝜉∥2 ≤ 1} ⊂ {𝜉 : ∥𝜉∥∞ ≤ 1} (3.89)

and compare the results obtained with the order reduction method proposed in this
paper with that of [56] for CZs and that of [74]. We represent a CZ as a CCG
with 𝑛𝑝 = 𝑛𝑔. We note that, in practice, the required time to solve (3.46) is much
larger than the remaining of the algorithm and yields only marginal improvements.
Therefore, we will consider 𝑑𝑖 = 1

𝑛𝑝
.

To have a more systematic assessment of the performance of the proposed method
in Figures 3.12 and 3.13 we present the results of the difference of the obtained
volume overapproximation of the enclosing hyperrectangles with both methods,
𝑉

𝑉original
where 𝑉 is the volume of the enclosing hyperrectangle of the reduced set and

𝑉original is the volume of the enclosing hyperrectangle of the original set, and the
computational time, respectively for different randomly generated CZs with different
number of generators 𝑛𝑔 while setting the number of constraints to 𝑛𝑐 = 0.4𝑛𝑔.

We can observe from Figure 3.12 that in this case, for low order proportions,
[56] and [74] fare worse than the method of Algorithm 3 in terms of volume of the
resulting set, while for higher order proportions, the volume of the resulting set with
Algorithm 3 is higher, which may be partly due to the near-ellipsoidal shape of the
described set. This trend shows that Algorithm 3 is competitive in situations that
require sets expressed with a small order. From Figure 3.13 we observe that in terms
of computational time, there is no clear advantage to either method.

To assess the performance of the constraint reduction method, we consider ran-
domly generated CZs as before. We consider a constraint reduction of the form

𝑍̃ = con red(𝑍, 𝑛̃𝑐). (3.90)

Again, for a systematic assessment of the performance of the proposed constraint
reduction method in Figures 3.14 and 3.15 we present the results of the difference of
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Fig. 3.12: Average of the obtained volume overapproximation 𝑉
𝑉original

with the pro-
posed order reduction method (Alg. 1), the order reduction method in [56] (CORA),
and the order reduction method in [74] for ellipsotopes (Ellipsotope), for different
randomly generated CZs with different numbers of generators 𝑛𝑔. This would corre-
spond to a uniform expansion on each side of

(
𝑉/𝑉original

) 1
10 times.

the obtained volume overapproximation and the computational times, respectively
for different randomly generated CZs with different number of generators 𝑛𝑔, while
setting the number of constraints to 𝑛𝑐 = 0.4𝑛𝑔.

We can observe from Figures 3.14 and 3.15 that in this case there is no clear
advantage of either method regarding the volume of the overapproximation. Still,
there are significant savings regarding computational time for Algorithm 4.

Regarding guaranteed state estimation, we test Algorithm 5 on system (3.85) with
no input and 𝐴 ∈ R3×3 and 𝐶 ∈ R3×3 are random orthonormal matrices. The initial
state, the process disturbance and the measurement noise satisfy ∥𝑥0∥∞ ≤ 100,
∥𝑤𝑘 ∥∞ ≤ 1 and ∥𝑣𝑘 ∥∞ ≤ 1 for all 𝑘 .

Figure 3.16 shows the mean over time of the volume of the state estimate for the
method for CCGs proposed here with event-triggered order reduction (Algorithm 5),
with 𝑇𝑐 = 0.5 and 𝛽 = 0.6 and the same algorithm using a CZ approximation with
the order reduction method in [56] for CZs, with 𝛽 = 0.1. Figure 3.17 shows the
time to compute the description of the set at runtime. We can observe that with the
methods proposed here, we obtain better overapproximations because the number of
generators used to describe the set is larger.
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Fig. 3.13: Average of the computational times with the proposed order reduction
method (Alg. 1), the order reduction method in [56] (CORA), and the order reduction
method in [74] for ellipsotopes (Ellipsotope), for different randomly generated CZs
with different numbers of generators 𝑛𝑔.
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Fig. 3.14: Average of the obtained volume overapproximation 𝑉
𝑉original

with the pro-
posed constraint reduction method (Alg. 2), the constraint reduction method in [56]
(CORA), and the constraint reduction method in [74] for ellipsotopes (Ellipsotope),
for different randomly generated CZs with different numbers of generators 𝑛𝑔.
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Fig. 3.15: Average of the computational times with the proposed constraint reduction
method (Alg.2) and the constraint reduction method in [56] (CORA), and the con-
straint reduction method in [74] for ellipsotopes (Ellipsotope), for different randomly
generated CZs with different numbers of generators 𝑛𝑔.
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Fig. 3.16: Volume mean
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𝑘
, where 𝑉𝑜𝑙𝑘 is the volume at time 𝑘 , of the state

estimate at various iterations for the two set-valued observers (SVO).
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Fig. 3.17: Computation times for the two set-valued observers (SVO). The dashed
horizontal lines correspond to the mean value for each method.

3.10 Explicit computation of guaranteed state estimates

In the previous section, we have introduced the idea of performing order reduction at
every time instant to maintain a bounded complexity on the CCG description. How-
ever, in cases where the dynamics are stable, such a procedure is disregarding the
inherent properties of the system and blindly removing generators and constraints.
In this section, we propose an alternative for such cases by considering that the entire
representation of a set in the past can be replaced by a conservative ellipsoidal esti-
mate provided by some other filter as long as it is given by a closed-form expression
(i.e., no iterative procedure). Other options could be found in the literature like in
[75]–[77].

3.10.1 Ellipsoidal observer

Before obtaining a state estimate with low conservatism, we start with a coarse
ellipsoidal state estimate based on a Luenberger observer, which for systems like in
(3.85), is given by

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐵𝑢𝑘 + 𝐿 (𝑦𝑘 − 𝐶𝑥𝑘) , (3.91)

where 𝐿 is defined such that 𝜌(𝐹 − 𝐿𝐶) < 1, where 𝜌(·) is the spectral radius. If the
pair (𝐹,𝐶) is detectable, such matrix 𝐿 always exists. Defining the estimation error
as 𝑒𝑘 := 𝑥𝑘 − 𝑥𝑘 from (3.85) we obtain
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𝑒𝑘+1 = (𝐹 − 𝐿𝐶)𝑒𝑘 + 𝑤𝑘 − 𝐺𝑣𝑘 . (3.92)

Given that 𝜌(𝐹 − 𝐿𝐶) < 1 there exists a symmetric matrix 𝑃 ∈ R𝑛×𝑛 such that

(𝐹 − 𝐿𝐶)⊺𝑃(𝐹 − 𝐿𝐶) − 𝑃 = −𝐼𝑛, (3.93)

and we may define a decrease rate as follows

𝑎 := ∥𝑃 1
2 (𝐹 − 𝐿𝐶)𝑃− 1

2 ∥2 =

√︄
1 − 1

𝜎𝑚𝑎𝑥 (𝑃)
, (3.94)

where 𝜎𝑚𝑎𝑥 (·) is the maximum singular value. From (3.93), we have that 𝑎 < 1.
Therefore, defining

𝑒𝑖𝑛𝑖𝑡 := max
𝜉 ∈𝑋0
∥𝑃 1

2 𝜉∥2 (3.95)

𝑒𝑛𝑜𝑖𝑠𝑒 := max
𝜉 ∈𝑊⊕−𝐿𝑉

∥𝑃 1
2 𝜉∥2 (3.96)

and applying Theorem 6 in [78], we have that 𝑥𝑘 ∈ 𝑋̂𝑘 for all 𝑘 ≥ 0, where

𝑋̂𝑘 =

{
𝑥𝑘 + 𝜉 : ∥𝑃 1

2 𝜉∥2 ≤ 𝑎𝑘𝑒𝑖𝑛𝑖𝑡 +
𝑒𝑛𝑜𝑖𝑠𝑒

1 − 𝑎

}
. (3.97)

Given that the state estimate is an ellipsoid, it can be written in CCG format as
follows

𝑋̂𝑘 =

((
𝑎𝑘𝑒𝑖𝑛𝑖𝑡 +

𝑒𝑛𝑜𝑖𝑠𝑒

1 − 𝑎

)
𝑃−

1
2 , 𝑥𝑘 , [ ], [ ], ∥𝜉∥2 ≤ 1

)
. (3.98)

We remark to the reader that the fact that CCGs allow for set operations between
polytopes and ellipsoids, it is possible to use the conservative ellipsoidal estimate 𝑋̂𝑘
and improve it by explicitly considering the exact iterations for some fixed number of
time instants. Therefore, at some time 𝑘 , the set 𝑋̂𝑘−𝑁 can be viewed as an implicit
order reduction to the more accurate set 𝑋𝑘−𝑁 that would be obtained by the direct
recursion in (3.86). These two fact will be useful in the next section to provide a
set-valued observer that does not require order reduction methods and where most
of the computations can be performed offline before the estimation procedure is run.

3.10.2 Explicit finite-horizon observer

The state estimate given by (3.98) can serve as a conservative set that can be improved
by 𝑁 iterations of the recursion (3.86). Specifically, defining for an integer 𝑙,
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𝑌 𝑙𝑘 :=


𝑦𝑘−1
...

𝑦𝑘−𝑙


, (3.99)

𝑈𝑙𝑘 :=


𝑢𝑘−1
...

𝑢𝑘−𝑙


, (3.100)

we consider that the state estimate at time 𝑘 is expressed by

𝑋 𝑙𝑘 =

(
𝐺𝑙𝑋,𝑘 , 𝑐

𝑙
𝑋,𝑘 , 𝐴

𝑙
𝑋,𝑘 , 𝑏

𝑙
𝑋,𝑘 , C

𝑙
𝑋

)
⊂ R𝑛, (3.101)

where

𝐺𝑙𝑋,𝑘 =

[
𝐺𝑙

(
𝑎𝑘−𝑙𝑒𝑖𝑛𝑖𝑡 + 𝑒𝑛𝑜𝑖𝑠𝑒

1−𝑎
)
𝐺𝑙0

]
, (3.102a)

𝑐𝑙𝑋,𝑘 = 𝑐
𝑙 + 𝑐𝑙𝑈𝑈

𝑙
𝑘 + 𝑐

𝑙
0𝑥𝑘−𝑙 , (3.102b)

𝐴𝑙𝑋,𝑘 =

[
𝐴𝑙

(
𝑎𝑘−𝑙𝑒𝑖𝑛𝑖𝑡 + 𝑒𝑛𝑜𝑖𝑠𝑒

1−𝑎
)
𝐴𝑙0

]
, (3.102c)

𝑏𝑙𝑋,𝑘 = 𝑌
𝑙
𝑘 + 𝑏

𝑙 + 𝑏𝑙𝑈𝑈
𝑙
𝑘 + 𝑏

𝑙
0𝑥𝑘−𝑙 . (3.102d)

For 𝑙 = 0 one recovers the ellipsoidal observer considering that 𝐺0, 𝑐0
𝑈

, 𝐴0,𝐴0
0, 𝑏0,

𝑏0
𝑈

and 𝑏0
0 are empty matrices,

C0
𝑋 = {𝜉 : ∥𝜉∥2 ≤ 1} , (3.103)

and

𝐺0
0 := 𝑃−

1
2 , (3.104a)

𝑐0 := 0𝑛, (3.104b)

𝑐0
0 := 𝐼𝑛. (3.104c)

By applying (3.86) we obtain after simple computations the main result of this paper.

Theorem 3.2 Given a state estimate 𝑋 𝑙
𝑘

such that 𝑥𝑘 ∈ 𝑋 𝑙𝑘 , then 𝑥𝑘+1 ∈ 𝑋 𝑙+1
𝑘+1 with
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C𝑙+1
𝑋 = C𝑤 × C𝑣 × C𝑙𝑋, (3.105a)

𝐺𝑙+1 =

[
𝐺𝑤 0 𝐹𝐺𝑙

]
, (3.105b)

𝐺𝑙+1
0 = 𝐹𝐺𝑙0, (3.105c)

𝑐𝑙+1 = 𝐹𝑐𝑙 + 𝑐𝑤, (3.105d)

𝑐𝑙+1
𝑈 =

[
𝐵 𝐹𝑐𝑙

𝑈

]
, (3.105e)

𝑐𝑙+1
0 = 𝐹𝑐𝑙0, (3.105f)

𝐴𝑙+1 =


0 𝐺𝑣 𝐶𝐺𝑙

0 0 𝐴𝑙

 , (3.105g)

𝐴𝑙+1
0 =


𝐶𝐺𝑙0

𝐴𝑙0

 , (3.105h)

𝑏𝑙+1 =


−𝐶𝑐𝑙 − 𝑐𝑣

𝑏𝑙

 , (3.105i)

𝑏𝑙+1
𝑈 =


0 𝐶𝑐𝑙

𝑈

0 𝑏𝑙
𝑈

 , (3.105j)

𝑏𝑙+1
0 =


𝐶𝑐𝑙0

𝑏𝑙0

 . (3.105k)

Proof. We first consider that at time 𝑘 a state estimate is given by (3.101) and
(3.102). The Theorem follows by applying (3.86) with the CCG operations, where
𝑊 and 𝑉 are given by (3.87). ⊓⊔

Based on Theorem 3.2, the observer proposed in this paper consists of selecting a
fixed horizon 𝑁 and pre-computing the set C𝑁

𝑋
and matrices 𝐺𝑁 , 𝐺𝑁0 , 𝑐𝑁 , 𝑐𝑁

𝑈
, 𝑐𝑁0 ,

𝐴𝑁 , 𝐴𝑁0 , 𝑏𝑁 , 𝑏𝑁
𝑈

, and 𝑏𝑁0 , offline with Algorithm 7.

After obtaining matrices 𝐺𝑁 , 𝐺𝑁0 , 𝑐𝑁 , 𝑐𝑁
𝑈

, 𝑐𝑁0 , 𝐴𝑁 , 𝐴𝑁0 , 𝑏𝑁 , 𝑏𝑁
𝑈

, and 𝑏𝑁0 with
Algorithm 7, at runtime, for 𝑘 ≥ 𝑁 , the observer consists of the Algorithm 8.

With Algorithm 5, to obtain the description of a guaranteed state estimate set
we only have to perform a small number of computations proportional to the hori-
zon length 𝑁 , which may be significantly more efficient than performing (3.86)
recursively. Given the finite-horizon nature of the algorithm, this approach is more
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Algorithm 7 Pre-computation of CCG parameters
Require: 𝐺0, 𝑐0

𝑈
, 𝐴0, 𝐴0

0, 𝑏
0, 𝑏0

𝑈
, 𝑏0

0 = [ ]; C0
𝑋

is given by (3.103); 𝐺0
0 , 𝑐

0, 𝑐0
0 are given by

(3.104)
1: for 𝑙 ← 0 to 𝑁 − 1 do
2: compute C𝑙+1

𝑋
, 𝐺𝑙+1, 𝐺𝑙+1

0 , 𝑐𝑙+1, 𝑐𝑙+1
𝑈

, 𝑐𝑙+1
0 , 𝐴𝑙+1, 𝐴𝑙+1

0 , 𝑏𝑙+1, 𝑏𝑙+1
𝑈

, 𝑏𝑙+1
0 with (3.105)

3: end for
4: return C𝑁

𝑋
, 𝐺𝑁 , 𝐺𝑁

0 , 𝑐𝑁 , 𝑐𝑁
𝑈

, 𝑐𝑁0 , 𝐴𝑁 , 𝐴𝑁
0 , 𝑏𝑁 , 𝑏𝑁

𝑈
, 𝑏𝑁

0

Algorithm 8 Explicit finite-horizon observer
Require: C𝑁

𝑋
, 𝐺𝑁 , 𝐺𝑁

0 , 𝑐𝑁 , 𝑐𝑁
𝑈

, 𝑐𝑁0 , 𝐴𝑁 , 𝐴𝑁
0 , 𝑏𝑁 , 𝑏𝑁

𝑈
, 𝑏𝑁

0 , 𝐿, 𝑎, 𝑒𝑖𝑛𝑖𝑡 𝑒𝑛𝑜𝑖𝑠𝑒, 𝑥̂0
1: for 0 ≤ 𝑘 < 𝑁 do
2: 𝑋𝑘 =

( (
𝑎𝑘𝑒𝑖𝑛𝑖𝑡 + 𝑒𝑛𝑜𝑖𝑠𝑒

1−𝑎
)
𝑃−

1
2 , 𝑥̂𝑘 , [ ], [ ], ∥ 𝜉 ∥2 ≤ 1

)
3: end for
4: for 𝑘 ≥ 𝑁 do
5: 𝑥̂𝑘−𝑁+1 = 𝐹𝑥̂𝑘−𝑁 + 𝐵𝑢𝑘−𝑁 + 𝐿 (𝑦𝑘−𝑁 − 𝐶𝑥̂𝑘−𝑁 ) ,
6: compute 𝑌𝑁

𝑘+1 by storing 𝑦𝑘 and discarding 𝑦𝑘−𝑁
7: compute𝑈𝑁

𝑘+1 by storing 𝑢𝑘 and discarding 𝑢𝑘−𝑁
8: 𝐺𝑁

𝑋,𝑘+1 =

[
𝐺𝑁

(
𝑎𝑘+1−𝑁𝑒𝑖𝑛𝑖𝑡 + 𝑒𝑛𝑜𝑖𝑠𝑒

1−𝑎
)
𝐺𝑁

0

]
9: 𝑐𝑁

𝑋,𝑘+1 = 𝑐𝑁 + 𝑐𝑁
𝑈
𝑈𝑁

𝑘+1 + 𝑐
𝑁
0 𝑥̂𝑘+1−𝑁

10: 𝐴𝑁
𝑋,𝑘+1 =

[
𝐴𝑁

(
𝑎𝑘+1−𝑁𝑒𝑖𝑛𝑖𝑡 + 𝑒𝑛𝑜𝑖𝑠𝑒

1−𝑎
)
𝐴𝑁

0

]
11: 𝑏𝑁

𝑋,𝑘+1 = 𝑌𝑁
𝑘+1 + 𝑏

𝑁 + 𝑏𝑁
𝑈
𝑈𝑁

𝑘+1 + 𝑏
𝑁
0 𝑥̂𝑘+1−𝑁

12: 𝑋𝑘+1 =

(
𝐺𝑁

𝑋,𝑘+1, 𝑐
𝑁
𝑋,𝑘+1, 𝐴

𝑁
𝑋,𝑘+1, 𝑏

𝑁
𝑋,𝑘+1, C

𝑁
𝑋

)
13: end for

conservative than applying (3.86) recursively. However, by increasing the horizon 𝑁
the introduced conservatism tends to disappear.

We have to remark that to apply this method for 𝑘 < 𝑁 would imply storing in
memory all the coefficients from 𝑙 = 1 to 𝑙 = 𝑁 − 1. However, it greatly increases
the memory requirements for large 𝑁 and it would only have an effect in a small
transient period. For that reason, we consider that for 𝑘 < 𝑁 the state estimate is
obtained with (3.98).

With the description of set 𝑋𝑁
𝑘

, an important operation is obtaining an estimate of
the centre of the set. This can be done with an optimization algorithm by estimating
the centre 𝑥𝑐𝑒𝑛𝑡𝑒𝑟

𝑘
as

𝑥𝑐𝑒𝑛𝑡𝑒𝑟𝑘 = 𝑐𝑁𝑋,𝑘 + 𝐺
𝑁
𝑋,𝑘 argmin𝐴𝑁

𝑋,𝑘
𝜉=𝑏𝑁

𝑋,𝑘
∥𝜉∥2 (3.106)

Alternatively, this can be computed algebraically as follows

𝑥𝑐𝑒𝑛𝑡𝑒𝑟𝑘 = 𝑐𝑁𝑋,𝑘 + 𝐺
𝑁
𝑋,𝑘𝐴

𝑁,⊺
𝑋,𝑘

𝜂𝑘 , (3.107)

where 𝜂𝑘 is computed by solving the linear equation
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𝐴𝑁𝑋,𝑘𝐴
𝑁,⊺
𝑋,𝑘

𝜂𝑘 = 𝑏
𝑁
𝑋,𝑘 . (3.108)

Given that 𝑎𝑘 tends to zero, one may neglect the term 𝑎𝑘−𝑁 𝑒𝑖𝑛𝑖𝑡 after some time.
Therefore, we may consider that

𝐺𝑁𝑋,𝑘 ≈ 𝐺
𝑁
𝑋 :=

[
𝐺𝑁

𝑒𝑛𝑜𝑖𝑠𝑒
1−𝑎 𝐺

𝑁
0

]
, (3.109a)

𝐴𝑁𝑋,𝑘 ≈ 𝐴
𝑁
𝑋 :=

[
𝐴𝑁

𝑒𝑛𝑜𝑖𝑠𝑒
1−𝑎 𝐴𝑁0

]
, (3.109b)

and we can pre-compute the matrix

𝑍𝑁𝑋 := 𝐺𝑁𝑋 𝐴
𝑁,⊺
𝑋

(
𝐴𝑁𝑋 𝐴

𝑁,⊺
𝑋

)−1
, (3.110)

obtaining significant computational time savings in the computation of the CCG
center as

𝑥𝑐𝑒𝑛𝑡𝑒𝑟𝑘 = 𝑐𝑁𝑋,𝑘 + 𝑍
𝑁
𝑋 𝑏

𝑁
𝑋,𝑘 . (3.111)

3.11 Numerical Results for the Explicit Guaranteed State
Observer

To assess the performance of the proposed algorithm we consider a random system
generated with the MATLAB function drss with dimension 15, an output of size 3
and input of size 5, that is, 𝑥𝑘 ∈ R15, 𝑢𝑘 ∈ R5 and 𝑦𝑘 ∈ R3, for all 𝑘 ≥ 0. We consider
that the initial state is drawn from an initial state which is a CCG given by

𝑋0 =
(
𝐺𝑋,0, 𝑐𝑋,0, [ ], [ ], C𝑋,0

)
⊂ R𝑛, (3.112)

where

C𝑋,0 = {𝜉 : ∥𝜉∥∞ ≤ 1} × {𝜉 : ∥𝜉∥2 ≤ 1} , (3.113a)

𝐺𝑋,0 =

[
2𝐼15 𝐼15

]
, (3.113b)

𝑐𝑋,0 = 015. (3.113c)

The disturbance and noise sets are expressed as (3.87) with parameters
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C𝑊 = {𝜉 : ∥𝜉∥∞ ≤ 1} × {𝜉 : ∥𝜉∥2 ≤ 1} , (3.114a)

𝐺𝑊 =

[
2𝐼15 𝐼15

]
, (3.114b)

𝑐𝑊 = 015, (3.114c)
C𝑉 = {𝜉 : ∥𝜉∥∞ ≤ 1} × {𝜉 : ∥𝜉∥2 ≤ 1} , (3.114d)

𝐺𝑉 =

[
𝐼3 2𝐼3

]
, (3.114e)

𝑐𝑉 = 03. (3.114f)

The control input is constant and given by 𝑢𝑘 = 2015 for all 𝑘 ≥ 0.

Figure 3.18 shows the evolution in time of the projection of the first coordinate
of the state estimate obtained with the ellipsoidal method of (3.98) (Ellipsoidal),
the standard description obtained by applying recursively (3.86) (Standard), and the
method proposed in this paper for various horizons 𝑁 . From Figure 3.18, we observe
that the performance of the algorithm approaches that of the standard case for large
𝑁 .

0 5 10 15 20
-100

0

100

200

300

Fig. 3.18: Time plot of state enclosures for diverse state estimation methods for the
first coordinate of the state. The black line in the middle represents the system’s
actual state, while the dashed line indicates the Luenberger state estimates 𝑥𝑘 .

In Figure 3.19, we plot the projection in the first two dimensions of the state
estimate obtained with various methods and for different horizons 𝑁 . As in Figure
3.18, we observe that the performance of the algorithm approaches that of the
standard observer for large 𝑁 . This fact can also be observed in Figure 3.20 which
shows the size of the projection in the first dimension of the state estimate.



3.11 Numerical Results for the Explicit Guaranteed State Observer 107

0 50 100 150 200 250
0

50

100

150

200

250

Fig. 3.19: State enclosures for various state estimation techniques when 𝑘 is set to
20. The asterisk (∗) represents the Luenberger state estimate 𝑥𝑘 and the circle (◦)
represents the true state of the system.
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Fig. 3.20: Size of the projection of the first dimension of the state at various iterations
for different state estimation methods and different horizons 𝑁 .

Figure 3.21 shows the time to compute the description of the set at runtime with an
Intel Core i7-12700H processor at 2.70 GHz. From Figure 3.21, we can observe that
the computation times are significantly more competitive with the method proposed
in this paper since most of the matrix computations are done offline.

The most significant advantage of the method proposed in this paper is the fact
that the set description size remains constant. Therefore, as shown in Figure 3.22
while with the standard method, the computation time increases at every iteration,
with the method of Algorithm 5 the computation time remains constant.
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Fig. 3.21: Computation times for various state estimation methods.
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Fig. 3.22: Computation times until 𝑘 = 500.

Figure 3.23 shows the computation times for various centre computation methods
for the standard observer and horizons 𝑁 = 1 and 𝑁 = 10. We tested the method of
centre computation of solving (3.106) with YALMIP and the MOSEK solver [79]
(Opt), the algebraic method of (3.107) (Alg), and the method with pre-computed
matrices of (3.111) (Pre). For improved efficiency, for the optimization approach, we
adopted the simplification (3.109) and used the function optimizer to pre-compile
the optimization algorithm. From Figure 3.23 we observe that it is significantly
more advantageous to compute the relevant matrices beforehand, instead of solving
a linear equation at every time.
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Fig. 3.23: Center computation times for various state estimation methods and various
centre computation methods.

To highlight the main advantage of the proposed method, we used the same
simulation for a larger number of iterations with the results being depicted in Figure
3.24. Since the description of the state estimate increases in size at each iteration, the
computation of the center becomes more time-consuming, whereas, the proposed
method benefits from the constant description and pre-computation of parts of the
data structures being done offline. We remark that the presented method voids the
need for an order reduction procedure, which is going to add conservatism and
represent a time overhead.
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Fig. 3.24: Center computation times until 𝑘 = 500.
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3.12 Stochastic Estimation for Linear Dynamical Systems

In the previous sections, the problem was always viewed from a deterministic point-
of-view, which is also commonly referred to as guaranteed state estimation or worst-
case analysis. Those names translate the option/assumption that the PDF for each of
the exogenous signals is not known and the methods work solely with the support
of those functions. In the remainder of this chapter, we also explore stochastic
state estimation in linear systems. The primary objective is to estimate the system
state based on noisy observations, considering both Gaussian and non-Gaussian
assumptions. We start by presenting some of the typical techniques like the Kalman
Filter (KF), Particle Filter (PF), and the CF Filter in order to better place the presented
method.

3.12.1 Bayes Filter

In the stochastic domain, the equivalent to the recursive estimation in the determin-
istic setting is given by the Bayes Filter. In a similar fashion to the guaranteed state
estimation, it must first use the information of the model to predict the next state and
then update those estimates using the measurements.

• Prediction Step: This step propagates the prior belief about the system’s state
forward in time, integrating the system’s dynamics and the associated uncertain-
ties. Mathematically, it is represented as:

𝑝(𝑥𝑘 |𝑧1:𝑘−1) =
∫

𝑝(𝑥𝑘 |𝑥𝑘−1) · 𝑝(𝑥𝑘−1 |𝑧1:𝑘−1)𝑑𝑥𝑘−1 (3.115)

Here, 𝑥𝑘 denotes the state at time 𝑘 , 𝑧1:𝑘−1 represents the sequence of obser-
vations up to time 𝑘 − 1, 𝑝(𝑥𝑘 |𝑥𝑘−1) is the transition model that describes the
system’s dynamics, and 𝑝(𝑥𝑘−1 |𝑧1:𝑘−1) is the prior state estimate at time 𝑘 − 1.

• Update Step: This step refines the prediction by incorporating the latest obser-
vation at time 𝑘 . It adjusts the state probability based on the likelihood of the
new observation given the predicted state:

𝑝(𝑥𝑘 |𝑧1:𝑡 ) =
𝑝(𝑧𝑘 |𝑥𝑘) · 𝑝(𝑥𝑘 |𝑧1:𝑘−1)

𝑝(𝑧𝑘 |𝑧1:𝑘−1)
(3.116)

In this expression, 𝑧𝑘 is the new observation at time 𝑘 , 𝑝(𝑧𝑘 |𝑥𝑘) represents the
likelihood of the observation given the current state, and 𝑝(𝑧𝑘 |𝑧1:𝑘−1) serves as
the normalization factor, ensuring that the posterior distribution remains a valid
probability distribution.



3.12 Stochastic Estimation for Linear Dynamical Systems 111

Under the Markov assumption

𝑝(𝑥𝑘 |𝑥𝑘−1, 𝑥𝑡−2, . . . , 𝑥0) = 𝑝(𝑥𝑘 |𝑥𝑘−1) (3.117)

the filter can simply use the previous measurement and estimate and recursively
iterate the estimates over time. The next filters follow the same idea but posing
additional assumptions that allows some of the expressions to be computed in a
different form.

3.12.2 Kalman Filter

The KF [80] provides an optimal solution under the assumptions of system linearity
and Gaussian noise and disturbances. As random variables with Gaussian distribu-
tions are closed for both additions and the update step, we can propagate the mean
and covariance that completely define those variables:as it describes the evolution
of the mean and covariance matrix associated with the state estimate

• Prediction Step: Let the estimate at time 𝑘 − 1 be described by the mean
𝑥𝑘−1 |𝑘−1 ∈ R𝑛 and covariance matrix 𝑃𝑘 |𝑘−1 ∈ R𝑛×𝑛 and 𝑄 ∈ R𝑛×𝑛 be the
disturbance covariance matrix, the prediction equations are

𝑥𝑘 |𝑘−1 = 𝐴𝑥𝑘−1 |𝑘−1 + 𝐵𝑢𝑘 (3.118)
𝑃𝑘 |𝑘−1 = 𝐴𝑃𝑘−1 |𝑘−1𝐴

⊤ +𝑄. (3.119)

• Update Step: With 𝐾𝑘 ∈ R𝑛×𝑝 as the Kalman gain and 𝑧𝑘 ∈ R𝑝 as the
measurement at time 𝑘 , 𝐻 ∈ R𝑝×𝑛 as the observation model matrix and 𝑅 ∈
R𝑝×𝑝 denoting the noise covariance, the update equation of the Bayes filter
becomes

𝑥𝑘 |𝑘 = 𝑥𝑘 |𝑘−1 + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑥𝑘 |𝑘−1) (3.120)

𝐾𝑘 = 𝑃𝑘 |𝑘−1𝐻
⊤ (𝐻𝑃𝑘 |𝑘−1𝐻

⊤ + 𝑅)−1 (3.121)
𝑃𝑘 |𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘 |𝑘−1 (3.122)

3.12.3 Particle Filter

The PF [81] poses the option to compute the PDF of the state as an approximation us-
ing the histogram of a collection of samples often called particles. As a consequence,
the filter requires an extra step of initialization to sample all involved distributions
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but the operations are rather trivial as we are using vector-valued samples and not
random variables.

• Initialization: Initialize 𝑁 particles {𝑥 (𝑖)0 } from the prior distribution 𝑝(𝑥0).
Each particle 𝑥 (𝑖)0 is assigned an initial weight 𝑤 (𝑖)0 , typically set to 1

𝑁
:

𝑥
(𝑖)
0 ∼ 𝑝(𝑥0), 𝑖 = 1, . . . , 𝑁 (3.123)

• Prediction: Predict the next state for each particle using the process model:

𝑥
(𝑖)
𝑘
∼ 𝑝(𝑥𝑘 |𝑥 (𝑖)𝑘−1, 𝑢𝑘) (3.124)

This step advances each particle according to the system’s dynamics, incorpo-
rating control inputs and process noise.

• Weight Update and Normalization: Upon receiving a new measurement 𝑧𝑘 ,
the weight 𝑤 (𝑖)

𝑘
of each particle is updated based on the likelihood 𝑝(𝑧𝑘 |𝑥 (𝑖)𝑘 ).

Weights are subsequently normalized such that their sum equals one:

𝑤
(𝑖)
𝑘,unnorm = 𝑤

(𝑖)
𝑘−1𝑝(𝑧𝑘 |𝑥

(𝑖)
𝑘
) (3.125)

𝑤
(𝑖)
𝑘

=
𝑤
(𝑖)
𝑘,unnorm∑𝑁

𝑗=1 𝑤
( 𝑗 )
𝑘,unnorm

(3.126)

This step evaluates how well each particle explains the observed data and adjusts
the weights accordingly.

• Resampling: Resample 𝑁 particles {𝑥 (𝑖)
′

𝑘
} based on the normalized weights

{𝑤 (𝑖)
𝑘
}:

𝑥
(𝑖) ′
𝑘
∼

𝑁∑︁
𝑗=1

𝑤
( 𝑗 )
𝑘
𝛿(𝑥 (𝑖)

′

𝑘
− 𝑥 ( 𝑗 )

𝑘
) (3.127)

where 𝛿(·) is the Dirac delta function.

Resampling addresses particle degeneracy by favoring particles with higher
weights, thereby ensuring an adequate representation of the posterior distribu-
tion.

3.12.4 Gaussian Mixture Filter

The Gaussian Mixture Filter (GMF) [82] extends Bayesian estimation principles
to state-space systems operating under non-Gaussian noise conditions by utilizing
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Gaussian Mixture Models (GMMs). This class of PDFs is attractive because it can
approximate arbitrarily well other distributions. A fundamental aspect of the GMF
is the need to reduce the number of terms (much like an order reduction) using a
technique based on the Kullback-Leibler divergence metric [83].

Considering the Bayesian filtering framework and state-space systems represented
by a GMM, the prior distribution can be described as follows:

𝑝 (𝑥0) =
𝑁𝑝∑︁
𝑖=1

𝛼𝑖N
(
𝑥0; 𝜇𝑖0, 𝑃

𝑖
0
)
,

𝑁𝑝∑︁
𝑖=1

𝛼𝑖 = 1. (3.128)

The process model is expressed in the form:

𝑝 (𝑥𝑘 | 𝑥𝑘−1) =
𝑁𝑥∑︁
𝑗=1

𝛽
𝑗

𝑘
N

(
𝑥𝑘 ; 𝐴𝑥𝑘−1 + 𝑢 𝑗𝑘 , 𝑄

𝑗

𝑘

)
,

𝑁𝑥∑︁
𝑗=1

𝛽
𝑗

𝑘
= 1. (3.129)

The measurement model is similarly represented as:

𝑝 (𝑧𝑘 | 𝑥𝑘) =
𝑁𝑧∑︁
𝜏=1

𝛾𝜏𝑘N
(
𝑧𝑘 ;𝐶𝑥𝑘 + 𝑣𝜏𝑘 , 𝑅

𝜏
𝑘

)
,

𝑁𝑧∑︁
𝜏=1

𝛾𝜏𝑘 = 1. (3.130)

In the above equations, N(𝑥; 𝜇, 𝑃) denotes a standard multivariate Gaussian dis-
tribution. The mean offset terms 𝑢 𝑗

𝑘
and 𝑣𝛾

𝑘
facilitate the inclusion of input signals,

such as control inputs or noise.

Assuming we have a predicted mixture available, it can be expressed as:

𝑝 (𝑥𝑘 | 𝑧1:𝑘−1) =
𝑁𝑘 |𝑘−1∑︁
ℓ=1

𝑤ℓ
𝑘 |𝑘−1N

(
𝑥𝑘 ; 𝑥̂ℓ

𝑘 |𝑘−1, 𝑃
ℓ
𝑘 |𝑘−1

)
,

𝑁𝑘 |𝑘−1∑︁
ℓ=1

𝑤ℓ
𝑘 |𝑘−1 = 1. (3.131)

Considering the measurement update step given in (3.116), this can be extended
into the current GMM context as follows:

𝑝 (𝑥𝑘 | 𝑧1:𝑘) =
𝑁𝑘 |𝑘−1∑︁
ℓ=1

𝑁𝑧∑︁
𝜏=1

𝑤ℓ
𝑘 |𝑘−1𝛾

𝜏
𝑘

N
(
𝑧𝑘 ;𝐶𝑥𝑘 + 𝑣𝜏𝑘 , 𝑅

𝜏
𝑘

)
𝑝 (𝑧𝑘 | 𝑧1:𝑘−1)

· N
(
𝑥𝑘 ; 𝑥̂ℓ

𝑘 |𝑘−1, 𝑃
ℓ
𝑘 |𝑘−1

)
.

(3.132)

Due to the linear Gaussian structure, this expression can be reformulated as:

𝑝 (𝑥𝑘 | 𝑧1:𝑘) =
𝑁𝑘 |𝑘∑︁
𝑠=1

𝑤𝑠
𝑘 |𝑘N

(
𝑥𝑘 ; 𝑥̂𝑠

𝑘 |𝑘 , 𝑃
𝑠
𝑘 |𝑘

)
,

𝑁𝑘 |𝑘∑︁
𝑠=1

𝑤𝑠
𝑘 |𝑘 = 1, (3.133)
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where for each 𝜏 = 1, . . . , 𝑁𝑧 and ℓ = 1, . . . , 𝑁𝑘 |𝑘−1, it holds that:

𝑁𝑘 |𝑘 = 𝑁𝑘 |𝑘−1𝑁𝑧 (3.134)
𝑠 ≜ 𝑁𝑧 (ℓ − 1) + 𝜏 (3.135)

𝑥̂𝑠
𝑘 |𝑘 = 𝑥̂

ℓ
𝑘 |𝑘−1 + 𝐾

𝑠
𝑘𝑒
𝑠
𝑘 (3.136)

𝑒𝑠𝑘 = 𝑧𝑘 − 𝐶𝑥̂
ℓ
𝑘 |𝑘−1 − 𝑣

𝜏
𝑘 (3.137)

Σ𝑠𝑘 = 𝐶𝑃
ℓ
𝑘 |𝑘−1 (𝐶)

⊤ + 𝑅𝜏𝑘 (3.138)

𝐾𝑠𝑘 = 𝑃
ℓ
𝑘 |𝑘−1𝐶

(
Σ𝑠𝑘

)−1 (3.139)

𝑃𝑠
𝑘 |𝑘 = 𝑃

ℓ
𝑘 |𝑘−1 − 𝐾

𝑠
𝑘Σ

𝑠
𝑘

(
𝐾𝑠𝑘

)⊤ (3.140)

𝑤𝑠
𝑘 |𝑘 =

𝑤̄𝑠
𝑘 |𝑘∑𝑁𝑘 |𝑘

𝑠=1 𝑤̄𝑠
𝑘 |𝑘

, (3.141)

𝑤̄𝑠
𝑘 |𝑘 = 𝑤

ℓ
𝑘 |𝑘−1𝛾

𝜏
𝑘 (3.142)

The prediction step described in (3.115) becomes:

𝑝 (𝑥𝑘 | 𝑧1:𝑘) =
𝑁𝑘 |𝑘∑︁
𝑠=1

𝑁𝑥∑︁
𝑗=1

𝑤𝑠
𝑘 |𝑘𝛽

𝑗
𝑡

∫
N

(
𝑥𝑘 ; 𝐴𝑥𝑘 + 𝑢 𝑗𝑘 , 𝑄

𝑗

𝑘

)
N

(
𝑥𝑘 ; 𝑥̂𝑠

𝑘 |𝑘 , 𝑃
𝑠
𝑘 |𝑘

)
𝑑𝑥𝑘

(3.143)
again, due to the linear Gaussian densities involved, we can express this predicted
mixture via

𝑝 (𝑥𝑘 | 𝑧1:𝑘) =
𝑁𝑘+1|𝑘∑︁
ℓ=1

𝑤ℓ
𝑘+1 |𝑘N

(
𝑥𝑘 ; 𝑥̂ℓ

𝑘+1 |𝑘 , 𝑃
ℓ
𝑘+1 |𝑘

)
,

𝑁𝑘+1|𝑘∑︁
ℓ=1

𝑤ℓ
𝑘+1 |𝑘 = 1, (3.144)

where for each 𝑠 = 1, . . . , 𝑁𝑘 |𝑘 and 𝑗 = 1, . . . , 𝑁𝑥 , we have:

𝑁𝑘+1 |𝑘 = 𝑁𝑘 |𝑘𝑁𝑥 , (3.145)
ℓ ≜ 𝑁𝑥 (𝑠 − 1) + 𝑗 , (3.146)

𝑥̂ℓ
𝑘+1 |𝑘 = 𝐴𝑥̂𝑠

𝑘 |𝑘 + 𝑢
𝑗

𝑘
, (3.147)

𝑃ℓ
𝑘+1 |𝑘 = 𝐴𝑃𝑠

𝑘 |𝑘𝐴
⊤ +𝑄 𝑗

𝑘
, (3.148)

𝑤ℓ
𝑘+1 |𝑘 = 𝑤

𝑠
𝑘 |𝑘𝛽

𝑗

𝑘
. (3.149)

Given the growth in the number of gaussian components 𝑁𝑘 |𝑘 , it is necessary to
merge elements of the GMM to return to the form
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𝜋(𝑥) =
𝑁∑︁
𝑖=1

𝑤𝑖𝜋𝑖 (𝑥), 𝜋𝑖 = N (𝑥; 𝜇𝑖 , 𝑃𝑖) ,
𝑁∑︁
𝑖=1

𝑤𝑖 = 1, (3.150)

i.e., a mixture model with fewer components. This is achieved by defining a merging
function that combines different components:

𝑓 (𝜋𝑖 (𝑥), 𝜋 𝑗 (𝑥)) = 𝑤𝑖 𝑗N(𝑥; 𝜇𝑖 𝑗 , 𝑃𝑖 𝑗 ) (3.151)

where 𝑓 represents the merging function for two components 𝜋𝑖 (𝑥) and 𝜋 𝑗 (𝑥) with
𝑤𝑖 𝑗 , 𝜇𝑖 𝑗 and 𝑃𝑖 𝑗 being the combined weight, mean and covariance, respectively.
These parameters can be computed as

𝑤𝑖 𝑗 = 𝑤𝑖 + 𝑤 𝑗 (3.152)

𝜇𝑖 𝑗 =
𝑤𝑖

𝑤𝑖 𝑗
𝜇𝑖 +

𝑤 𝑗

𝑤𝑖 𝑗
𝜇 𝑗 (3.153)

𝑃𝑖 𝑗 =
𝑤𝑖

𝑤𝑖 𝑗
𝑃𝑖 +

𝑤 𝑗

𝑤𝑖 𝑗
𝑃 𝑗 +

𝑤𝑖𝑤 𝑗

𝑤2
𝑖 𝑗

(𝜇𝑖 − 𝜇 𝑗 ) (𝜇𝑖 − 𝜇 𝑗 )⊤. (3.154)

The GMM reduction process proceeds by iteratively merging pairs of components.
To guide the merging, a bound on the Kullback–Leibler (KL) divergence is used to
quantify the information loss that occurs when two components are merged. This
bound is denoted as 𝐵(𝑖, 𝑗) and is defined for the merging of the 𝑖-th and 𝑗-th
components as:

𝐵(𝑖, 𝑗) ≜ 1
2

[
𝑤𝑖 𝑗 log |𝑃𝑖 𝑗 | − 𝑤𝑖 log |𝑃𝑖 | − 𝑤 𝑗 log |𝑃 𝑗 |

]
. (3.155)

Here, | · | represents the determinant of a matrix. The primary purpose of 𝐵(𝑖, 𝑗)
is to identify the pair of components whose merging results in the smallest increase
in the KL divergence value, thereby minimizing the overall information loss in the
mixture. For a full derivation of this bound, refer to Section VI of [83].

It is worth noting that 𝐵(𝑖, 𝑗) = 𝐵( 𝑗 , 𝑖) and 𝐵(𝑖, 𝑖) = 0, which simplifies the
search for the optimal pair of components to merge by reducing the evaluations to
1
2𝑁 (𝑁 − 1) combinations, where 𝑁 represents the number of components in the
mixture prior to reduction.

3.12.5 Characteristic Function Filter

The main challenge in computing the Bayes equations lies in the convolution integral
required for the predict stage. The CF filter resorts to the same concept that is used
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when solving differential equations, by using the Fourier transform. Foundational
work on this method is documented in [84], [85], with a comprehensive formulation
provided in [84]. In the prediction step, the convolution is converted to a multiplica-
tions whereas the update step becomes a convolution. In cases where the number of
measurements is small, it might be benefitial to resort to the CF filter.

The CF of a random variable X, denoted as 𝜙X (𝝂), provides a complete charac-
terization of its probability distribution and is defined as the expected value of 𝑒𝑖𝝂⊤x,
where 𝑖 represents the imaginary unit, 𝝂 is a vector in R𝑛, and 𝑓X (x) is the probability
density function (PDF) of the random variable X:

E[𝑒𝑖𝝂⊤X] =
∫
R𝑛

𝑒𝑖𝝂
⊤x 𝑓X (x)𝑑x. (3.156)

The steps of the CF filter are given as:

• Prediction Step: In the prediction step, given the characteristic function of
the un-normalized posterior PDF after the measurement update, denoted as
𝜙𝑋𝑘−1 |𝑍𝑘−1 (𝝂), the aim is to compute its propagated version, 𝜙𝑋𝑘 |𝑍𝑘−1 (𝝂), after
applying the time propagation model:

(3.157)
𝜙𝑋𝑘 |𝑍𝑘−1 (𝝂) = 𝜙𝑋𝑘−1 |𝑍𝑘−1

(
𝐴⊤𝝂

)
𝜙𝐷 (𝝂) . (3.158)

• Update Step: The updated characteristic function can be expressed as:

𝜙𝑋𝑘 |𝑍𝑘
(𝝂) = 1

(2𝜋) 𝑝
∫
𝜉

𝜙𝑋𝑘 |𝑍𝑘−1

(
𝝂 − 𝐻⊤𝜉

)
𝜙𝑉 (−𝜉)𝑒 𝑗 𝜉

⊤𝑧𝑘𝑑𝜉. (3.159)

In the above equations, 𝑥𝑘 ∈ R𝑛 represents the system state vector at time 𝑘 ,
and 𝑧𝑘 ∈ R𝑝 is the corresponding measurement vector. The matrices 𝐴 ∈ R𝑛×𝑛

and 𝐻 ∈ R𝑝×𝑛 are known system parameters that describe the state transition
and observation models, respectively. The vector-valued process noise 𝑑𝑡 ∈ R𝑛 is
characterized by its characteristic function 𝜙𝐷 (𝝂𝑑), where 𝝂𝑑 ∈ R𝑛. Similarly, the
measurement noise 𝑣𝑡 ∈ R𝑝 is described by its characteristic function 𝜙𝑉 (𝝂𝑣), with
𝝂𝑣 ∈ R𝑝 . The variable 𝜉 ∈ R𝑝 serves as an integration variable in the update step.

3.13 Stochastic State Estimation with Hybrid Filter

In order to avoid having to numerically evaluate convolution integrals, the proposed
Hybrid Filter (HF) combines a predict step in the characteristic domain and an update
in the original domain. However, converting between the two domains requires
evaluating Fourier or inverse Fourier integrals. In order to avoid those steps, the
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proposed filter aims to find an approximating CF for a known distribution such that
its inversion can be direct. Therefore, between the predict and update steps, we need
to solve the following optimization problem:

min
𝜃

∫ ��𝜙(𝝂) − 𝜙approx. (𝝂, 𝜃)
��2 𝑑𝝂

s.t. constraints dependent on known CF
(3.160)

where 𝜙 and 𝜙approx. are the actual and approximated (known) characteristic func-
tions, respectively, 𝝂 is a vector in R𝑛, and 𝜃 is the parameter vector whose dimension
depends on the specific form of the approximating CF.

3.13.1 Hybrid Filter via Dirac Approximation

A possible implementation of the HF is using a dirac approximation of the PDFs,
derived from their corresponding CFs. Recalling (3.156), the CF of a probability
distribution is expressed as an expected value over kernel functions of the form
𝑒𝑖𝝂
⊤x. This representation implies that the CF can be viewed as a weighted sum of

these exponential kernel functions. Consequently, the integral defining the CF can
be discretized as:

𝜙(𝝂) ≈
𝑁∑︁
𝑘=1

𝑝𝑘𝑒
𝑖𝝂⊤xk (3.161)

where there are 𝑁 points xk, representing discretized values of the variable X, and
𝑝𝑘 are weights corresponding to the probabilities at these points. This approximation
transforms the integral into a finite sum, thereby facilitating numerical computation.
Here, 𝑒𝑖𝝂⊤xk corresponds to the CF of a Dirac distribution centered at xk, effectively
approximating the original PDF by a weighted sum of Dirac distributions, resulting
in a discretized PDF.

To derive the discretized PDF, we establish an optimization problem that aims
to align the discrete approximation of the CF with the actual CF. The objective is
to minimize the squared 𝐿2-norm of the difference between the actual CF and its
approximation, formulated as follows:

min
𝑝𝑘

∫ �����𝜙(𝝂) − 𝑁∑︁
𝑘=1

𝑝𝑘𝑒
𝑖𝝂⊤xk

�����2 𝑑𝝂
s.t.

𝑁∑︁
𝑘=1

𝑝𝑘 = 1

𝑝𝑘 ≥ 0 for all 𝑘 = 1, . . . , 𝑁.

(3.162)
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This minimization problem adjusts the weights 𝑝𝑘 to ensure that the approximation
closely matches the actual CF. Constraints are imposed to guarantee that the weights
𝑝𝑘 form a valid probability distribution.

From a computational perspective, this optimization problem can be effectively
solved by discretizing the integral over a grid of points 𝝂 as in (3.163). This transfor-
mation results in a constrained linear least squares problem, where the objective is to
determine the weights 𝑝𝑘 that best fit the discrete version of the CF approximation
to the actual CF at these grid points.

min
𝑝𝑘

𝑀∑︁
𝑙=1

�����𝜙(𝝂𝑙) − 𝑁∑︁
𝑘=1

𝑝𝑘𝑒
𝑖𝝂⊤

𝑙
xk

�����2
s.t.

𝑁∑︁
𝑘=1

𝑝𝑘 = 1

𝑝𝑘 ≥ 0 for all 𝑘 = 1, . . . , 𝑁.

(3.163)

The selection of the grid points requires first determining the intervals for each
of the variables. The concept of moments is critical to determine the set where the
mass of the PDF is concentrated.

The first two moments, mean 𝝁 and covariance matrix 𝚺 of a random vector X
can be computed from the CF 𝜙X (𝝂) as

𝝁 = −𝑖 𝑑𝜙X (𝝂)
𝑑𝝂

����
𝝂=0

(3.164)

𝚺 = − 𝑑
2𝜙X (𝝂)
𝑑𝝂2

����
𝝂=0
− 𝝁𝝁⊤. (3.165)

To determine the interval of discretization over X, we utilize the moment infor-
mation contained in the original CF. Specifically, we extract the first and second
moments using (3.164) and (3.165), respectively. Then, we calculate the interval 𝐼 𝑗
for each dimension 𝑗 of the grid as follows:

𝐼 𝑗 =

[
𝜇 𝑗 − 3.5Σ

1
2
𝑗 , 𝑗
, 𝜇 𝑗 + 3.5Σ

1
2
𝑗 , 𝑗

]
. (3.166)

The discretization intervals over 𝝂 are determined using an approximation based
on the CF of a zero-mean Gaussian distribution. Given that the significant portion of
the CF is within the range where its magnitude is non-negligible, we set a threshold
𝜖 to define this effective range. Assuming a zero-mean Gaussian CF, the magnitude
decays as 𝑒− 𝝂⊤Σ𝝂

2 , where Σ is the covariance matrix. The threshold is set where the
magnitude of the CF approximates zero:
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𝑒−
𝝂⊤Σ𝝂

2 ≤ 𝜖 (3.167)

Taking the logarithm of both sides and solving for 𝝂, we obtain:

𝝂⊤Σ𝝂 ≥ 2 log
(

1
𝜖

)
(3.168)

For each dimension 𝑗 , we approximate the range of 𝜈 𝑗 by considering only the
diagonal elements Σ 𝑗 , 𝑗 , simplifying the expression to:

|𝜈 𝑗 | ≥

√√√
2 log

(
1
𝜖

)
Σ 𝑗 , 𝑗

(3.169)

This approximation provides a practical means of selecting discretization intervals
over 𝝂 that are expected to capture the essential behavior of the CF for the purpose of
estimating the PDF. Once these intervals are determined, uniform random sampling
is employed to generate the 𝑁 points xk and the 𝑀 points 𝝂𝑙 .

Following this approximation, we obtain a discretized representation of the PDF,
which corresponds to particles within the PF framework. This is where the PF
update step becomes particularly useful, as it can now operate on these particles.
After completing this step, it is possible to transition back to the frequency domain
by incorporating the updated particles and their associated weights into the CF
expression as in (3.161), substituting the xk and 𝑝𝑘 values accordingly.

To better illustrate the proposed approximation, Figure 3.25 shows how a Gaussian
distribution is approximated by the sum of dirac distributions in the original domain
with Figure 3.26 showing the equivalent representation in the Fourier domain.

(a) (b)

Fig. 3.25: Gaussian PDF, approximation on the left and real PDF on the right.
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Fig. 3.26: Real and approximated CFs of gaussian random variable.

Similarly, Figure 3.27 provides an example for the real and approximated GMM
with its representation in the Fourier domain given in Figure 3.28.
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(a) (b)

Fig. 3.27: Gaussian Mixture PDF, approximation on the left and real PDF on the
right.

Fig. 3.28: Real and approximated CF’s of gaussian mixture random variable.
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Lastly, Figure 3.29 and Figure 3.30 show the same example for an exponential
distribution to assess the quality of the approximation in a distribution that is not
centered and presents a tail.

(a) (b)

Fig. 3.29: Exponential PDF, approximation on the left and real PDF on the right.
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Fig. 3.30: Real and approximated CF’s of exponential random variable.

3.13.2 Hybrid Filter via Gaussian Mixture Approximation

Instead of approximating the CF with a sum of dirac distributions, we can also
consider a GMM as the kernel function. Since the CF of a Gaussian distribution
centered at 𝝁 with covariance 𝚺 is given by

𝜙Gaussian (𝝂) = 𝑒𝑖𝝂
⊤𝝁𝑒−

1
2𝝂
⊤𝚺𝝂 , (3.170)

we can directly express the CF of a GMM as a weighted sum of the individ-
ual CFs of its Gaussian components and obtain the following expression for the
approximation

𝜙(𝝂) ≈
𝑁∑︁
𝑘=1

𝑝𝑘𝑒
𝑖𝝂⊤𝝁𝑘 𝑒−

1
2𝝂
⊤𝚺𝑘𝝂 , (3.171)
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where 𝑁 is the number of Gaussian components, 𝝁𝑘 and 𝚺𝑘 are the mean vector
and covariance matrix of the 𝑘-th Gaussian, and 𝑝𝑘 are the corresponding weights.

To approximate the PDF, we formulate a minimization problem akin to the Dirac
approximation approach. Here, the objective is to minimize the squared 𝐿2-norm of
the difference between the actual CF and its Gaussian mixture approximation:

min
𝑝𝑘 ,𝝁𝑘 ,𝚺𝑘

∫ �����𝜙(𝝂) − 𝑁∑︁
𝑘=1

𝑝𝑘𝑒
𝑖𝝂⊤𝝁𝑘 𝑒−

1
2𝝂
⊤𝚺𝑘𝝂

�����2 𝑑𝝂
s.t.

𝑁∑︁
𝑘=1

𝑝𝑘 = 1

𝑝𝑘 ≥ 0 for all 𝑘 = 1, . . . , 𝑁,
𝚺𝑘 ≻ 0 for all 𝑘 = 1, . . . , 𝑁.

(3.172)

The constraints ensure that the weights 𝑝𝑘 form a valid GMM and that the co-
variance matrices 𝚺𝑘 are positive definite. This optimization problem is inherently
more challenging than the Dirac-based approach, as it requires solving for not only
the weights 𝑝𝑘 , but also the parameters 𝝁𝑘 and 𝚺𝑘 for each Gaussian component.

In practice, solving this optimization problem involves discretizing the domain 𝝂
into grid points and transforming the continuous integral into a finite summation over
these points. This transformation reduces the problem to a constrained non-linear
optimization, which can be addressed using standard numerical methods, such as
gradient-based approaches.

min
𝑝𝑘 ,𝝁𝑘 ,𝚺𝑘

𝑀∑︁
𝑙=1

�����𝜙(𝝂𝑙) − 𝑁∑︁
𝑘=1

𝑝𝑘𝑒
𝑖𝝂⊤

𝑙
𝝁𝑘 𝑒−

1
2𝝂
⊤
𝑙
𝚺𝑘𝝂𝑙

�����2
s.t.

𝑁∑︁
𝑘=1

𝑝𝑘 = 1

𝑝𝑘 ≥ 0 for all 𝑘 = 1, . . . , 𝑁,
𝚺𝑘 ≻ 0 for all 𝑘 = 1, . . . , 𝑁.

(3.173)

Furthermore, we can leverage the moments of the CF to guide the initialization
of the Gaussian parameters. The mean vector 𝝁 and covariance matrix 𝚺 of the
underlying distribution can be directly derived from the CF using (3.164) and (3.165).

Similar to the Dirac-based approach, these moments can be used to define the
discretization intervals (Equations 3.166 and 3.169), providing the ranges needed to
generate the 𝑁 points xk and the 𝑀 points 𝝂𝑙 via uniform random sampling.
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3.14 Simulation Results for the Stochastic State Estimation

The simulations consider estimating the position of a vehicle modeled using discrete
double integrator dynamics with a sampling time of 𝑇𝑠 = 0.1 s performing a random
walk. This means that the control input 𝑢𝑘 is sampled from either a Gaussian
distribution or a GMM with two or three components. We use the observation
matrix 𝐻 defined as:

𝐻 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


with noise 𝑣𝑡 sampled from either a Gaussian, Gaussian Mixture, or an exponential
distributions. These variations in both process and observation noise provide a
comprehensive testbed for evaluating the HF under diverse noise scenarios. The
initial state of the vehicle is assumed to be a random variable following a zero-mean
Gaussian distribution. Therefore, using all combinations results in nine setups:

• Gaussian walk with Gaussian noise.

• Gaussian walk with exponential
noise.

• Gaussian walk with GMM noise.

• GMM (2 peaks) walk with Gaussian
noise.

• GMM (2 peaks) walk with exponen-
tial noise.

• GMM (2 peaks) walk with GMM
noise.

• GMM (3 peaks) walk with Gaussian
noise.

• GMM (3 peaks) walk with exponen-
tial noise.

• GMM (3 peaks) walk with GMM
noise.

For each of these scenarios, the Dirac approach was tested with different numbers
of particles, while the Gaussian Mixture approach varied the number of Gaussian
components in the mixture, keeping the particle count fixed at 256.

To provide a benchmark, both the KF and PF were used as comparative methods.
The KF represents an optimal solution under the Gaussian assumption, while the PF
was configured with the same number of particles as the Hybrid Filter to ensure a
fair comparison.

The filters were evaluated over 50 independent runs, each consisting of 150 time

steps. In each run, the vehicle’s initial velocity was set to
[

0 0
]⊤

, while its initial

position was uniformly sampled within the square defined by vertices at (−8,−8),
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(−8,−10), (−10,−10), and (−10,−8). During each run, the type of random walk
and observation noise remained fixed, allowing for a controlled assessment of filter
performance under specific conditions.

The performance of each filter was evaluated using two key metrics: cumulative
Root-Mean-Square-Error (RMSE) over the 150 time steps to assess estimation ac-
curacy, and the trace of the covariance matrix to evaluate the uncertainty associated
with the estimates at each time step.

3.14.1 Hybrid Filter via Dirac Approximation

For the Dirac approximation approach, the nine distinct scenarios were tested with
different numbers of particles — specifically, 256, 625, and 1296 — resulting in a
total of 27 simulations. Here, we present and discuss only the most pertinent results.

The performance of the CF Filter in the Gaussian walk with Gaussian noise
scenario is illustrated in Figure 3.31. The first three plots show the cumulative
RMSE of each filter across all 50 runs (represented by gray lines). These plots also
indicate the upper and lower performance bounds for each filter, denoted by the
maximum and minimum lines. The 75𝑡ℎ percentile of the RMSE is represented in
green to provide further insight into the overall performance. Finally, for ease of
comparison, Figure 3.31d shows the average cumulative RMSE at each time step,
averaged over the 50 runs.

The CF Filter demonstrates strong performance, closely following the KF, which
is expected to yield optimal results in this linear Gaussian setting. This outcome
is particularly noteworthy as it highlights the capability of the CF Filter to remain
competitive even in scenarios where the KF benefits from assumptions that per-
fectly align with its design. Given that the CF Filter is also capable of handling
non-Gaussian noise distributions, its close performance to the KF in this Gaussian
scenario suggests robustness and adaptability across a wide range of noise types.
Moreover, the CF Filter exhibits consistent behavior across the 50 runs, as evidenced
by the tight clustering of error bounds in Figure 3.31a. This consistency implies that
the CF Filter maintains reliability and robustness even under varying conditions.

In contrast, the PF demonstrates relatively weaker performance. While the PF
theoretically has the capability to manage non-Gaussian noise and nonlinearities, its
effectiveness in this scenario is limited by the relatively small particle count (256).
This constraint likely results in higher variance in the estimation results and a greater
overall RMSE, as evidenced in Figure 3.31c. The reliance of the PF on a sufficiently
large number of particles for accurate state estimation thus becomes a significant
bottleneck, especially when compared to the CF Filter.

Figure 3.31d provides a direct comparison of the average cumulative RMSE
for each filter across 50 runs. While the KF yields the best performance, the CF
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(a) CF Filter with 256 particles. (b) KF.

(c) PF with 256 particles
(d) Average of the cumulative RMSE over
the 50 runs.

Fig. 3.31: Cumulative RMSE of the position of Gaussian walk with Gaussian noise.

Filter achieves results that are nearly indistinguishable from those of the KF, further
validating its applicability as a viable alternative, particularly in environments where
the Gaussian noise assumption might not hold. The PF, on the other hand, falls
significantly behind, underscoring the limitations of particle-based methods when
computational resources are constrained.

The covariance trace results in Figures 3.32a, 3.32b, and 3.32c illustrate key
differences in how each filter manages estimation uncertainty. The CF Filter, while
effective in state estimation, does not prioritize minimizing estimation uncertainty
to the same degree as the KF. The KF had lower covariance trace values in contrast
with the CF which presents a greater variability across runs.

Although the PF displays greater variability compared to the KF, its overall uncer-
tainty remains relatively low. This can be attributed to the inherent nature of particle
filters, which represent state distributions by sampling a large number of particles.
However, the limited particle count introduces fluctuations in the covariance trace,
indicating the need for more particles to achieve more reliable estimation.
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(a) CF Filter with 256 particles. (b) KF.

(c) PF with 256 particles.

Fig. 3.32: Covariance matrix trace of the position estimate uncertainty in the Gaussian
walk with Gaussian noise.

To evaluate the impact of increasing the particle count, we turn to Figures 3.33 and
3.34. These figures demonstrate improved performance for both the CF Filter and
the PF. Notably, the cumulative RMSE is reduced, and the error bounds in Figures
3.33a and 3.33b are narrower, indicating increased consistency across runs.

A similar trend is observed in Figures 3.34a and 3.34b, where the average co-
variance trace decreases slightly and the uncertainty bounds become tighter, further
highlighting the benefits of increasing the particle count.

In the scenario where the CF Filter is tested with a Gaussian mixture walk and
exponential noise using 1296 particles, the results show the ability of the CF filter
to cope with non-gaussian signals. The results are provided in Figures 3.35a, 3.35b,
and 3.35c for the behavior over the 50 runs.

The CF Filter accuracy surpasses the KF due to the introduction of exponential
noise. The tighter error bounds and reduced variability across runs (as observed in
Figure 3.35a) underscore the robustness of the CF Filter, which manages to maintain
consistent accuracy across a more complex noise distribution.
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(a) CF Filter with 1296 particles. (b) PF with 1296 particles.

(c) Average of the cumulative RMSE over
the 50 runs.

Fig. 3.33: Cumulative RMSE of the position of Gaussian walk with Gaussian noise
with 1296 particles.

(a) CF Filter with 1296 particles. (b) PF with 1296 particles.

Fig. 3.34: Covariance matrix trace of the position estimate in the Gaussian walk with
Gaussian noise.



130 3 Deterministic and Stochastic Estimation for Linear Dynamical Systems

In comparison, the KF, which is designed primarily for Gaussian noise environ-
ments, exhibits a decline in relative performance. This outcome is consistent with
theoretical expectations, as the KF struggles under non-Gaussian conditions where
its underlying noise assumptions are no longer valid.

The PF, despite being theoretically suitable for handling non-Gaussian noise,
continues to show relatively weaker performance. This can be attributed to the
number of particles (1296), which still seems insufficient for accurately capturing
the underlying noise characteristics and system dynamics. The higher variance and
broader error bounds (as depicted in Figure 3.35c) suggest that the PF struggles
to consistently match the performance of the CF Filter. The overall comparison
of the average cumulative RMSE in Figure 3.35d shows a better accuracy even in
steady-state.

(a) CF Filter with 1296 particles. (b) KF.

(c) PF with 1296 particles.
(d) Average of the cumulative RMSE over
the 50 runs.

Fig. 3.35: Cumulative RMSE of the position of Gaussian Mixture walk with Expo-
nential noise.

To finalize the analysis of the results from the Dirac approach, we refer to Table
3.1, which provides a summary of the performance of each filter across different
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scenarios. The table reports both the mean RMSE and its standard deviation over
the 50 runs, with the best results for each scenario highlighted in bold.

From the table, it is evident that the CF Filter consistently achieves the best
performance in scenarios involving exponential noise. This is further underscored
by its low standard deviation, suggesting that the filter maintains robust performance
across different runs. Such consistency can be attributed to the inherent flexibility of
the CF Filter, which is well-adapted to handle non-Gaussian noise types. Additionally,
the results illustrate the beneficial impact of increasing the particle count on the
CF Filter’s performance. As the number of particles grows, the RMSE decreases,
indicating an improved capacity of the filter to approximate the underlying system
dynamics more accurately.

One notable observation from the table is that, in Gaussian mixture noise scenarios,
the KF continues to outperform the CF Filter. This outcome can be explained by the
fact that the Gaussian mixture noise used in these simulations is not highly complex
and can be effectively approximated by a zero-mean Gaussian distribution.

The PF, on the other hand, continues to exhibit weaker performance across most
scenarios. Although the PF is theoretically well-suited to handle non-Gaussian noise
and complex system dynamics, its effectiveness here is constrained by the relatively
low particle count. Even with an increased number of particles, the PF fails to match
the performance of either the CF Filter or the KF, suggesting that it struggles to
capture the full spectrum of system behaviors under these conditions. The higher
variance in RMSE across the runs further highlights the limitations of the PF, as it
requires a significantly larger particle count to achieve a more consistent and accurate
estimate.
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Simulation
Scenario

CF Filter
w/ 256

particles

CF Filter
w/ 625

particles

CF Filter
w/ 1296
particles

KF
PF

w/ 256
particles

PF
w/ 625

particles

PF
w/ 1296
particles

Mean
RMSE

Average
over 50
simula-

tions

G. Walk w/
G. Noise 1.3635 1.3155 1.2808 1.0579 2.5559 2.4408 2.3117

G. Walk w/
GM Noise 1.3643 1.3262 1.2915 1.0871 2.5236 2.4160 2.2951

G. Walk w/
Exp. Noise 1.2754 1.2395 1.2263 1.4449 3.4771 3.2391 3.0742

GM w/ 2
peaks Walk
w/ G. Noise

1.3635 1.3081 1.2729 1.0410 2.5611 2.4158 2.2951

GM w/ 2
peaks Walk

w/ GM Noise

1.3712 1.3182 1.2789 1.0940 2.5742 2.3881 2.3176

GM w/ 2
peaks Walk

w/ Exp. Noise

1.2917 1.2400 1.2210 1.3831 3.4365 3.1862 3.0585

GM w/ 3
peaks Walk
w/ G. Noise

1.3626 1.3166 1.2885 1.0488 2.5717 2.3875 2.2942

GM w/ 3
peaks Walk

w/ GM Noise

1.3763 1.3213 1.2875 1.0934 2.5918 2.4245 2.3195

GM w/ 3
peaks Walk

w/ Exp. Noise

1.2868 1.2464 1.2284 1.4446 3.4472 3.2467 3.0810

Standard
deviation
over 50
simula-

tions

G. Walk w/
G. Noise 0.0400 0.0348 0.0344 0.0418 0.1572 0.1125 0.1225

G. Walk w/
GM Noise 0.0360 0.0404 0.0373 0.0358 0.1555 0.1487 0.1312

G. Walk w/
Exp. Noise 0.0471 0.0352 0.0362 0.0454 0.2897 0.2810 0.2048

GM w/ 2
peaks Walk
w/ G. Noise

0.0462 0.0376 0.0356 0.0361 0.1927 0.1397 0.1238

GM w/ 2
peaks Walk

w/ GM Noise

0.0405 0.0408 0.0311 0.0422 0.1248 0.1433 0.0935

GM w/ 2
peaks Walk

w/ Exp. Noise

0.0417 0.0420 0.0395 0.0474 0.2594 0.2451 0.1845

GM w/ 3
peaks Walk
w/ G. Noise

0.0451 0.0389 0.0296 0.0380 0.1490 0.1338 0.1143

GM w/ 3
peaks Walk

w/ GM Noise

0.0337 0.0328 0.0298 0.0485 0.1575 0.1295 0.1108

GM w/ 3
peaks Walk

w/ Exp. Noise

0.0470 0.0350 0.0394 0.0400 0.2687 0.2353 0.2083

Table 3.1: RMSE of all filters along different simulation scenarios, Dirac approach.
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3.14.2 Hybrid Filter via Gaussian Mixture Approximation

For the Gaussian mixture approach, nine distinct scenarios were tested with the
number of Gaussians used in the approximation varying between three and four,
resulting in a total of 18 simulations. Here, we present and discuss only the most
pertinent results.

The results of the CF Filter via the Gaussian mixture approximation with three
Gaussians, tested in a scenario involving both a Gaussian mixture walk and Gaussian
mixture noise, are illustrated in Figures 3.36a, 3.36b, 3.36c, and 3.36d. The focus
here is on assessing how the CF Filter, based on the Gaussian mixture approximation,
performs relative to the KF and PF across these 50 simulation runs.

As seen in Figure 3.36a, the CF Filter employing the Gaussian mixture approxi-
mation with three Gaussians demonstrates a more erratic performance compared to
the results obtained using the Dirac approach. The cumulative RMSE reveals fluc-
tuations across different runs, as indicated by the larger spread between maximum
and minimum error bounds. These variations are the result of the non-convex nature
of the optimization problem involved in determining the parameters.

Despite these fluctuations, the CF Filter still demonstrates a strong average perfor-
mance, as highlighted by the comparison in Figure 3.36d. The average cumulative
RMSE for the CF Filter remains competitive, particularly in comparison to the PF.
This indicates that while individual runs may exhibit some instability due to the
complexity of the Gaussian mixture approximation, the filter still approximates the
state effectively over the 50 simulations.

In contrast, the KF, as shown in Figure 3.36b, maintains a more stable performance.
This is expected given that the Gaussian mixture noise used in these simulations can
still be reasonably approximated by a zero-mean Gaussian distribution. The PF
remains the worst option in terms of accuracy. As depicted in Figure 3.36c, the
PF shows slower convergence and a higher overall RMSE. The performance of the
particle filter in this scenario may be hindered by the relatively low number of
particles (256).

When comparing the average cumulative RMSE across all filters in Figure 3.36d,
the CF Filter, despite exhibiting fluctuations, still performs competitively with the
KF. This suggests that while the Gaussian mixture approximation introduces addi-
tional complexity, the CF Filter retains a solid overall performance.

Increasing the number of Gaussians in the approximation from 3 to 4, as shown in
Figures 3.37a and 3.37b, results in a noticeable improvement in the stability of the
CF Filter. The spread between the maximum and minimum error bounds tightens,
and the overall convergence behavior becomes smoother compared to the 3-Gaussian
case. This suggests that increasing the number of Gaussian components enhances
the filter’s ability to capture the underlying complexity of the system dynamics and
noise distributions, leading to more consistent state estimates.
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(a) CF Filter with 3 Gaussians. (b) KF.

(c) PF with 256 particles. (d) 50-run average of the cumulative RMSE.

Fig. 3.36: Cumulative RMSE of the position of Gaussian Mixture w/ 2 peaks walk
with Gaussian Mixture noise.

In terms of the average cumulative RMSE, the CF Filter with 4 Gaussians shows
a modest reduction in error relative to the 3-Gaussian scenario, as illustrated in
Figure 3.37b. This improvement helps to narrow the performance gap between the
CF Filter and the KF, further emphasizing the value of a more refined Gaussian
mixture approximation for accurately capturing the underlying noise characteristics.

Figures 3.38a and 3.38b present the covariance matrix trace for the CF Filter with
3 and 4 Gaussians, respectively.

In the 3-Gaussian case, significant spikes in the covariance trace indicate periods
of elevated uncertainty. Although the 75𝑡ℎ percentile remains stable, the pronounced
peaks in the maximum trace suggest that the filter occasionally struggles to accurately
capture all modes of the noise distribution, resulting in increased uncertainty at
specific time steps.

With 4 Gaussians, these spikes are less frequent and less pronounced. The overall
maximum covariance trace is reduced, and the filter’s uncertainty is more consis-
tently controlled. This reduction in uncertainty and the more consistent performance
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(a) CF Filter with 4 Gaussians. (b) 50-runs average of the cumulative RMSE.

Fig. 3.37: Cumulative RMSE of the position of Gaussian Mixture w/ 2 peaks walk
with Gaussian Mixture noise.

suggest that increasing the number of Gaussian components improves the filter’s
ability to handle noise complexity effectively.

(a) CF Filter with 3 Gaussians. (b) CF Filter with 4 Gaussians.

Fig. 3.38: Covariance matrix trace of the position estimate uncertainty in the Gaussian
Mixture w/ 2 peaks walk with Gaussian Mixture noise.

To conclude the analysis of the Gaussian mixture approach, Table 3.2 provides a
summary of the performance of each filter across the different simulation scenarios.
As shown in the table, the KF consistently outperforms the CF Filter across all
noise scenarios, including those with exponential noise. Although the CF Filter
demonstrates competitive performance, particularly when the number of Gaussian
components is increased from 3 to 4, it is still less accurate than the KF.
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Simulation
Scenario

CF Filter
w/ 3 Gaussian

peaks

CF Filter
w/ 4 Gaussian

peaks
KF

PF
w/ 256

particles

Mean
RMSE

Average
over 50
simula-

tions

G. Walk w/
G. Noise 1.9380 1.8374 1.0595 2.5732

G. Walk w/
GM Noise 1.9860 1.8288 1.1021 2.5816

G. Walk w/
Exp. Noise 2.5700 2.6360 1.4468 3.3789

GM w/ 2
peaks Walk
w/ G. Noise

1.9336 1.8633 1.0522 2.5832

GM w/ 2
peaks Walk

w/ GM Noise

2.0531 1.9073 1.0907 2.5199

GM w/ 2
peaks Walk

w/ Exp. Noise

2.5323 2.4467 1.3974 3.4502

GM w/ 3
peaks Walk
w/ G. Noise

1.9284 1.8785 1.0572 2.5621

GM w/ 3
peaks Walk

w/ GM Noise

2.0566 1.9670 1.0913 2.5201

GM w/ 3
peaks Walk

w/ Exp. Noise

2.6267 2.4170 1.4407 3.8082

Standard
deviation
over 50
simula-

tions

G. Walk w/
G. Noise 0.1905 0.2026 0.0450 0.1712

G. Walk w/
GM Noise 0.2991 0.1551 0.0427 0.1573

G. Walk w/
Exp. Noise 0.4495 0.8652 0.0488 0.2524

GM w/ 2
peaks Walk
w/ G. Noise

0.1473 0.1929 0.0423 0.1609

GM w/ 2
peaks Walk

w/ GM Noise

0.4822 0.2389 0.0386 0.1531

GM w/ 2
peaks Walk

w/ Exp. Noise

0.4619 0.4532 0.0480 0.2143

GM w/ 3
peaks Walk
w/ G. Noise

0.1880 0.1878 0.0457 0.1836

GM w/ 3
peaks Walk

w/ GM Noise

0.2693 0.4473 0.0448 0.1809

GM w/ 3
peaks Walk

w/ Exp. Noise

0.4756 0.3312 0.0512 0.3872

Table 3.2: RMSE of all filters along different simulation scenarios, Gaussian Mixture
approach.



Chapter 4

Optimized Surveillance Trajectory Generation

The last objective of project FirePuma was the design of optimized trajectories over
the computed risk map to prevent forrest fires through autonomous surveillance of
the most problematic areas. Various problems were target during this task:

• Path following with collision avoidance using splines [86], soft constraints [87]
[88], hard constraints [89] [90], Control Barrier Functions (CBFs) [91];

• Comparison of the various methods in [92];

• Trajectory generation for surveillance assuming local measurements of the risk
map [93], [94];

• Trajectory generation for surveillance assuming global knowledge of the risk
map [95];

• Vehicle design for surveillance [96];

• Cooperative control for a formation of vehicles [97];

• Theoretical study of which vehicles must receive commands from the base
station for the overall system to remain observable and controllable [98];

• Techniques to guarantee feasibility of the controllers [99];

• Optimized solutions to include binary decisions within the controllers [100]
[101].

4.1 Surveillance Trajectory as an Optimal Control Problem

Given the main problem introduced in Chapter 1 regarding the autonomous vehicle
control to inspect the area, it is required to present how the problem was simplified

137
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and modeled concerning the uncertainty map and the sensing model of the Unmanned
Aerial Vehicle (UAV).

4.1.1 Uncertainty Map

The first topic to be defined is the uncertainty map. The uncertainty map is math-
ematically described by a nonnegative function ℎ : R2 → R+0 that represents the a
priori level of uncertainty about the existence of fire at each position p ∈ R2. Since
the original structure of the uncertainty map typically may not follow common and
well-known models, we assume that the uncertainty function can be arbitrarily well
approximated by a Gaussian mixture, which is a weighted sum of Gaussian compo-
nents. Consequently, for a model with 𝑀 components, the uncertainty function is
given by

ℎ(p) =
𝑀∑︁
𝑖=1

𝑤𝑖N(p; 𝝁𝑖 ,𝚺𝑖), (4.1)

where each component is a two-dimensional Gaussian distribution defined by

N(p; 𝝁𝑖 ,𝚺𝑖) ≜
1√︁

4𝜋2 |𝚺𝑖 |
exp

{
−1

2
(p − 𝝁𝑖)⊤𝚺−1

𝑖 (p − 𝝁𝑖)
}
. (4.2)

The parameters 𝑤𝑖 > 0, 𝝁𝑖 ∈ R2, and 𝚺𝑖 ∈ R2×2 are, respectively, the weight, the
mean vector, and the covariance matrix of the 𝑖th Gaussian component.

Additionally, we clarify that the uncertainty map is not originally a PDF, so the
volume of uncertainty in the map is not necessarily one. However, it is convenient
to assume that this function is normalized, meaning that the a priori volume of
uncertainty is one, and, therefore, the weights verify

∑𝑀
𝑖=1 𝑤𝑖 = 1. A plausible

instance of an uncertainty map is shown in Figure 4.1.
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(a) Graph
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Fig. 4.1: Example of an uncertainty function composed of five Gaussian distributions.

4.1.2 Sensing Model

In this work, we assume that the UAV flies at a constant altitude and is equipped with
a gimbal camera, which always aims straight down even when the UAV performs
pitch or roll maneuvers. Consequently, at each time instant 𝑡, we assume that the
drone analyzes a given area, B𝑟 (p𝑐), defined as a circle centered in the UAV’s
horizontal position, p𝑐, and with a radius of observation 𝑟 , i.e.,

B𝑟 (p𝑐) ≜
{
p ∈ R2 : ∥p − p𝑐 ∥ < 𝑟

}
, (4.3)

as illustrated in Figure 4.2. Additionally, the vehicle is assumed to have a perfect
quality of exploration, meaning that all points within the observation radius are
analyzed perfectly. This assumption implies that, immediately after the UAV analyses
a given area, the uncertainty becomes zero for all points inside the area covered by
the UAV, and, therefore, there is no reward in revisiting the same region.
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FOV

Fig. 4.2: Illustration of sensor Field of View (FOV) and visibility region.

4.1.3 Optimal Control Problem

The trajectory generation problem addressed in this chapter can be defined as finding
optimal trajectories that guide the UAV. The trajectories should maximize an objec-
tive functional regarding the mission goals while satisfying constraints accounting
for their dynamic feasibility. These features prevent the use of flocking algorithms
[102], [103] or based on gradient information as in [93]. Consequently, this problem
can be formulated as the following optimal control problem

maximize
x(.) ,u(.)

𝐽 [x(.), u(.)]

subject to x(0) = x0,

¤x(𝑡) = F(x(𝑡), u(𝑡)), 𝑡 ∈ [0, 𝑇],
x(𝑡) ∈ X, 𝑡 ∈ [0, 𝑇],
u(𝑡) ∈ U, 𝑡 ∈ [0, 𝑇],

(4.4)

where 𝑇 denotes the total flight time, the functions x(.) : [0, 𝑇] → R𝑛𝑥 and
u(.) : [0, 𝑇] → R𝑛𝑢 denote the state and input of the vehicle’s model described
by an Ordinary Differential Equation (ODE), and x0 is the initial value of the state.
Moreover, the sets X andU constitute the admissible states and inputs for the vehi-
cle, which are derived from limits imposed by vehicle dynamics and the surrounding
environment.

Let 𝝋 : [0, 𝑇] → R2 denote the vehicle’s trajectory on the horizontal plane, which
is related to the state of the vehicle by
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𝝋(𝑡) = Cx(𝑡), 𝑡 ∈ [0, 𝑇], (4.5)

where C ∈ R2×𝑛𝑥 is an auxiliary matrix that extracts the horizontal position of
the vehicle from the state. The mission objective is to maximize the uncertainty
reduction, i.e., the difference between the uncertainty volume in the map before
and after the surveillance mission. Therefore, considering the previously mentioned
assumptions, the objective functional 𝐽 is given by

𝐽 [𝝋] =
∫
C𝑟 [𝝋 ]

ℎ(p) 𝑑p, (4.6)

where the set C𝑟 [𝝋] is defined as the union of all circles of observation along the
trajectory of the vehicle,

C𝑟 [𝝋] ≜
𝑇⋃
𝑡=0
B𝑟 (𝝋(𝑡)), (4.7)

as illustrated in Figure 4.3. The usefulness of the set C𝑟 [𝝋] arises from the fact that
each position is only taken into account once to increase the uncertainty integration
since we are assuming that the UAV has a perfect quality of exploration.

(a) 3D illustration (b) Top view

Fig. 4.3: Illustration of the set C𝑟 [𝝋].

Solving the problem in (4.4) is very complex since the objective functional 𝐽,
as defined in (4.6), does not have a closed-form expression. Therefore, a relaxed
formulation needs to be considered. In addition, to make the problem computationally
tractable, it also needs to be discretized. However, even after relaxing and discretizing
the problem, solving the problem globally for a relatively large time horizon 𝑇 is
computationally challenging. Consequently, we consider a local approach based on
Model Predictive Control (MPC) to approximate the solutions of (4.4) while adding
the possibility for feedback to the control law.
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4.2 Model-Predictive Approach

In order to address the problem defined in the previous section, we follow an MPC-
based approach. MPC involves the solution of an open-loop discrete-time optimal
control problem at each sampling time 𝑘 . Each of these optimizations results in a
sequence of future optimal control actions and a sequence of corresponding future
states. The first control action in the sequence is applied to the plant, and then the
optimization is solved again at the next sampling time.

More specifically, at every discrete-time instant 𝑘 , for a given initial state x𝑘 of
the system, the control policy is defined by solving a discrete-time optimal control
problem of the form

maximize
X̂𝑘 ,Û𝑘

𝐽𝑘 (X̂𝑘 , Û𝑘)

subject to x̂𝑘,0 = x𝑘 ,
x̂𝑘, 𝑗+1 = f (x̂𝑘, 𝑗 , û𝑘, 𝑗 ), 𝑗 = 0, . . . , 𝑁 − 1,
x̂𝑘, 𝑗 ∈ X, 𝑗 = 0, . . . , 𝑁,
û𝑘, 𝑗 ∈ U, 𝑗 = 0, . . . , 𝑁 − 1,

(4.8)

where 𝑁 is the horizon length, the sets X and U constitute the admissible states
and inputs for the vehicle, and the function f represents a discrete-time version of
the vehicle dynamics. The matrices X̂𝑘 and Û𝑘 are the optimization variables and
represent the predicted state and control sequences over the time horizon at time
instant 𝑘 , i.e.,

X̂𝑘 ≜
[
x̂𝑘,0 x̂𝑘,1 . . . x̂𝑘,𝑁−1 x̂𝑘,𝑁

]
,

Û𝑘 ≜
[
û𝑘,0 û𝑘,1 . . . û𝑘,𝑁−1

]
.

(4.9)

The input applied to the system at the discrete-time instant 𝑘 , u𝑘 , is given by

u𝑘 = û∗𝑘,0, (4.10)

where û∗
𝑘,0 is the first sample of the predicted optimal control sequence at time

instant 𝑘 . The optimization problem in (4.8) may be solved efficiently using available
Nonlinear Program (NLP) solvers.
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4.2.1 Objective Function

In order to approximate the problem described in the previous section, we define the
MPC objective function as a combination of two objectives as

𝐽𝑘 (𝚽̂𝑘) = 𝐽𝑘 (𝚽̂𝑘) − 𝜆𝑃𝑘 (𝚽̂𝑘), (4.11)

where 𝚽̂𝑘 ≜ [𝝋̂𝑘,0 𝝋̂𝑘,1 . . . 𝝋̂𝑘,𝑁 ] = CX̂𝑘 is the predicted discrete-time trajectory
of the vehicle at the discrete-time instant 𝑘 and 𝜆 > 0 is a scaling coefficient.

The first term in (4.11), 𝐽𝑘 , represents the objective of prioritizing the most
uncertain areas and is defined as

𝐽𝑘 (𝚽̂𝑘) =
𝑁∑︁
𝑗=0

∫
B𝑟 (𝝋̂𝑘, 𝑗 )

ℎ(p) 𝑑p. (4.12)

However, this term does not consider the previously covered areas neither the in-
tersections between the areas of observation within the prediction horizon. Conse-
quently, if the objective function was defined by this term alone, the trajectories
would converge to an uncertainty maximizer and remain at the maximizer. There-
fore, to encode the previously covered areas and the intersections between the areas
of observation within the prediction horizon, we add a penalization term 𝑃𝑘 (𝚽̂𝑘) to
the objective function.

The penalization term is constructed by penalizing intersections between the cir-
cles of observation along the trajectory of the vehicle. Two types of intersections
need to be considered: intersections between the predicted circles and circles cor-
responding to positions that were already covered, and intersections between the
predicted circles of observation. Thus, the penalization term has the form

𝑃𝑘 (𝚽̂𝑘) = 𝑃𝐵𝑘 (𝚽̂𝑘) + 𝑃𝐻𝑘 (𝚽̂𝑘), (4.13)

where 𝑃𝐵
𝑘
(𝚽̂𝑘) penalizes intersections between the predicted circles and previously

covered circles, and 𝑃𝐻
𝑘
(𝚽̂𝑘) penalizes intersections within the prediction horizon.

Hence, assuming that 𝑝 : R2 ×R2 → R+0 is a function that penalizes the intersection
between two circles and that 𝝋𝑖 is the actual position of the vehicle at the discrete-time
instant 𝑖, 𝑃𝐵

𝑘
(𝚽̂𝑘) is defined by

𝑃𝐵𝑘 (𝚽̂𝑘) =
𝑁∑︁
𝑗=1

𝑘∑︁
𝑖=0

𝑝(𝝋̂𝑘, 𝑗 , 𝝋𝑖), (4.14)

and 𝑃𝐻
𝑘
(𝚽̂𝑘) is defined as
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𝑃𝐻𝑘 (𝚽̂𝑘) =
𝑁∑︁
𝑗=2

𝑗−1∑︁
𝑖=1

𝑝(𝝋̂𝑘, 𝑗 , 𝝋̂𝑘,𝑖). (4.15)

To conclude the definition of the objective function, it remains to define how the
penalty function 𝑝 is constructed, which is addressed in the following subsection.

Prior to moving forward, it is worth noting that the integrals presented in (4.12)
still do not have a closed-form expression. Nevertheless, since the integrals are
now computed over circular domains, they may be approximated through numerical
methods such as quadrature rules [104] or simply by discretizing the area of obser-
vation using a grid. However, we will typically consider examples where the radius
of observation is small when compared to the structure of the uncertainty map, and,
therefore, (4.12) may be well approximated by

𝐽𝑘 (𝚽̂𝑘) ≃ 𝜋𝑟2
𝑁∑︁
𝑗=0

ℎ(𝝋̂𝑘, 𝑗 ). (4.16)

4.2.2 Penalty Function

A plausible definition for the penalty function 𝑝 would be the intersection area
between two circles, as detailed in Figure 4.4.

Fig. 4.4: Overlap between two circles.

The area of intersection between two circles centered at the positions c1 and c2,
both with the same radius 𝑟 , can be computed analytically by

𝑎(c1, c2) =
2𝑟2 arccos

(
1

2𝑟 ∥c1 − c2∥
)
− ∥c1 − c2∥

√︃
𝑟2 − ∥c1 − c2∥2, if ∥c1 − c2∥ ≤ 2𝑟

0, if ∥c1 − c2∥ > 2𝑟
.

(4.17)

However, an expression of such complexity would be a computational bottleneck. In
addition, the function in (4.17) is piecewise defined, posing additional implementa-
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tion difficulties. For instance, the logic condition would have to be addressed through
the Big-M notation from YALMIP [105], which serves to convert the logic condition
into a set of constraints using auxiliary binary variables and logic constraints.

Nevertheless, it is not necessary to precisely calculate the overlap area between
two circles to penalize the intersection between them. Such penalization might be
achieved by constructing a function that simply penalizes the condition of existing in-
tersection. Consequently, we design the penalty function by applying an exponential
penalty to the violation of the condition ∥c1 − c2∥ > 2𝑟 as

𝑝(c1, c2) = exp
{
𝛾

(
(2𝑟)2 − ∥c1 − c2∥2

)}
− 1, (4.18)

where 𝛾 > 0 is a parameter that can be tuned. Additionally, the subtraction of 1 is
included so that the function has a value of zero when ∥c1 − c2∥ = 2𝑟, but it has
no effect on the optimization since it is a constant term. Figure 4.5 illustrates the
evolution of the penalization as a function of the distance between the centers of the
two circles.
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Fig. 4.5: Illustration of the penalty function for some values of 𝛾 while considering
𝑟 = 0.5.

4.2.3 Computational Complexity

From a computational standpoint, it is essential to assess the complexity of the
proposed algorithm. Besides the inherent complexity of the problem, determined
by the structure of the uncertainty map and the imposed restrictions, it is crucial
to examine the number of terms comprising the objective function, which directly
impacts the number of evaluations that the solver must carry out. In particular, it
is worth noting that the number of terms comprising 𝐽𝑘 and 𝑃𝐻

𝑘
is determined

by the prediction horizon length. More specifically, the number of terms in 𝐽𝑘
increases linearly with the horizon length, while 𝑃𝐻

𝑘
comprises 𝑁 (𝑁 − 1)/2 terms

and, therefore, grows quadratically with the horizon.

Besides the quadratic growth of 𝑃𝐻
𝑘

as the horizon length increases, a significant
computational burden arises from 𝑃𝐵

𝑘
. At each time instant 𝑘 , the number of terms in
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𝑃𝐵
𝑘

increases by 𝑁 , meaning that 𝑃𝐵
𝑘

grows linearly with the flight time assigned for
the surveillance mission. One apparent solution could involve defining a maximum
backward horizon length 𝑁𝐵, thereby limiting 𝑃𝐵

𝑘
to a maximum number of terms.

Consequently, in such a case, 𝑃𝐵
𝑘

would be given by

𝑃𝐵𝑘 (𝚽̂𝑘) =
𝑁∑︁
𝑗=1

𝑘∑︁
𝑖=𝑘−𝑁𝐵+1

𝑝(𝝋̂𝑘, 𝑗 , 𝝋𝑖). (4.19)

Nevertheless, if the backward time horizon is not sufficiently long, the vehicle
would possibly revisit previously covered areas. Therefore, a better future approach
revolves around developing a subroutine that can progressively reduce the number
of components in the penalization term while retaining the information about all the
previously explored regions.

Additionally, it is essential to clarify that despite the notion that the objective
function grows at each time step, the optimization solvers are constructed by allo-
cating the necessary resources for the entire mission duration. This decision follows
from the substantial additional overhead that there would be in building a solver at
each time instant 𝑘 . Hence, the number of terms in the objective function is actually
constant throughout the whole mission, with the terms regarding future time steps
in 𝑃𝐵

𝑘
being attributed a null weight. As a result, despite potential fluctuations intro-

duced by the problem, the computational times are expected to remain approximately
constant throughout the surveillance mission.

4.2.4 Evaluation Metric

It is necessary to establish an overall metric to evaluate the performance of the
algorithm and perform comparisons. In this context, a reliable method of assessing
the quality of the generated trajectories is computing the time evolution of the
volume of uncertainty covered by the vehicle. By disregarding the coverage between
sampling times, this metric can be approximated as

𝐻𝑘 (𝚽𝑘) =
∫

⋃𝑘
𝑖=0 B𝑟 (𝝋𝑖 )

ℎ(p) 𝑑p, (4.20)

where 𝚽𝑘 ≜ [𝝋0 𝝋1 . . . 𝝋𝑘] is the discrete-time trajectory of the vehicle until time
instant 𝑘 . The numerical approximation of (4.20) is accomplished by discretizing
the map into a grid.
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4.3 Quadrotor Motion Control

We are particularly interested in multirotor aerial vehicles because of their agility,
hovering performance, low cost, and production ease. Moreover, in this project,
a quadrotor is available for performing experimental tests of the proposed MPC
algorithm. Therefore, this section presents the control architecture used to implement
the proposed MPC algorithm on a quadrotor aerial vehicle, as well as the dynamic
model of the quadrotor.

4.3.1 Control Architecture

We consider a dual-layer structure of motion control, as illustrated in Figure 4.6.
The proposed MPC algorithm serves as a high-level controller (trajectory planner)
that generates high-level references for the UAV. The inner-loop controller (trajectory
tracker) directly applies control inputs to the vehicle to accurately track the references
provided by the MPC algorithm. For the purpose of efficiency, the MPC algorithm
considers a simplified model of the vehicle, while the lower-level controller takes
into account the full dynamic model of the quadrotor.

Trajectory Tracking

MPC Algorithm
(Simplified Model)

Inner Loop Controller
(Full Dynamics)

Trajectory Planning
 State

Estimates References
Low-level

Commands

 State Estimates

Fig. 4.6: Full motion control scheme of the UAV.

4.3.2 Full Dynamics

For completeness, we start by presenting the full nonlinear dynamics of a quadrotor.
The nonlinear dynamics of the quadrotor are described in the body {𝐵} and inertial
{𝐼} frames depicted in Figure 4.7, while assuming that the origin of {𝐵} is coincident
with the center of mass of the quadrotor.
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yB

{ I }

{ B }

xB

zB

xI

yI

zI

Fig. 4.7: Quadrotor reference frames.

Let p ∈ R3 denote the position of the quadrotor’s center of mass in the inertial
frame. Let 𝜼 = [𝜙 𝜃 𝜓]⊤ describe the orientation of the of the body frame with
respect to the inertial frame, where 𝜙, 𝜃 and 𝜓 are the roll, pitch and yaw angles,
respectively. Let v denote the linear velocity of {𝐵} with respect to {𝐼} expressed in
{𝐼}. Let 𝝎 = [𝑝 𝑞 𝑟]⊤ denote the angular velocity of {𝐵} with respect to {𝐼}, this
time expressed in {𝐵}. Finally, let 𝑚 be the mass of the rigid object, I ∈ R3×3 the
inertia matrix expressed in {𝐵}, and 𝑔 the gravitational acceleration. The quadrotor
equations of motion, based on the Newton-Euler formalism [106], are given by

¤p = v,

𝑚 ¤v = −𝑚𝑔e3 + 𝐼R𝐵 (𝜼) 𝐹𝑇e3,

¤𝜼 = T(𝜼)𝝎,

I ¤𝝎 = −𝝎 × I𝝎 + 𝝉,

(4.21)

where 𝐹𝑇 is the net thrust and 𝝉 = [𝜏𝜙 𝜏𝜃 𝜏𝜓]⊤ is the vector of moments applied
to the UAV described in {𝐵}. Additionally, 𝐼R𝐵 (𝜼) ∈ 𝑆𝑂 (3) is the rotation matrix
from {𝐵} to {𝐼} and T(𝜼) ∈ R3×3 is a matrix that converts the angular velocity to
angle rates.

Assuming that the Euler angles follow the sequence of rotation 𝑍-𝑌 -𝑋 that is
described in [107], 𝐼R𝐵 (𝜼) is given by

𝐼R𝐵 (𝜼) =


cos 𝜃 cos𝜓 sin 𝜙 sin 𝜃 cos𝜓 − cos 𝜙 sin𝜓 cos 𝜙 sin 𝜃 cos𝜓 + sin 𝜙 sin𝜓

cos 𝜃 sin𝜓 sin 𝜙 sin 𝜃 sin𝜓 + cos 𝜙 cos𝜓 cos 𝜙 sin 𝜃 sin𝜓 − sin 𝜙 cos𝜓

− sin 𝜃 sin 𝜙 cos 𝜃 cos 𝜙 cos 𝜃


,

(4.22)
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and T(𝜼) is

T(𝜼) =


1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃

0 cos 𝜙 − sin 𝜙

0 sin 𝜙 sec 𝜃 cos 𝜙 sec 𝜃


. (4.23)

The steady-state thrust and the yaw moment generated by rotor 𝑖 are modeled as

𝐹𝑇𝑖 = 𝐾𝑖Ω
2
𝑖 ,

𝜏𝜓𝑖 = 𝐶𝑖𝐹𝑇𝑖 ,

(4.24)

where Ω𝑖 is the rotation speed of rotor 𝑖, and the constants 𝐾𝑖 and 𝐶𝑖 may be
determined experimentally. The roll and pitch moments, 𝜏𝜙 and 𝜏𝜃 , result from the
generated rotor thrusts and their arrangement relative to the quadrotor’s center of
mass. Therefore, the net thrust and moments, for a quadrotor with an X-configuration,
are computed through



𝐹𝑇

𝜏𝜙

𝜏𝜃

𝜏𝜓


=



1 1 1 1

𝐿 −𝐿 −𝐿 𝐿

−𝐿 −𝐿 𝐿 𝐿

𝐶1 −𝐶2 𝐶3 −𝐶4





𝐹𝑇1

𝐹𝑇2

𝐹𝑇3

𝐹𝑇4


, (4.25)

where 𝐿 denotes the perpendicular distance of the rotors to the 𝑥 or 𝑦 axis of the
body frame.

To conclude, we point out that there are additional aerodynamic effects, which
would increase the complexity of the model. However, a model with such a level of
precision is typically not required.

4.3.3 Simplified Model

At the trajectory planning level, considering that the UAV flies at a constant altitude
and ignoring the fast rotational dynamics of the vehicle, the UAV might be modeled
as a two-dimensional point-mass system that follows double-integrator dynamics.
Thus, the state vector x is composed of the positions and velocities on the horizontal
plane, x = [𝝋⊤ ¤𝝋⊤]⊤, and the control input u consists of the acceleration on the
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horizontal plane. Consequently, at the planning level, the quadrotor dynamics take
the linear form


¤𝝋

¥𝝋

 =


02×2 I2×2

02×2 02×2



𝝋

¤𝝋

 +

02×2

I2×2

 u, (4.26)

where 02×2 denotes a matrix of zeros and I2×2 denotes the identity matrix, both with
dimension 2 × 2.

The MPC algorithm considers this simplified model of the UAV, which reduces
the computational cost of the optimization process, while the inner-loop controller
processes the remaining dynamics of the UAV. This mismatch is not critical for
obtaining good performance in real conditions as long as the generated trajectories
are not extremely aggressive so that the inner-loop dynamics become visible.

4.3.4 Actuation Limits

As any other vehicle, a quadrotor is subject to limitations imposed by its actuators. In
this case, the maximum thrust magnitude of the quarotor is limited. At any time, the
quadrotor should have a vertical force to balance its weight, i.e., a force of magnitude
𝑚𝑔. Then, it must be able to maneuver around this equilibrium. A descent can be
achieved by decreasing the vertical force that balances the weight. However, to ascend
it must be able to produce a higher thrust on the vertical direction.

In the vertical direction, the quadrotor should have available a thrust force of
magnitude𝑚(𝑔+𝑎max

𝑧 ), where 𝑎max
𝑧 ∈ R+ represents the maximum acceleration along

the vertical axis. Let 𝐹max
𝑇
∈ R+ be the maximum thrust magnitude that the quadrotor

can produce, and 𝑎max
𝑥𝑦 ∈ R+ be the maximum acceleration on the horizontal plane.

The maximum acceleration on the horizontal plane can be computed by

𝑎max
𝑥𝑦 =

√︃
(𝐹max
𝑇
/𝑚)2 − (𝑔 + 𝑎max

𝑧 )2. (4.27)

The saturation along the vertical direction must first be chosen, to ensure that the
multirotor is capable of maintaining its altitude. Then, the horizontal saturation is a
result of the choice made about 𝑎max

𝑧 .
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4.3.5 Implementation Details

In practical terms, the proposed motion control scheme is implemented using a
PX4 Autopilot [108]. The PX4 Autopilot provides both the inner-loop controller
and an Extended Kalman Filter (EKF) to process sensor measurements. In this
implementation, the MPC algorithm generates references to be tracked by the inner-
loop controller provided by the PX4 Autopilot, while both controllers receive the
corresponding state estimates provided by the EKF algorithm. Figure 4.8 illustrates
the described implementation.

MPC Algorithm Inner Loop Controller UAV

EKF

State
Estimates

Sensor Data

Low-level
controlsReferences

State Estimates

Fig. 4.8: Implementation of the proposed motion control scheme.

As detailed in Figure 4.9, the controller supplied by the PX4 Autopilot follows
a standard cascaded architecture with several stages. Each stage is composed of
a proportional or Proportional-Integral-Derivative (PID) controller that generates
references for the upcoming stage based on references provided by the previous stage.
From a general perspective, the PX4 controller consists of two main control loops:
position and attitude. The position control loop commands accelerations, which
are then converted into attitude and net thrust references. The attitude control loop
receives attitude and net thrust references and commands low-level thrust references
for the vehicle motors.

P

Yaw

Position
Thrusts

50 Hz

Position
Control

Velocity
Control

PID

Acceleration
and Yaw

to Attitude

P

250 Hz

Angle
Control

Angular
Rate

Control

PID

1 kHz

Mixer

Inertial Frame Body Frame

Fig. 4.9: PX4 controller architecture (adapted from PX4 documentation).
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With such an architecture, the PX4 controller is able to receive different kinds of
references from the MPC algorithm, from high-level references to low-level ones. In
our case, we resort to high-level references such as position, velocity, or acceleration
references, while keeping the altitude constant. The type of references used may then
be adjusted given the experimental results obtained.

4.4 Simulation Results

In this section, the efficacy of the proposed MPC algorithm is assessed through dif-
ferent simulation examples obtained within a MATLAB environment. The objective
is to analyze the behavior and performance of the algorithm, as well as the quality of
the generated trajectories. We begin by presenting some simulations that illustrate
the trajectories that the algorithm is able to produce. Subsequently, we study the
influence of some parameters on the algorithm.

4.4.1 Simulation Setup

The goal of this section is to perform an initial analysis of the behavior of the
proposed MPC algorithm. Therefore, the simulations presented in this section are
performed assuming that the UAV follows ideal double-integrator dynamics. The full
nonlinear dynamics of the UAV and the PX4 inner-loop controller are then included
in the simulations and experiments of Section 4.5. At each discrete-time instant 𝑘 ,
the MPC algorithm is based on the following optimization problem

maximize
X̂𝑘 ,Û𝑘

𝐽𝑘 (X̂𝑘 , Û𝑘)

subject to x̂𝑘,0 = x𝑘 ,
x̂𝑘, 𝑗+1 = Ax̂𝑘, 𝑗 + Bû𝑘, 𝑗 , 𝑗 = 0, . . . , 𝑁 − 1,

C′x̂𝑘, 𝑗



 ≤ 𝑣max
𝑥𝑦 , 𝑗 = 0, . . . , 𝑁,

û𝑘, 𝑗



 ≤ 𝑎max
𝑥𝑦 , 𝑗 = 0, . . . , 𝑁 − 1,

(4.28)

where the objective function 𝐽𝑘 is obtained as described in Section 4.2, and the
matrices A and B, corresponding to the discrete-time double-integrator dynamics
(zero-order hold), are given by
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A =


I2×2 𝑇𝑠 I2×2

02×2 I2×2

 ,
B =


𝑇2
𝑠 /2 I2×2

𝑇𝑠 I2×2

 .
(4.29)

The auxiliary matrix C′, given by

C′ =
[
02×2 I2×2

]
, (4.30)

extracts the velocity from the state. The parameters 𝑣max
𝑥𝑦 and 𝑎max

𝑥𝑦 are, respectively,
the maximum velocity and acceleration that the vehicle may achieve on the horizontal
plane.

The simulation results presented in this section were obtained in MATLAB [109]
using the CasADi [110] optimization modeling toolbox, along with the IPOPT [111]
numerical solver. At each sampling time, the solution obtained at the previous step is
used to set the initial guess for the current step by performing the shifting warm-start
method. All computations were executed on a single desktop computer equipped
with an Intel Core i7-6700K @ 4.00 GHz processor and 32.00 GB of RAM.

In the following examples, the drone starts at the position p = [1 1]⊤ with no
initial velocity, and the radius of observation is assumed to be 𝑟 = 1 m. The sampling
period is 𝑇𝑠 = 0.1 s, the horizon length is 𝑁 = 15, and the vehicle has a maximum
velocity of 4 m/s and a maximum acceleration of 4 m/s2.

4.4.2 Example 1

We begin by presenting a simple simulation where the uncertainty function is com-
posed of only one Gaussian component with a circular shape. The simulation results
are shown in Figure 4.10.
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(a) Trajectory (b) Sensor footprint

Fig. 4.10: Simple simulation with one Gaussian component with a circular shape.
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(f) Solver times (100 runs mean)

Fig. 4.10: Simple simulation with one Gaussian component with a circular shape.

As shown in Figure 4.10 (a), initially the vehicle moves towards the maximum
of the Gaussian component. Subsequently, as a result of the penalizations applied
by the algorithm, the vehicle goes to wider areas by executing a spiral curve. The
evolution of the 𝑥 and 𝑦 components of the position and acceleration of the vehicle
is depicted in Figures 4.10 (c) and 4.10 (e). Moreover, Figure 4.10 (b) illustrates
the sensor footprint of the UAV, and Figure 4.10 (d) shows the accumulation of the
uncertainty volume covered by the vehicle. In addition, we draw attention to Figure
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4.10 (f), which presents the mean solver times acquired through 100 simulations,
with each iteration taking approximately 7 ms on average.

4.4.3 Example 2

We introduce another simple simulation, in which the uncertainty function consists
of a Gaussian component with an elliptical shape. As depicted in Figure 4.11 (a), the
trajectory adjusts itself to the elliptical shape of the Gaussian component. Moreover,
as shown in Figures 4.11 (d) and 4.11 (f), the resulting uncertainty reduction profile
and the mean solver times are similar to those from the previous example.

(a) Trajectory (b) Sensor footprint
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Fig. 4.11: Simple simulation with one Gaussian component with an elliptical shape.
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4.4.4 Example 3

Now we introduce a more complex example where the uncertainty map comprises
three Gaussian components, with the simulation results displayed in Figure 4.12.
As depicted in Figure 4.12 (a), the drone analyzes each component individually.
In particular, it is worth noting that the components with means at the positions
p = [15 5]⊤ and p = [10 15]⊤ are similar to those from the previous examples, and
the flight paths observed when the drone analyzes such components are also similar
to the previous ones. However, the third component located at p = [5 5]⊤ has a
smaller variance when compared to the observation radius of the UAV. Consequently,
when the drone analyzes this component, it simply remains at the maximum of the
component. Additionally, it should be noticed that the solver times are slightly higher
in this example, with each iteration averaging approximately 12 ms.
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(a) Trajectory (b) Sensor footprint
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Fig. 4.12: Example where the uncertainty map comprises three Gaussian compo-
nents.

4.4.5 Example 4

We present another example in which the uncertainty map is now composed of four
radially-symmetric Gaussian components, with the simulation results displayed in
Figure 4.13. As it can be observed in Figure 4.13 (a), the component with mean
at p = [5 5]⊤ is similar to the one from the previous example, and the vehicle
exhibits a similar behavior when analyzing this specific component. The remaining
components with means at p = [5 15]⊤, p = [15 15]⊤, and p = [15 5]⊤ all have
similar covariance matrices but different associated weights. By observing Figures
4.13 (a) and 4.13 (b), one can notice that, as the weights of the components increase,
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the spiral curves become more tightly concentrated, and there is a greater overlap
of the vehicle’s observation circles. In this example, each solver iteration averages
approximately 16 ms, as shown in Figure 4.13 (f).
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Fig. 4.13: Example where the uncertainty map comprises four radially-symmetric
components.

4.4.6 Effect of the Weights

Given that the objective function of the proposed algorithm relies on the exponent
𝛾 to penalize intersections and the scaling coefficient 𝜆, it is essential to assess
how these two parameters influence the algorithm. In this context, we consider the
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conditions of the initial example, where the uncertainty map consists of a single
radially-symmetric Gaussian component, and we manipulate the weights 𝜆 and 𝛾.
Figure 4.14 displays the resulting trajectories for four distinct combinations of values
of 𝜆 and 𝛾.

(a) 𝜆 = 1/7000, 𝛾 = 0.4 (b) 𝜆 = 1/10000, 𝛾 = 0.4

(c) 𝜆 = 1/7000, 𝛾 = 1 (d) 𝜆 = 1/7000, 𝛾 = 0.8

Fig. 4.14: Trajectories obtained for different values of 𝜆 and 𝛾.

As 𝜆 decreases in value, less emphasis is placed on the penalization term. Conse-
quently, the trajectories are expected to become more tightly concentrated, resulting
in a greater overlap of the vehicle’s observation circles. This effect is evident in the
examples depicted in Figures 4.14 (a) and 4.14 (b), and it becomes more pronounced
when examining Figure 4.15, which illustrates the evolution of the uncertainty vol-
ume covered by the vehicle for the various scenarios presented in Figure 4.14. As
shown in Figure 4.15, in the case of Figure 4.14 (b), the vehicle remains closer to the
peak of the Gaussian component for an extended duration compared to Figure 4.14
(a), resulting in a slower initial convergence. However, note that at 𝑡 = 30 s, both
trajectories exhibit a similar coverage.
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A similar impact can be anticipated when examining the variation of 𝛾. As the
value of 𝛾 increases, the penalizations become more pronounced, leading to the
expectation of a reduced overlap in the resulting trajectories. This effect is clearly
observable in the examples presented in Figures 4.14 (a) and 4.14 (d). In particular,
as shown in Figure 4.15, note that the trajectory in Figure 4.14 (d) initially exhibits a
quicker convergence when compared to the trajectory in Figure 4.14 (a). However, at
the final simulation instant 𝑡 = 30 s, the uncertainty volume covered by the trajectory
in Figure 4.14 (a) is greater than that achieved by the trajectory in Figure 4.14 (d).
Additionally, Figure 4.14 (c) illustrates a more extreme case where 𝛾 is sufficiently
high to prevent the vehicle from executing a spiral curve.
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Fig. 4.15: Uncertainty volume accumulation for the different values of 𝜆 and 𝛾.

In light of the previous discussion, it is evident that there exists some parameter
tuning associated with the proposed algorithm. Nevertheless, it should be acknowl-
edged that the algorithm has the potential to be extended and generalized through the
incorporation of variable weights. For instance, one could consider assigning higher
penalizations in regions where the uncertainty function has higher values, and lower
penalizations in regions where the uncertainty is lower. Moreover, one could em-
ploy decaying weights in the term 𝐽𝑘 of the objective function to prioritize earlier
prediction instants, potentially resulting in a faster convergence. Such variations of
the algorithm could be easily incorporated, and a more exhaustive analysis could
be performed. However, the decision to implement these variations is left as a user
choice and may be a subject of consideration in future research.

4.4.7 Effect of the Horizon

It is also important to evaluate how the performance of the proposed MPC algorithm
is impacted by varying the length of the prediction horizon. In this context, we
begin our analysis by considering an uncertainty map comprising two Gaussian
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components, with Figure 4.16 depicting the generated trajectories for two different
prediction horizon lengths. As depicted in Figure 4.16 (a), for a horizon length of
𝑁 = 5, the vehicle’s predictive ability falls short and it is not able to predict the
second Gaussian component. In contrast, when a longer horizon length is employed,
as illustrated in Figure 4.16 (b), the vehicle is able to predict the second Gaussian
component, resulting in a trajectory with a higher coverage.

However, an extended horizon does not necessarily result in higher-quality trajec-
tories, as illustrated in Figure 4.17. Specifically, as highlighted in Figure 4.17 (d), it
can be noticed that the trajectories depicted in Figures 4.17 (a) and 4.17 (b) exhibit
similar coverage profiles, and, in fact, the trajectory from Figure 4.17 (b) achieves a
lower final coverage than the trajectory in Figure 4.17 (a). Furthermore, the trajec-
tory from Figure 4.17 (a) exhibits a smoother profile than that in Figure 4.17 (b). A
longer prediction horizon also increases the computational load, as shown in Figure
4.17 (c). In the context of this simple simulation with a duration of 30 seconds and
featuring a single Gaussian component, for a horizon of 𝑁 = 40, each solver iteration
already takes an average of approximately 35 ms, while for a horizon of 𝑁 = 15 the
average iteration time is about 8 ms.

(a) N = 5 (b) N = 15

Fig. 4.16: Trajectories obtained for two distinct prediction horizon lengths.
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(a) N = 15 (b) N = 40
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Fig. 4.17: Results obtained for different prediction horizon lengths.

4.5 Experimental Validation

In this section, the efficacy of the proposed MPC algorithm is assessed through
simulations in a higher-fidelity simulation software and by conducting actual ex-
periments. We begin by providing a concise overview of the software architecture
employed for simulating and carrying out tests in the physical drone. Subsequently,
we showcase the results achieved from these evaluations.

4.5.1 Software Architecture

The software used to perform simulations and conduct actual experiments in the
drone follows from the previous work done by Oliveira et al. [112] and Jacinto [113].
The employed software architecture is illustrated in Figure 4.18. The operating
system consists of the Ubuntu 18.04 LTS version along with the melodic variant
of the Robot Operating System (ROS). In the remainder of this section, we briefly
describe each block shown in Figure 4.18.
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Fig. 4.18: Simplified scheme of the employed software architecture.

4.5.2 Gazebo Simulator

The simulations conducted in this section are performed using the Gazebo simulator
[114]. Gazebo stands out as a high-fidelity robotics simulator featuring a physics
engine that accurately models the dynamic and kinematic characteristics of vehicles.
Moreover, it offers the flexibility to incorporate various sensors and actuators via
plugins. In essence, Gazebo simulates the motion of vehicles and the resulting sensor
data, based on the inputs provided to the vehicles. One key advantage of Gazebo
lies in its seamless integration with the ROS middleware. Such integration facilitates
a modular approach to structure the entire system by defining each entity as a
separate package and enabling communication via the publication and subscription
of messages to topics and services.

4.5.3 PX4 Autopilot

PX4 [108] is an autopilot firmware that can operate within a vehicle, offering two
distinct modes: Hardware In The Loop (HITL) and Software In The Loop (SITL).
Its primary function is to act as an intermediary between the offboard modules and
vehicle actuators. It provides essential functions such as sensor data acquisition,
actuators control, estimators, safety features, and communication with external sys-
tems. As shown in Figure 4.18, the PX4 Autopilot provides raw sensor and estimator
data and accepts commands to control the vehicle. The PX4 Autopilot software also
includes a collection of available quadrotor models, in particular the Iris quadrotor
[115] that is used in the simulations.
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4.5.4 Ground Computer Stack

The Ground Computer stack, as illustrated in Figure 4.18, enables users to implement
control algorithms and execute missions using the vehicles. The UAV class represents
a UAV and is accessible thanks to the input and output modules developed by
Oliveira et al. [112] and adapted by Jacinto [113]. The input module, responsible for
subscribing to data published by the PX4 Autopilot, makes this data available to the
user in a standardized manner. The output module consists of the methods that allow
the user to send offboard commands and control references to the PX4 Autopilot.
The proposed MPC algorithm is implemented within this framework using the C++
CasADi Application Programming Interface (API). Additionally, QGroundControl
is an application that serves as a graphical user interface offering comprehensive
flight control and vehicle configuration capabilities.

4.5.5 Launching Simulations

In order to conduct simulations, a set of launch files is employed to initiate all the
fundamental services. The launch files facilitate the initiation of services like Gazebo
within the ROS environment, thereby granting further access to variables pertaining
to the simulation and the state of the world. The hierarchical organization of the
launch files is illustrated in Figure 4.19. Firstly, the control algorithm to execute is
developed within a ROS package, and then the drone sim.launch file is updated to
call this package. Subsequently, the simulation may be initiated using the command
”roslaunch drone sim bringup simulator bringup.launch.”

simulator_bringup.launch

drone_sim_bringup
vehicle_bringup.launch

drone_sim_bringup

empty_world.launch

gazebo_ros

single_vehicle_spawn.launch

drone_sim_bringup

px4.launch

mavros

drone_sim.launch

drone_bringup

Fig. 4.19: Hierarchical organization of the launch files.
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4.5.6 Experimental Setup

In the upcoming subsections, we present the results obtained from different Gazebo
simulations and the corresponding experimental tests performed in an outdoor envi-
ronment (field trials). The Gazebo simulations were executed using the Iris quadrotor
[115], available through the PX4 Autopilot SITL plugin. Meanwhile, the field trials
were conducted using the M690B drone from a joint effort between FirePuma and
Capture projects [116]. Additionally, to ensure validation prior to the experimental
tests, we also conducted simulations using the Typhoon H480 hexacopter model,
which shares more analogous characteristics with the M690B drone. However, the
results were equivalent to those obtained using the Iris quadrotor. Figure 4.20 depicts
the Iris and the M690B quadrotors used for the experimental validation.

(a) Iris quadrotor (Gazebo) (b) M690B (field trials)

Fig. 4.20: Quadrotors used in the Gazebo simulations and field trials.

Concerning the Gazebo simulations, our initial approaches involved providing
acceleration and, subsequently, velocity references to the PX4 controller. Despite our
efforts, these approaches posed challenges in achieving smooth and stable trajectories
consistent with those obtained in MATLAB. Nonetheless, when commanding a
complete trajectory generated offline under identical vehicle constraints, it yielded
the anticipated outcomes, enabling the vehicle to follow the trajectories with minimal
error.

Despite the lack of significant advantages in running the algorithm in real-time in
this particular scenario, there is a natural desire to enable the real-time execution of
the algorithm to accommodate dynamic alterations in the future, like time-varying
maps or obstacle avoidance. To enable the real-time execution of the algorithm
and overcome the bad results obtained using lower-level references, we opted for a
more conservative approach. The approach consists in sending a given slice of the
predicted optimal sequence of position waypoints to the PX4 controller. With such
an approach, the penalizations of the objective function are still updated at each
sampling time 𝑘 , but the optimization problem is only solved after the application
of each sequence of waypoints. This method ultimately produced results similar to
those obtained by commanding a complete trajectory generated a priori.
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In the examples presented in the following subsections, the drone starts at the
position p = [1 1]⊤ with no initial velocity and the radius of observation is assumed
to be 𝑟 = 0.5 m. In the Gazebo simulations, the MPC operates with a sampling period
of 𝑇𝑠 = 0.1 s, a prediction horizon length of 𝑁 = 20, and the first 5 predicted optimal
waypoints are commanded to the PX4 controller. Consequently, the optimization
problem is only solved from 0.5 s to 0.5 s. The MPC is warm-started using the
shifting method but by shifting 5 steps. Moreover, the MPC considers a maximum
velocity of 2 m/s and a maximum acceleration of 2 m/s2 for the vehicle. Regarding
the field trials, due to difficulties faced when attempting to execute the algorithm
onboard, the experimental tests were carried out by instructing waypoints generated
a priori under the same conditions.

4.5.7 Experiment 1

We begin by considering an example where the uncertainty map is composed of
one radially-symmetric Gaussian component, with the corresponding results being
displayed in Figure 4.21.

(a) Gazebo - Trajectory (RViz) (b) Field trial - Trajectory (RViz)

Fig. 4.21: Gazebo and field trial results for a simple uncertainty map.
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(c) Gazebo - Sensor footprint (d) Field trial - Sensor footprint
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Fig. 4.21: Gazebo and field trial results for a simple uncertainty map.

As illustrated in Figure 4.21 (a), the drone exhibits the expected behavior in the
Gazebo simulation, executing a smooth spiral curve, as also reflected in the position
profiles displayed in Figure 4.21 (e). Such behavior is obviously possible due to
the appropriately tuned parameters of the MPC objective function and the selection
of the limits for the acceleration and velocity of the vehicle. These choices allow
the generation of sufficiently smooth trajectories that the PX4 controller can track
efficiently. In addition, as depicted in Figure 4.21 (g), the computational times are
also sufficiently fast to allow for a good performance, with each solver iteration
taking approximately 18 ms on average.

Concerning the field trial, as shown in Figure 4.21 (b), it is possible to observe
that the resulting trajectory is not as consistent as the one from Gazebo. This dis-
crepancy primarily arises from the influence of wind disturbances encountered in
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the outdoor experimental environment. In addition, there are also some inaccuracies
associated with the Global Positioning System (GPS) of the drone. Nevertheless, for
the designated observation radius, both trajectories show a similar coverage by the
final time instant, as demonstrated in Figure 4.21 (h).

4.5.8 Experiment 2

In the second example, we consider an uncertainty map composed of three Gaussian
components with different shapes. The Gazebo and field trial results are displayed
in 4.22.

(a) Gazebo - Trajectory (RViz) (b) Field trial - Trajectory (RViz)

(c) Gazebo - Sensor footprint (d) Field trial - Sensor footprint

Fig. 4.22: Results for an uncertainty map composed of three Gaussian components.
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(f) Field trial - Position
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Fig. 4.22: Results for an uncertainty map composed of three Gaussian components.

As shown in Figure 4.22 (a), in the Gazebo simulation, the drone executes the
expected behavior, and the trajectory adapts to the characteristics of each Gaussian
component. Concerning the field trials, besides the wind and the GPS errors, we
also draw attention to the structural differences between the drones used in Gazebo
and in the real trials, as well as differences in the tuning of the inner-loop controllers
of the PX4 Autopilot. Despite that, in this example, both trajectories exhibit similar
coverage profiles, as shown in Figure 4.21 (h), as well as in Figures 4.21 (c) and 4.21
(d).

4.5.9 Experiment 3

Ultimately, we present an example where the uncertainty map is composed of five
Gaussian components. Figure 4.23 displays the results obtained in Gazebo and in
the corresponding experimental test.
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(a) Gazebo - Trajectory (RViz) (b) Field trial - Trajectory (RViz)

(c) Gazebo - Sensor footprint (d) Field trial - Sensor footprint
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Fig. 4.23: Results for an uncertainty map composed of five Gaussian components.
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As illustrated in Figure 4.23 (a), the map comprises four circular Gaussian com-
ponents. Two of these components have relatively small variances in comparison to
the UAV’s observation radius, while the other two exhibit higher variances. Addi-
tionally, there is a fifth component with an elliptical shape, and its variance along one
of its axes is small when compared to the UAV’s observation radius. In particular, as
this scenario had not been previously introduced, we draw attention to the drone’s
behavior when analyzing the former component. In such a case, the drone follows
a straight path along the major axis of the elliptical component, as depicted in Fig-
ure 4.23 (a). Additionally, as shown in Figure 4.23 (g), each solver iteration takes
approximately 25 ms in average. This duration is slightly longer than the previous
examples due to the map having more components and the mission having a slightly
extended duration. Ultimately, it can be observed that the outcomes of the field trial
display a comparable pattern to the results obtained from the simulation.

4.6 Summary

This chapter addressed the generation of optimal trajectories for autonomous wild-
fire prevention using a UAV. The main goal was designing a trajectory planning
algorithm based on a map characterizing the uncertainty of fire presence in a given
region. We began by establishing the mathematical definition of the uncertainty map,
described as a weighted sum of Gaussian components. Then, we outlined the assump-
tions regarding the sensing capabilities of the UAV. In this context, the vehicle was
assumed to fly at a constant altitude, equipped with a gimbal sensor with a limited
FOV, and capable of perfectly analyzing a circular region around the UAV’s horizon-
tal position. Considering these assumptions, the problem was formulated from an
optimal control standpoint, with the objective of maximizing the uncertainty volume
covered by the vehicle during the surveillance mission.

Due to the complexity of the original problem formulation, we proposed an
alternative approach based on discrete-time MPC. To promote the map exploration
and to prevent the UAV from revisiting previously covered regions, the proposed
algorithm penalizes intersections between the circular observation areas along the
trajectory of the UAV. Given the complexity of precisely calculating the overlap area
between two circles, we designed an exponential surrogate function to penalize such
intersections.

Subsequently, we described the control architecture used to implement the algo-
rithm in a quadrotor UAV. We considered a dual-layer structure of motion control,
with the MPC algorithm serving as a high-level trajectory planner and an inner-
loop controller responsible for tracking references generated by the MPC. For the
purpose of efficiency, at the planning level, the UAV was modeled as a point-mass
system following double-integrator dynamics. The motion control scheme was im-
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plemented using a PX4 Autopilot, providing both the inner-loop controller and an
EKF to process sensor measurements.

The algorithm was initially tested in MATLAB, assuming ideal double-integrator
dynamics for the UAV. Different examples were provided to showcase the trajecto-
ries that the algorithm is able to produce, and we conducted an analysis to assess
the impact of some parameters on the algorithm’s performance. Subsequently, the
algorithm was assessed through higher-fidelity simulations in a Gazebo environment
and by conducting actual experiments in an outdoor setting.



Chapter 5

Outputs

The execution of project FirePuma was very successful with key scientific, peda-
gogical and societal contributions that are highlighted in this chapter along with a
general overview of output metrics with respect to the anticipated at the proposal
stage. The key metrics are presented in Table 5.1 that compare the proposed versus
the achieved outputs.

Project Outputs Summary

Outputs Proposed Achieved
% of

execution
A - Publications
Books 1 2 200%
Articles in international journals 9 16 178%
Articles in national journals 0 0 n.a.
B - Communications
International Conference Communications 6 9 150%
National Conference Communications 3 0 0%
C - Reports 3 4 133%
D - Organization of seminars and conferences 2 3 150%
E - Advanced formation
PhD Theses 2 1 50%
MSc Theses 3 19 633%
Other 0 0 n.a.
F - Models 3 3 100%
G - Computational applications 3 3 100%
H - Pilot installations 0 0 n.a.
I - Laboratory prototypes 0 1 n.a.
J - Patents 0 0 n.a.
L - Others 0 2 n.a.

Table 5.1: Outputs generated by project FirePuma.
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Considering the numbers presented in Table 5.1, the FirePuma resulted in the
publications of 2 books, which was twice the expected output. Apart from the current
document, the Principal Investigator also wrote a book directed at the academic
community with the main objective of bridging how state estimation is taught at the
graduate level in the deterministic and stochastic cases. The publication is currently
under use of one of the curricular units in the School of Science and Technology
(SST) from the Nova University of Lisbon.

In terms of publications, there was a clear objective on dissemination using inter-
national venues. Even scientific conferences and seminars held nationally have their
proceedings published internationally. Therefore, conference communications in Ta-
ble 5.1 should be viewed as a single indicator where the project met the proposed
dissemination goals. In journal publications, the team surpassed the initial objective
with 6 more journal papers.

A last point of interest from the values presented in Table 5.1 is in advanced
formation. Initially, the project faced difficulties in hiring PhD students, especially
during the Covid period. For that reason, a major change in the workplan was to
allocate a portion of the human resources budget to hiring at the MSc level. In that
regard, the project was very successul completing the formation of 19 MSc students,
which represents a 633% execution against the planned 3 theses. This also justifies
the number of PhD graduates, which was the only metric not achieved as in the
proposal.

5.1 Scientific Contributions

Throughout this book, we have highlighted in each chapter other research questions
that were addressed due to their proximity with the main challenge in each task. In
this section, we highlight in a broader sense what were the main contributions to the
scientific community and how they advance the state-of-the-art and enable further
developments.

5.1.1 Reputation-based Resilient Methods

The problem of consensus is often used to provide a distributed version of centralized
algorithms. Since it is the building block required for distributed optimization, it can
be applied to any task in engineering since all problems correspond to optimizing a
function while respecting physical constraints. Prior to project FirePuma, there were
two main approaches to eliminating data from compromised agents in a multi-agent
system that is running a linear consensus protocol: i) viewing the problem as a fault
detection and ii) using the Mean Subsequence Reduced algorithm.
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Broadly speaking, option i) often provides theoretical guarantees of detection if
the change in the values is large enough as the detectors are using the model to check
if the communicated values are consistent with past observations. However, there is
an inherent combinatorial nature when we allow multiple nodes to be corrupted as
we have to build a detector for all possible combinations of compromised agents. On
the other extreme, the Mean Subsequence Reduced algorithm is based on the idea
of having each node discard minimum and maximum values as to force attackers to
reduce their impact on the network.

During the research of FirePuma, the team introduced the idea of maintaining a
reputation for each neighbor much like reputation systems for movies and books value
differently the opinion of the contributers depending on their past history of ratings.
In doing so, the method has a similar complexity to just removing minimum and
maximum values but offers a better accuracy as the attackers are more constrained
in their optimal strategy. Current research in this topic is going to release versions
that are both resilient, private and able to recover from the attacks.

5.1.2 Constrained Convex Generators

Guaranteed state estimation that uses the support set for each of the unknown sig-
nals was primarily conducted using set representations that maintained complexity
(intervals and ellipsoids) at the expenses of accuracy or using CZ to have an exact
representation if all support sets were polytopes but having a complexity that would
grow over time thus preventing running the observer for large periods of time without
performing order reductions and introducing conservatism. Moreover, the definition
of convex hulls for any of those set representations was either too conservative or
computationally expensive.

The research of FirePuma led to the introduction of CCGs which were able to
combine any type of bounds for the unknown signals, having all operations in
exact format, uncluding the convex hull. As a consequence, the team expanded the
state-of-the-art as deterministic state estimation can be computed even for systems
with uncertainties while being optimal both in the size of the sets and also their
descriptions. Moreover, as these novel formulation allowed combining polytopes and
ellipsoids, the team was able to provide a method to perform state estimation with
complexity that remains constant and voids the need for order reduction procedures.
This method bridges the main criticism against guaranteed state estimation when
compared to the KF for its computational complexity and opened the possibility to
optimally encode worst-case constraints in optimization-based controllers as those
arising from MPC.
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5.2 Pedagogical Contributions

During the execution of the project, the team was heavily involved in advanced
formation, which led to the identification of two main pedagogical innovations that
could arise from the development of FirePuma: i) the shift towards optimization-
based controllers in the space domain and ii) the need for a target teaching for the
basics of Control Theory.

5.2.1 Survey related to Optimization-based Controllers for Spacecraft

The trajectory generation for the project along with the recent approval of various
MSc in Aerospace Engineering in Portuguese universities led the team to compile
a survey paper on spacecraft rendezvous that was published in the Encyclopedia
of Systems and Control Engineering [117]. In that document, it is highlighted the
various stages of spacecraft maneuvers and their associated challenges and typical
approaches. The article also compiles a list of recent publications that are aiming
in bridging the use of optimization-based controllers for space missions that would
lead to control strategies with relevant features like fuel efficiency, safety constraints
and computationally lightweight.

5.2.2 Reformulation of how Control Theory is Taught

Another important aspect that resulted from supervising and being involved with
advanced training was realising the need for reformulating how Control Theory is
taught at the bachelor degree level. On that note, the team produced a pedagogical
article [118] describing how teaching should be organized into two curricular units
as opposed to how most universities have 3, if the syllabus is organized in a different
way that also lends itself to a study better focused on preparing students to join teams
in companies producing controllers.

5.3 Societal Contributions

FirePuma also produced a major societal contribution regarding its trajectory gen-
eration algorithm. As the method is quite generic, the team is currently pursuing its
application in the area of precision Agriculture and the search for lost people. In the
former case, the utility function can translate the need for applying phytopharmaceu-
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ticals within a plantation. In the latter, based on the place where the victim was last
seen and considering typical movement and environmental conditions, a probability
map can be constructed that needs to be checked by the authorities.
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Fig. 5.1: Trajectories and sensor footprints generated by the two methods.
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Fig. 5.2: Resulting coverage profiles for the two methods.

The US and Canadian coast guards typically use a pattern named Victor Sierra,
also known as Sector Search, that was designed to cover well-defined circular regions
centered on a certain position. It consists of straight-line segments that form three
equilateral triangular sectors, which are evenly distributed over the circular region.
This pattern is popular because in sea operations is straightforward to be implemented
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as it only requires the vessel to maitain a constant speed and adjust the angle being
followed every multiple of some time period calculated based on the vessel speed.
However, such a method is quite inneficient in searching over more complicated
maps.

We reproduce in Figure 5.1 the use of the proposed controller by FirePuma (labeled
as MPC) in comparison with the Victor Sierra pattern that was designed with the
95% confidence ellipse for each gaussian component of the map. As displayed in
Figure 5.1 and Figure 5.2, the MPC algorithm has a better coverage profile compared
to the Victor Sierra pattern, achieving almost a 100% coverage of the entire volume
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