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Abstract—One of the main challenges when performing set-
based state estimation is the inherent trade-off between accuracy
and computing time. When using accurate set representations
like polytopes, even if written in Constrained Zonotopes (CZs)
format, the data structures keep increasing in size which will
lead to the need of some order reduction method that increases
the computational load in the iterations when such a routine
is run. Moreover, computing a vector estimate will amount to
solving an optimization problem or a matrix inversion, which are
expensive procedures if the state space is large. In this paper, we
propose an efficient approach for the state estimation of discrete-
time Linear Time-Invariant (LTI) systems based on Constrained
Convex Generators (CCGs) that allows to write explicitly the set
in terms of a fixed number of past inputs and measurements.
In doing so, the whole estimation task amounts to performing a
small number of multiplications with offline-computed matrices
which makes the runtime computation significantly faster and
removes the need for order reduction methods. Numerical results
show the effectiveness of the proposed method.

I. INTRODUCTION

Set-based observers are algorithms that compute sets con-
taining all possible state values for a given dynamical system.
According to the surveys in [1], [2], the issue of designing
set-based observers has received great attention. There are
several useful applications ranging from state estimation with
unknown distributions for the disturbances, position estimation
of safety-critical equipment [3], fault detection [4], control of
multiple-model systems [5] robust Model Predictive Control
(MPC) [6], collision avoidance [7] and safe optimal control
[8].

Since the early work in [9], which represents sets as
ellipsoids, guaranteed state estimation methods have been
extensively studied. A similar idea to [9] is used in [10],
but sets are expressed by their minimum-volume bounding
parallelotopes. In [11], a method with polytopic encoding is
provided. Similar techniques are used in the work in [12],
which employs a zonotope representation while reducing the
size of the zonotope using either an analytical formula or
solving a convex optimization problem. The work in [13] takes
into account polytopic or ellipsoidal representations. Finally,
[14] uses sub-pavings to improve accuracy at the expenses of
computation.
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The decision of how to depict the sets is crucial, which can
range from ellipsoids [15] [16] to zonotopes, where [17]–[19]
showed to have decreased wrapping effect. Interval representa-
tions such as those in [20], are also prone to wrapping effects.
Constrained convex generators, which were suggested in [21],
are a recent alternative that unifies these set representations.

Developing computationally efficient methods that do not
excessively over-approximate the set of admissible states is
one of the primary challenges concerning set-based observers.
In comparison to CZs, using CCGs in state estimation can
minimize conservatism, as shown in [21]. Nevertheless, there
is an inherent trade-off between accuracy and computing time
for set representations like Zonotopes, CZs and CCGs. To
address this problem, we present a method that starts with
a coarse estimate using an ellipsoidal method that can be
written in closed-form (which can be swapped by other filters)
and then improving its accuracy using a limited number of
previous inputs and measurements. In doing so, the obtained
set will be a mix of ellipsoidal and polytopic components
(for which CCGs are exact) and the need for order reductions
methods is eliminated. Moreover, most of the data structures
can be computed offline, which greatly speeds up runtime
computation. These features are critical if set-based methods
are to be incorporated in MPCs [22].

Therefore, the main contributions of this work are as fol-
lows:

• A method for efficiently computing the CCG containing
the state of an LTI system where most of the data
structures can be pre-computed offline,

• A fast way to obtain a vector estimate by computing a
center of the CCG without requiring the inversion of a
matrix nor an optimization problem in runtime.

A. Notation
Let In be the identity matrix of size n, and let 0n stand

for the n-dimensional array of zeros and 1n denote the n-
dimensional array of ones. Dimensions are omitted when can
be infered from context. For a vector v, its transpose is written
as v⊺ and the Euclidean norm is denoted by ∥x∥2 :=

√
x⊺x.

Additionally, ∥x∥∞ := maxi |x(i)|, where x(i) is the ith
element of x. The generalized intersection is represented by
∩R to mean X ∩R Y := {x : x ∈ X,Rx ∈ Y }, the
Minkowski sum of set X and Y by ⊕, i.e., X ⊕ Y :=
{x + y : x ∈ X, y ∈ Y }, and the cartesian product by ×
as X × Y := {

[
x
y

]
: x ∈ X, y ∈ Y }.

II. PROBLEM DEFINITION

The problem of guaranteed state estimation in discrete-time
LTI systems can be formulated as the problem of finding a



set of possible state values given measurements, disturbance,
noise, and initial state bounds. The model is provided by:

xk+1 = Fxk +Buk + wk, (1a)
yk = Cxk + vk, (1b)

where xk ∈ Rn, uk ∈ Rnu , wk ∈ Rn, yk ∈ Rny , and
vk ∈ Rny represent the system state, input, disturbance
signal, output, and noise, respectively. The problem this article
addresses can be summed up as follows:

Problem 1. How to calculate a set Xk that ensures that xk ∈
Xk,∀k ≥ 0, given yk measurements and compact convex sets
X0, V , and W , such that x0 ∈ X0, vk ∈ V and wk ∈W .

A. State estimation using CCGs

Before proceeding to the main results of this paper, in this
section, we review the standard solution for guaranteed state
estimation (Problem 1) with CCGs found in [3], [23].

The formal description of a CCG is given in Definition 1.

Definition 1 (Constrained Convex Generators). Z ⊂ Rn is
defined by the tuple (G, c,A, b,C) with G ∈ Rnc×ng , c ∈ Rn,
A ∈ Rnc×ng , b ∈ Rnc , and C :=

{
C1, C2 . . . , Cnp

}
such that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × . . .× Cnp}, (2)

where the sets C1 to Cnp
are the generator sets, nc is the

number of constraints, ng is the sum of the size of the
generators and np is the number of generators.

Intuitively, CCGs describe in an indirect form a set X by
describing it as a linear operator of a much larger state space
of the generator variables ξ. CCGs are a very general form of
representing sets, which does not require set approximations
if we need to perform set operations between polytopes and
ellipsoids, amoung many other sets. In particular, it generalizes
constrained zonotopes or polytopes that correspond to

X = (G, c,A, b, ∥ξ∥∞ ≤ 1) (3)

or ellipsoids that can be written as

X = (G, c, [ ], [ ], ∥ξ∥2 ≤ 1) (4)

Other types of sets can also be described as CCGs such as
ellipsotopes, intervals, or zonotopes. For more information on
CCGs, the reader is referred to [3]. The usual operations such
as linear maps, Minkowsky sum, and intersection are well-
defined for CCGs and can be computed in closed-form as
given in Definition 2.

Definition 2. Consider three Constrained Convex Generators
(CCGs) as in Definition 1:

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn

• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn

• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set
operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz)

Z ⊕W =([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
Z ∩R Y =[

Gz 0
]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 , {Cz,Cy}


Given these operations, one may solve Problem 1 recur-

sively, since given a set Xk ⊂ Rn such that xk ∈ Xk and a
measurement yk, the set Xk+1 ⊂ Rn such that xk+1 ∈ Xk+1

can be computed as

Xk+1 = (FXk ⊕W +Buk) ∩C (yk − V ). (5)

In this implementation, we assume that the sets W and V
are represented as CCGs with a constant description for the
disturbance and noise sets:

W := (Gw, cw, [ ], [ ],Cw) , (6a)
V := (Gv, cv, [ ], [ ],Cv) . (6b)

One major drawback with this approach is that, since a
Minkowsky sum and a generalized intersection have to be
performed at each time instant, the number of generator sets
increases, rendering the problem computationally expensive
after a certain number of iterations. Therefore, to address this
issue in the next section, we will provide a more efficient
solution with a fixed-length description.

III. EXPLICIT COMPUTATION OF GUARANTEED STATE
ESTIMATES

In this section, we will resort to a conservative ellipsoidal
estimate that can be exchanged by any other filter output as
long as it is given by a closed-form expression (i.e., no iterative
procedure). Other options could be found in the literature like
in [24]–[26].

A. Ellipsoidal observer

Before obtaining a state estimate with low conservatism,
we start with a coarse ellipsoidal state estimate based on a
Luenberger observer, which for systems like in (1), is given
by

x̂k+1 = Fx̂k +Buk + L (yk − Cx̂k) , (7)

where L is defined such that ρ(F−LC) < 1, where ρ(·) is the
spectral radius. If the pair (F,C) is detectable, such matrix L
always exists. Defining the estimation error as ek := xk − x̂k

from (1) we obtain

ek+1 = (F − LC)ek + wk −Gvk. (8)

Given that ρ(F − LC) < 1 there exists a symmetric matrix
P ∈ Rn×n such that

(F − LC)⊺P (F − LC)− P = −In, (9)



and we may define a decrease rate as follows

a := ∥P 1
2 (F − LC)P− 1

2 ∥2 =

√
1− 1

σmax (P )
, (10)

where σmax(·) is the maximum singular value. From (9), we
have that a < 1. Therefore, defining

einit := max
ξ∈X0

∥P 1
2 ξ∥2 (11)

enoise := max
ξ∈W⊕−LV

∥P 1
2 ξ∥2 (12)

and applying Theorem 6 in [27], we have that xk ∈ X̂k for
all k ≥ 0, where

X̂k =

{
x̂k + ξ : ∥P 1

2 ξ∥2 ≤ akeinit +
enoise
1− a

}
. (13)

Given that the state estimate is an ellipsoid, it can be written
in CCG format as follows

X̂k =

((
akeinit +

enoise
1− a

)
P− 1

2 , x̂k, [ ], [ ], ∥ξ∥2 ≤ 1

)
.

(14)
We remark to the reader that the fact that CCGs allow for

set operations between polytopes and ellipsoids, it is possible
to use the conservative ellipsoidal estimate X̂k and improve it
by explicitly considering the exact iterations for some fixed
number of time instants. Therefore, at some time k, the
set X̂k−N can be viewed as an implicit order reduction to
the more accurate set Xk−N that would be obtained by the
direct recursion in (5). These two fact will be useful in the
next section to provide the main contribution of this paper
to have a set-valued observer that does not require order
reduction methods and where most of the computations can
be performed offline before the estimation procedure is run.

B. Explicit finite-horizon observer
The state estimate given by (14) can serve as a conservative

set that can be improved by N iterations of the recursion (5).
Specifically, defining for an integer l,

Y l
k :=

yk−1

...
yk−l

 , (15)

U l
k :=

uk−1

...
uk−l

 , (16)

we consider that the state estimate at time k is expressed by

X l
k =

(
Gl

X,k, c
l
X,k, A

l
X,k, b

l
X,k,C

l
X

)
⊂ Rn, (17)

where

Gl
X,k =

[
Gl

(
ak−leinit +

enoise

1−a

)
Gl

0

]
, (18a)

clX,k = cl + clUU
l
k + cl0x̂k−l, (18b)

Al
X,k =

[
Al

(
ak−leinit +

enoise

1−a

)
Al

0

]
, (18c)

blX,k = Y l
k + bl + blUU

l
k + bl0x̂k−l. (18d)

For l = 0 one recovers the ellipsoidal observer considering
that G0, c0U , A0,A0

0, b0, b0U and b00 are empty matrices,

C0
X = {ξ : ∥ξ∥2 ≤ 1} , (19)

and

G0
0 := P− 1

2 , (20a)

c0 := 0n, (20b)

c00 := In. (20c)

By applying (5) we obtain after simple computations the main
result of this paper.

Theorem 1. Given a state estimate X l
k such that xk ∈ X l

k,
then xk+1 ∈ X l+1

k+1 with

Cl+1
X = Cw × Cv × Cl

X , (21a)

Gl+1 =
[
Gw 0 FGl

]
, (21b)

Gl+1
0 = FGl

0, (21c)

cl+1 = Fcl + cw, (21d)

cl+1
U =

[
B FclU

]
, (21e)

cl+1
0 = Fcl0, (21f)

Al+1 =

[
0 Gv CGl

0 0 Al

]
, (21g)

Al+1
0 =

[
CGl

0

Al
0

]
, (21h)

bl+1 =

[
−Ccl − cv

bl

]
, (21i)

bl+1
U =

[
0 CclU
0 blU

]
, (21j)

bl+1
0 =

[
Ccl0
bl0

]
. (21k)

Proof. We first consider that at time k a state estimate is given
by (17) and (18). The Theorem follows by applying (5) with
the CCG operations defined in Definition 2, where W and V
are given by (6).

Based on Theorem 1, the observer proposed in this paper
consists of selecting a fixed horizon N and pre-computing the
set CN

X and matrices GN , GN
0 , cN , cNU , cN0 , AN , AN

0 , bN , bNU ,
and bN0 , offline with Algorithm 1.

Algorithm 1 Pre-computation of CCG parameters
Require: G0, c0U , A

0, A0
0, b

0, b0U , b
0
0 = []; C0

X is given by (19);
G0

0, c
0, c00 are given by (20)

1: for l← 0 to N − 1 do
2: compute Cl+1

X , Gl+1, Gl+1
0 , cl+1, cl+1

U , cl+1
0 , Al+1,

Al+1
0 , bl+1, bl+1

U , bl+1
0 with (21)

3: end for
4: return CN

X , GN , GN
0 , cN , cNU , cN0 , AN , AN

0 , bN , bNU , bN0

After obtaining matrices GN , GN
0 , cN , cNU , cN0 , AN , AN

0 ,
bN , bNU , and bN0 with Algorithm 1, at runtime, for k ≥ N , the
observer consists of the Algorithm 2.



Algorithm 2 Explicit finite-horizon observer
Require: CN

X , GN , GN
0 , cN , cNU , cN0 , AN , AN

0 , bN , bNU , bN0 ,
L, a, einit enoise, x̂0

1: for 0 ≤ k < N do
2: Xk =

((
akeinit +

enoise

1−a

)
P− 1

2 , x̂k, [ ], [ ], ∥ξ∥2 ≤ 1
)

3: end for
4: for k ≥ N do
5: x̂k−N+1 = Fx̂k−N +Buk−N +L (yk−N − Cx̂k−N ),
6: compute Y N

k+1 by storing yk and discarding yk−N

7: compute UN
k+1 by storing uk and discarding uk−N

8: GN
X,k+1 =

[
GN

(
ak+1−Neinit +

enoise

1−a

)
GN

0

]
9: cNX,k+1 = cN + cNU UN

k+1 + cN0 x̂k+1−N

10: AN
X,k+1 =

[
AN

(
ak+1−Neinit +

enoise

1−a

)
AN

0

]
11: bNX,k+1 = Y N

k+1 + bN + bNU UN
k+1 + bN0 x̂k+1−N

12: Xk+1 =
(
GN

X,k+1, c
N
X,k+1, A

N
X,k+1, b

N
X,k+1,C

N
X

)
13: end for

With Algorithm 2, to obtain the description of a guaranteed
state estimate set we only have to perform a small number of
computations proportional to the horizon length N , which may
be significantly more efficient than performing (5) recursively.
Given the finite-horizon nature of the algorithm, this approach
is more conservative than applying (5) recursively. However,
by increasing the horizon N the introduced conservatism tends
to disappear.

We have to remark that to apply this method for k < N
would imply storing in memory all the coefficients from l =
1 to l = N − 1. However, it greatly increases the memory
requirements for large N and it would only have an effect in
a small transient period. For that reason, we consider that for
k < N the state estimate is obtained with (14).

With the description of set XN
k , an important operation is

obtaining an estimate of the centre of the set. This can be
done with an optimization algorithm by estimating the centre
xcenter
k as

xcenter
k = cNX,k +GN

X,k argminAN
X,kξ=bNX,k

∥ξ∥2 (22)

Alternatively, this can be computed algebraically as follows

xcenter
k = cNX,k +GN

X,kA
N,⊺
X,kηk, (23)

where ηk is computed by solving the linear equation

AN
X,kA

N,⊺
X,kηk = bNX,k. (24)

Given that ak tends to zero, one may neglect the term
ak−Neinit after some time. Therefore, we may consider that

GN
X,k ≈ GN

X :=
[
GN enoise

1−a GN
0

]
, (25a)

AN
X,k ≈ AN

X :=
[
AN enoise

1−a AN
0

]
, (25b)

and we can pre-compute the matrix

ZN
X := GN

XAN,⊺
X

(
AN

XAN,⊺
X

)−1

, (26)

obtaining significant computational time savings in the com-
putation of the CCG center as

xcenter
k = cNX,k + ZN

X bNX,k. (27)

IV. NUMERICAL RESULTS

To assess the performance of the proposed algorithm we
consider a random system generated with the MATLAB func-
tion drss with dimension 15, an output of size 3 and input of
size 5, that is, xk ∈ R15, uk ∈ R5 and yk ∈ R3, for all k ≥ 0.
We consider that the initial state is drawn from an initial state
which is a CCG given by

X0 = (GX,0, cX,0, [ ], [ ],CX,0) ⊂ Rn, (28)

where

CX,0 = {ξ : ∥ξ∥∞ ≤ 1} × {ξ : ∥ξ∥2 ≤ 1} , (29a)
GX,0 =

[
2I15 I15

]
, (29b)

cX,0 = 015. (29c)

The disturbance and noise sets are expressed as (6) with
parameters

CW = {ξ : ∥ξ∥∞ ≤ 1} × {ξ : ∥ξ∥2 ≤ 1} , (30a)
GW =

[
2I15 I15

]
, (30b)

cW = 015, (30c)
CV = {ξ : ∥ξ∥∞ ≤ 1} × {ξ : ∥ξ∥2 ≤ 1} , (30d)
GV =

[
I3 2I3

]
, (30e)

cV = 03. (30f)

The control input is constant and given by uk = 2015 for all
k ≥ 0.

Figure 1 shows the evolution in time of the projection of
the first coordinate of the state estimate obtained with the
ellipsoidal method of (14) (Ellipsoidal), the standard descrip-
tion obtained by applying recursively (5) (Standard), and the
method proposed in this paper for various horizons N . From
Figure 1, we observe that the performance of the algorithm
approaches that of the standard case for large N .

In Figure 2, we plot the projection in the first two dimen-
sions of the state estimate obtained with various methods and
for different horizons N . As in Figure 1, we observe that the
performance of the algorithm approaches that of the standard
observer for large N . This fact can also be observed in Figure
3 which shows the size of the projection in the first dimension
of the state estimate.

Figure 4 shows the time to compute the description of the
set at runtime with an Intel Core i7-12700H processor at 2.70
GHz. From Figure 4, we can observe that the computation
times are significantly more competitive with the method
proposed in this paper since most of the matrix computations
are done offline.

The most significant advantage of the method proposed in
this paper is the fact that the set description size remains
constant. Therefore, as shown in Figure 5 while with the
standard method, the computation time increases at every
iteration, with the method of Algorithm 2 the computation
time remains constant.
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Fig. 1. Time plot of state enclosures for diverse state estimation methods
for the first coordinate of the state. The black line in the middle represents
the system’s actual state, while the dashed line indicates the Luenberger state
estimates x̂k .
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Fig. 2. State enclosures for various state estimation techniques when k is set
to 20. The asterisk (∗) represents the Luenberger state estimate x̂k and the
circle (◦) represents the true state of the system.

Figure 6 shows the computation times for various centre
computation methods for the standard observer and horizons
N = 1 and N = 10. We tested the method of centre
computation of solving (22) with YALMIP and the MOSEK
solver [28] (Opt), the algebraic method of (23) (Alg), and
the method with pre-computed matrices of (27) (Pre). For
improved efficiency, for the optimization approach, we adopted
the simplification (25) and used the function optimizer to
pre-compile the optimization algorithm. From Figure 6 we
observe that it is significantly more advantageous to compute
the relevant matrices beforehand, instead of solving a linear
equation at every time.

To highlight the main advantage of the proposed method, we
used the same simulation for a larger number of iterations with
the results being depicted in Figure 7. Since the description
of the state estimate increases in size at each iteration, the
computation of the center becomes more time-consuming,
whereas, the proposed method benefits from the constant
description and pre-computation of parts of the data structures
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Fig. 3. Size of the projection of the first dimension of the state at various
iterations for different state estimation methods and different horizons N .
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Fig. 4. Computation times for various state estimation methods.

being done offline. We remark that the presented method voids
the need for an order reduction procedure, which is going to
add conservatism and represent a time overhead.

V. CONCLUSIONS

We proposed a novel, minimally conservative, and com-
putationally efficient method for guaranteed state estimation
of discrete-time linear time-invariant (LTI) systems, which
uses CCGs. Additionally, we propose a method for computing
the CCG centre using pre-calculated matrix inversions that is
much quicker than alternative methods. The performance of
the computations of the suggested technique is demonstrated
by numerical results. In future work, we aim at developing
a fast implementation using C code that can be used by the
community and thus bridging one of the main drawbacks of
guaranteed state estimation in comparison with Luenberger
observers.
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