
Privacy Assessment for Linear Consensus using Constrained Convex
Generators

Daniel Silvestre

Abstract— The problem of designing privacy-preserving algo-
rithms for multi-agent systems running distributed algorithms
has attracted the attention of the Control community, especially
for maintaining the privacy of the initial state. In this paper,
we tackle the problem of checking the privacy of the algorithm
itself in terms of the linear parameters used by each agent. We
first start by introducing a metric of privacy that translates
the uncertainty that an attacker has related to the parameters
for the case that it can eavesdrop the state from other agents
given the public nature of the network. We then propose to
resort to techniques in the literature to compute such metric
and show how these can be used by: i) the attacker to estimate
the parameters from successive runs of the algorithm; ii) by
a defender that can decide when to trigger a negotiation
of new parameters to ensuse privacy of the overall system.
The technique is illustrated in simulations for the specific
example of a consensus protocol. The tools developed herein can
complement resilient consensus algorithms based on reputation
metrics in the sense that the defender triggering changes to
the dynamics while maintaining the overall convergence value
can render the calculations of the optimal attacks rather
troublesome.

Index Terms— Privacy; Linear Systems; Multi-agent Systems

I. INTRODUCTION

In the realm of automatic control, many distributed al-
gorithms incorporate in some form a consensus step like:
formation control [1], [2], distributed Kalman filters [3],
PageRank computation [4], distributed optimization such as
the DEXTRA algorithm [5], desynchronization of transmitter
in a sensor network [6], [7], solvers for large MPC problems
[8], distributed fault detection [9], among many others. Given
the widespread importance of linear consensus algorithms,
there have been extensive research in attempting to deal with
attackers and to maintain privacy. However, keeping sensitive
information is not only beneficial for privacy concerns but
is also tightly connected with the ability of attackers to be
successful and change the steady state.

In the literature of resilient consensus, the work in [10]
considered the continuous case of a consensus problem in
the presence of potential attackers and presented a graph-
theoretic metric to assess network topologies that can be

D. Silvestre is with School of Science and Technology from the
NOVA University of Lisbon (FCT/UNL), 2829-516 Caparica, Portugal, with
COPELABS from the Lusófona University, and also with the Institute for
Systems and Robotics, Instituto Superior Técnico, University of Lisbon.
dsilvestre@isr.tecnico.ulisboa.pt

This work was partially supported by the Portuguese Fundação para a
Ciência e a Tecnologia (FCT) through Institute for Systems and Robotics
(ISR), under Laboratory for Robotics and Engineering Systems (LARSyS)
project UIDB/50009/2020, through project PCIF/MPG/0156/2019 FirePuma
and through COPELABS, University Lusófona project UIDB/04111/2020.

robust and lead normal agents to consensus. In [11], a
protocol called ARC-P is presented that uses a parameters
f to decide which values to maintain in the computations.
In another direction, the authors of [12] tackled the general
problem of reaching resilient consensus among a set of
agents in the presence of faulty nodes. The presented method
is an extension of [13] and is suitable for both discrete-
time and continuous-time consensus and identifies the normal
agents based on the assumed dynamics. The aforementioned
works all share a common assumption for the design of
their protocols, namely that the matrix governing the nodes
updates is known by the entire network. If such assumption
is not met, it becomes rather troublesome to check the graph
conditions or estimate how closely each agent is following
the algorithm.

In another direction, the work in [14] proposes resilience
by computing the variance of each node in the network
followed by a voting mechanism to identify the agent with
the largest variance. Once again, such approach is only
possible because the dynamics is known and a key property
is proved that the variances are sorted by the distance in hops
to the attacker.

Fault detection and isolation has also been proposed for
consensus systems leveraging the concept of distinguishabil-
ity [15] between the nominal dynamics and those with each
subset of the node set being controlled by an attacker as the
example in [16]. By resorting to guaranteed state estimation
using solely the network in the vicinity of each node, the
technique is capable of generating sets that contain all possi-
ble trajectories and combine the estimates in a consensus-like
update [17] to improve the speed of convergence to a single
point and offer theoretical guarantees of bounded effect
for all possible attacker strategies. Overall, the same key
observation still applies. The mentioned methods all resort
to the knowledge of the dynamics to build the defensive
mechanisms. From the attacker angle, [18] showed that the
zero dynamics of the system (using the knowledge of the
dynamics) can be exploited to design attack sequences that
cannot be detected.

In this paper, we are interested in considering the case
where the network designer does not disclose the dynamics
but the distributed algorithm is still being run in a public
network. In this setup, a defender must assume that all
communicated state values could be subject of eavesdropping
by the attacker and wants to maintain the privacy of the
algorithm itself. The main contributions in this paper can be
summarized as follows:

• We introduce a strategy based on guaranteed state es-

timation using Constrained Convex Generators (CCGs)
[19] that the attacker can use to estimate the parameters
used in the algorithm;

• Using the previous method, we propose a defensive
mechanism where an entity maintains the estimation
procedure and triggers a change in the dynamics when-
ever the knowledge regarding the current values is
compromised.

A related topic to the work being presented herein is
the concept of state estimation for Linear-Time Invariant
(LTI) systems, which can be accomplished for various set
representation such as using intervals [20], zonotopes [21]
and ellipsoids [22] which are not accurate since intersections
cannot be expressed in closed-form. Techniques resorting to
polytopes [23] and in the format of constrained zonotopes
[24] are the most accurate given that the operations can be
performed in closed-form. However, in this paper we will be
using CCGs that allows to represent a larger class of bounds.

The remainder of the paper is organized as follows.
Section II formalizes the state estimation problem associated
with identifying the dynamics of the system. We review
in Section III the definition and main set operations for
CCGs, while Section IV is dedicated to presenting estimation
procedure that can be used by an attacker. Section V then
proposes a triggering technique to maintain a desired level of
privacy for the algorithm, which is validated in simulations
presented in Section VI. Conclusions and directions of future
work are given in Section VII.

Notation : We let 0n denote the n-dimensional vector of
zeros and In the identity matrix of size n. The operator
diag(v) creates a diagonal matrix with v in the diagonal
or extracts the diagonal if the argument is a matrix. The
transpose of a vector v is denoted by v⊺, while the Euclidean
norm for vector x is represented as ∥x∥2 :=

√
x⊺x. On the

other hand, ∥x∥∞ := maxi |xi|. The cartesian product is
denoted by ×, the Minkowski sum of two sets by ⊕ and the
intersection after applying a matrix R to the first set by ∩R.

II. PROBLEM STATEMENT

We consider a set of n agents with scalar state xi(k), 1 ≤
i ≤ n, whose objective is to compute some weighted average
of their initial values, i.e.,

lim
k→∞

xi(k) = xav :=
1

n

n∑
i=1

aixi(0).

The n nodes use a public network such that they can pos-
sibly communicate with all the remaining nodes. However, in
order to reduce the communication overhead, the nodes do
not use all possible links. A communication topology can
be represented by a directed graph G = (V, E), where V
represents the set of n agents and E ⊆ V × V is the edge
set. If a node i uses the value of node j, then (i, j) ∈ E.
Moreover, there is a weighted adjacency matrix W associated
with the graph G with entries:

Wij :=

{
wij , if (i, j) ∈ E,wij ∈ [0, 1]

0, otherwise

In order to increase privacy, it is assumed that nodes
communicate in a multicast fashion and append their state
value to the received message along with some cryptography
token that ensures data has not been compromised from the
previous node. In doing so, an attacker cannot infer which
edges are in E since a node receiving a message from j
might be retrieving a value from node κ that is present in
the message. Therefore, the full iteration can be written in
matrix form as:

x(k + 1) = Wx(k), (1)

where matrix W must satisfy the following properties: W ≥
0 (non-negative entries), W1 = 1 (the vector of ones is a
right eigenvector associated with the unity eigenvalue), and,
the underlying graph is strongly connected (implies that the
remaining eigenvalues have magnitude strictly smaller than
one).

The problem tackled in this paper can be formalized as
follows.

Problem 1: Attacker: Given information of sequences of
state values x(k), how to estimate the matrix W used by
the distributed system. Defender: Assuming that the attacker
is running the previous mechanism, design a method to
guarantee that an attacker cannot retrieve W .

III. CONSTRAINED CONVEX GENERATORS OVERVIEW

In this section, we first review the definition for a CCG in
Definition 2 and the main operations in Definition 3.

Definition 2 (Constrained Convex Generators): A
Constrained Convex Generator (CCG) Z ⊂ Rn is defined
by the tuple (G, c,A, b,C) with G ∈ Rn×ng , c ∈ Rn,
A ∈ Rnc×ng , b ∈ Rnc , and C := {C1, C2, · · · , Cnp} such
that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp}.
Definition 3: Consider three Constrained Convex Gener-

ators (CCGs) as in Definition 2:
• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn;
• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn;
• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm;

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set
operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz)

Z ⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)

Z ∩R Y =

[
Gz 0

]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 , {Cz,Cy}

 .

The above operations have been implemented in Matlab
code and can be retrieved as a toolbox that allows comparison
of different guaranteed state estimation techniques in Reach-
Tool from the Github repository in https://github.
com/danielmsilvestre/ReachTool. We point out
that CCGs encompass a large family of other set represen-
tations, namely:

• an interval corresponds to (G, c, [], [], ∥ξ∥∞ ≤ 1), for
a diagonal matrix G;

• a zonotope is given by (G, c, [], [], ∥ξ∥∞ ≤ 1);
• an ellipsoid is defined by (G, c, [], [], ∥ξ∥2 ≤ 1), for a

square matrix G;
• a constrained zonotope or polytope is

(G, c,A, b, ∥ξ∥∞ ≤ 1);
• a convex cone in Rn is (G, c, [], [], ξ ≥ 0);
• ellipsotopes [25] are given by (G, c,A, b, ∥ξ∥p1 ≤

1, · · · , ∥ξ∥pm
≤ 1), for some pi > 0, 1 ≤ i ≤ m;

• AH-polytopes [26] are given by (G, c, [], [], Aξ ≤ b).

IV. ESTIMATION OF W USING CONSTRAINED CONVEX
GENERATORS (CCGS)

In this section, we aim to produce set-valued estimates for
the matrix W that is being used in the distributed consensus
algorithm. From the required characteristics found in the
problem definition in Section II, we can introduce a set
W ∈ Rnw (nw = n2) that will represent all the entries
of W following a vectorization operation:

W(0) = H ∩1⊺n⊗In (0n, 1n, [], [], ∥ξ∥∞ ≤ 1) (2)

where

H =

(
1

2
Inw

,
1

2
1nw

, [], [], ∥ξ∥∞ ≤ 1

)
,

which already satisfies the condition that all Wij ∈ [0, 1] and
the eigenvector constraint.

The iterative procedure to obtain a better estimate W(k)
from W(k − 1) after using another state value information
can be obtained with:

W(k) = W(k−1)∩x(k−1)⊺⊗In (0n, x(k), [], [], ∥ξ∥∞ ≤ 1) .
(3)

Following iteration (3) results in a polytope of all possible
values for the entries of matrix W . Therefore, a suitable
metric for privacy can be defined as:

m(k) = max
i

yi − zi,∀y, z ∈ W(k) (4)

which translates the maximum uncertainty interval for any
entry of two points in W(k). The metric in (4) can be
computed by solving 2nw optimization problems of the form:

min
η

v⊺η

s.t. η ∈ W(k)
(5)

for all canonical vectors ei and −ei, with 1 ≤ i ≤ nw.
The attacker strategy of following Algorithm 1 can be

made to always stop providing that the sequence of initial
conditions for the consensus algorithm produce linearly
independent hyperplanes in step 5, which most likely in
general will happen. In the next section, we take advantage of
the same algorithm to introduce a possible defense strategy
that is guaranteed to result in a private dynamics in the sense
that m(k) > c for some specific desired level of privacy.

Algorithm 1 Attacker Strategy.

Require: Set W(0) ⊆ Rnw using (2) and threshold ϵ > 0.
Ensure: Calculation of W and a uncertainty metric 0 ≤

m(k) ≤ 1.

1: for k > 0 do
2: /* Construct measurement set Y (k) */
3: Y (k) = (0n, x(k), [], [], ∥ξ∥∞ ≤ 1)
4: /* Compute new estimate W(k) */
5: W(k) = W(k − 1) ∩x(k−1)⊺⊗In Y (k)
6: for each 1 ≤ i ≤ nw do
7: /* Calculate maximum for each variable */
8: p̄i = solving (5) with v = −ei
9: /* Calculate minimum for each variable */

10: pi = solving (5) with v = ei
11: /* Calculate metric m(k) */
12: m(k) = max(m(k), p̄i − pi)
13: if m(k) < ϵ then
14: return W = reshape(p, [n, n])
15: end if
16: end for
17: end for

V. DEFENSE STRATEGY

From the previous section, given that CCGs are exact for
all the required operations, the estimation translates precisely
the uncertainty associated with the attacker possibilities. For
that reason, if the defender appropriately runs the estimation
assuming full knowledge of the messages from the attacker
and measures the privacy metric, that value is guarantee
in the worst case. The only concern should be that the
estimation procedure is executed prior to sending the data of
the resulting state. That can be achieved if the agents perform
the estimation, decide whether to abort this computing step
and only then send the new data. We summarize the method
in Algorithm 2.

The correctness of Algorithm 2 in the following lemma.

Lemma 1: Let us assume a n-node network using a matrix
W and dynamics (1) and a defense mechanism as in Algo-
rithm 2. Then, ∀k > 0 if m(k−1) > ϵ, for some 0 < ϵ < 1,
we have that m(k) > ϵ.

Proof: We start by analyzing the base case when k = 1.
Given that, at k = 0, any pi entry of the polytope W(0)
not belonging to the attacker will have uncertainty interval
equal to [0, 1] and m(0) = 1 > ϵ. In line 13, Algorithm
2 will test whether m(1) < ϵ. If that is not the case, the
result stands. If m(1) < ϵ, a new W will be selected and
m(1) = 1 since W(1) = W(0). For the induction step, if
the test in line 13 is false, the conclusion is trivial. If the test
yields true, m(k) = 1 since W(k) = W(0) as x(k) has not
been sent and the attacker using Algorithm 1 cannot perform
the k − th iteration and will get the maximum uncertainty
corresponding to m(k − 1), and the conclusion follows.

Algorithm 2 Defender Strategy.

Require: Set W(0) ⊆ Rnw using (2) and threshold ϵ > 0.
Ensure: Decision to trigger a change for a different W .

1: for k > 0 do
2: /* Construct measurement set Y (k) with the undis-

closed point x(k) */
3: Y (k) = (0n, x(k), [], [], ∥ξ∥∞ ≤ 1)
4: /* Compute new estimate W(k) */
5: W(k) = W(k − 1) ∩x(k−1)⊺⊗In Y (k)
6: for each 1 ≤ i ≤ nw do
7: /* Calculate maximum for each variable */
8: p̄i = solving (5) with v = −ei
9: /* Calculate minimum for each variable */

10: pi = solving (5) with v = ei
11: /* Calculate metric m(k) */
12: m(k) = max(m(k), p̄i − pi)
13: if m(k) < ϵ then
14: /* A change in W is required */
15: return True
16: else
17: /* The algorithm can proceed*/
18: send(x(k))
19: return False
20: end if
21: end for
22: end for

VI. SIMULATIONS

In this section, we aim at presenting simulation results
that can highlight both the successful and eventual detection
of the attacker in the absence of a defense mechanism but
also that the proposed strategy for the defender is able to
maintain a given level of privacy. Simulations were run in
Matlab R2018a running on a HP machine with a Intel Core
i7-8550U CPU @ 1.80GHz and 12 GB of memory resorting
to Yalmip as the language to model optimization problems
and Mosek as the underlying solver for the optimizations in
(5).

The weighted adjacency matrix was randomly selected by
adding each possible link in the graph with probability 0.2
and then testing if it produced a strongly connected graph.
If that was not the case, the procedure was repeated for the
non-existent links until the property held. We then converted
the adjacency through a normalization of each row by the
number of in-neighbor agents. We remark that other methods
could be used to produce different dynamics such as selecting
a random value for the self-loop entry and normalizing the
remaining entries such that the row adds up to one.

In the scenario with no defensive mechanism, the simula-
tion halts when matrix W is known by the attacker. In order
to make the simulations more challenging for the defensive
strategy, we also included some nodes to be controlled by the
attacker meaning that those rows of W are known a priori.
The distributed consensus process will be halted by the
agents whenever the values are within a 10−4 tolerance. The

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1: Uncertainty for each entry of the matrix W ∈ R8×8

as more data is gathered.

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2: Uncertainty for each entry of the matrix W ∈ R12×12

as more data is gathered.

dashed lines represent how many consensus computations
needed to be gathered before the attacker could retrieve the
entire matrix.

Figure 1 presents the evolution of the uncertainty for each
of the parameters of the dynamics matrix when there are
8 nodes and a single agent controlled by the attacker. As
observed, matrix W can be retrieve in 8 iteration, which is
fewer iterations than the consensus algorithm would perform
to achieve a steady state within the desired accuracy.

In contrast, the case of a 12 × 12 matrix is harder to
obtain as shown in Figure 2. For this size, the attacker
would have to gather all the state values transmitted during
two calculation cycles. A similar pattern was observed for
other simulations with a network of 15 and 20 nodes. A
key point to consider is whether the amount of nodes being
controlled by the attacker (hence the prior knowledge of
W) has a meaningful impact on the number of iterations
required to retrieve the remaining. In Figure 3, it is depicted
the uncertainty evolution for 3 different values of number of
controlled agents. Interestingly, there is very little difference
and the small change can be attributed to numerical issues
in the solver when solving the optimizations in (5) (both the
case of ny = 1 and ny = 3 overlap). The three simulations
used exactly the same unknown matrix W , revealing that
the uncertainty is caused by the size of the network and the

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n = 15 ny = 1
n = 15 ny = 3
n = 15 ny = 8

Fig. 3: Uncertainty for each entry of the matrix W ∈ R15×15

as more data is gathered.

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n = 12 ny = 1
n = 12 ny = 1
n = 12 ny = 1
n = 12 ny = 1
n = 12 ny = 1

Fig. 4: Uncertainty for each entry of the matrix W ∈ R12×12

as more data is gathered using different topologies.

initial values for the consensus state rather than the number
of controlled nodes.

A final interesting point is the variability of the uncertainty
evolution depending on the topology that the algorithm is
using. Figure 4 showcases a 12-node network simulation
but using 5 different topology graphs. The uncertainty of
the estimation follows a similar path in all cases albeit with
different iteration times when the attacker retrieved the entire
matrix of 9, 12 and 15 time steps. A possible avenue of future
research is understanding whether carefully selected initial
conditions can have a significant impact on the estimation.

Having illustrated the behavior of the estimation if no
countermeasure is implemented by the system designer, the
next simulation aims at showcasing the effectiveness of
the proposed method. As presented in Section V, as the
defender is running the same observer and no operations are
conservative, it is expected that the mechanism maintains
the desired level of privacy. In this setup, we assume a
value of 0.1 uncertainty with the results depicted in Figure
5. The dashed lines represent the times where either the
consensus algorithm halted naturally or the dynamics were
changed prematurely and the process continued with a new
dynamics matrix. As expected, the metric always stays above
the designed value. Given that the attacker could retrieve in
most networks the entire matrix within 1 or 2 rounds, it is

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5: Uncertainty for each entry of the matrix W ∈ R30×30

as more data is gathered when the defensive mechanism is
used.

not surprising that the simulation shows large rounds (that
completed) followed by shorter ones where a new matrix
had to be used in order to continue the computation while
preserving the privacy of which links are being used and its
corresponding weights.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have address the problem of identifying
the set of parameters being used by a distributed consensus
algorithm in order to assess its privacy. It is assumed full
knowledge on the attacker side related to the sent state
values but not on which values are used by the agents.
By framing the problem as a set-valued estimation, we
resort to Constrained Convex Generators (CCGs) to build
a description of the dynamics matrix. We then leverage
the estimation tool as a defensive mechanism where the
nodes can compute the same estimation that a fully-informed
attacker could and decide whether to send the new state value
or redefine the dynamics matrix to increase the uncertainty
on the attacker estimation.

In simulation, we first tested the effectiveness of the
estimation without any defensive mechanism and showed
that the attacker can retrieve the full matrix by eavesdropping
a very small number of communication times. The evolution
of the uncertainty was mainly due to the size of the network
for a random initialization of the consensus process. With
the countermeasures in place, the simulation ran until the
end with the metric for privacy satisfying the desired lower
bound. The current work opens the possibility to define other
metrics of privacy other than the maximum length of a side of
the overbounding hyper-rectangle. In a future work, we aim
at considering the case when the attacker cannot know all
the state values because the network is divided into a public
and private subnetworks interconnected by a gateway server.
Such a case could be quite beneficial if we are considering
the setup of a sensor network running the consensus and
bridged to the public network by a more expensive and robust
node.

REFERENCES

[1] R. Ribeiro, D. Silvestre, and C. Silvestre, “A rendezvous algorithm
for multi-agent systems in disconnected network topologies,” in 28th
Mediterranean Conference on Control and Automation (MED), 2020,
pp. 592–597.

[2] ——, “Decentralized control for multi-agent missions based on flock-
ing rules,” in CONTROLO 2020, J. A. Gonçalves, M. Braz-César, and
J. P. Coelho, Eds. Cham: Springer International Publishing, 2021,
pp. 445–454.

[3] R. Olfati-Saber, “Distributed kalman filter with embedded consensus
filters,” in Proceedings of the 44th IEEE Conference on Decision and
Control, 2005, pp. 8179–8184.

[4] D. Silvestre, J. Hespanha, and C. Silvestre, “A pagerank algorithm
based on asynchronous gauss-seidel iterations,” in 2018 Annual Amer-
ican Control Conference (ACC), 2018, pp. 484–489.

[5] C. Xi and U. A. Khan, “Dextra: A fast algorithm for optimization over
directed graphs,” IEEE Transactions on Automatic Control, vol. 62,
no. 10, pp. 4980–4993, 2017.

[6] D. Silvestre, J. Hespanha, and C. Silvestre, “Desynchronization for
decentralized medium access control based on gauss-seidel iterations,”
in 2019 American Control Conference (ACC), 2019, pp. 4049–4054.

[7] ——, “Fast desynchronization algorithms for decentralized medium
access control based on iterative linear equation solvers,” IEEE Trans-
actions on Automatic Control, vol. 67, no. 11, pp. 6219–6226, 2022.

[8] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed
model predictive control,” IEEE Control Systems Magazine, vol. 22,
no. 1, pp. 44–52, 2002.

[9] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Distributed
fault detection using relative information in linear multi-agent
networks,” IFAC-PapersOnLine, vol. 48, no. 21, pp. 446–451, 2015,
9th IFAC Symposium on Fault Detection, Supervision andSafety for
Technical Processes SAFEPROCESS 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896315016961

[10] H. J. LeBlanc, H. Zhang, S. Sundaram, and X. Koutsoukos, “Resilient
continuous-time consensus in fractional robust networks,” in 2013
American Control Conference. IEEE, 2013, pp. 1237–1242.

[11] H. J. LeBlanc and X. Koutsoukos, “Resilient first-order consensus
and weakly stable, higher order synchronization of continuous-time
networked multiagent systems,” IEEE Transactions on Control of
Network Systems, vol. 5, no. 3, pp. 1219–1231, 2017.

[12] G. Ramos, D. Silvestre, and C. Silvestre, “General resilient consensus
algorithms,” International Journal of Control, vol. 0, no. 0, pp. 1–15,
2020.

[13] ——, “A general discrete-time method to achieve resilience in con-

sensus algorithms,” in 2020 59th IEEE Conference on Decision and
Control (CDC), 2020, pp. 2702–2707.

[14] D. Silvestre, J. P. Hespanha, and C. Silvestre, “Resilient desynchro-
nization for decentralized medium access control,” IEEE Control
Systems Letters, vol. 5, no. 3, pp. 803–808, 2021.

[15] D. Silvestre, P. Rosa, and C. Silvestre, “Distinguishability of
discrete-time linear systems,” International Journal of Robust and
Nonlinear Control, vol. 31, no. 5, pp. 1452–1478, 2021. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.5367

[16] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Stochastic
and deterministic fault detection for randomized gossip algorithms,”
Automatica, vol. 78, pp. 46–60, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0005109816305192

[17] ——, “Finite-time average consensus in a byzantine environment using
set-valued observers,” in 2014 American Control Conference, 2014,
pp. 3023–3028.

[18] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identi-
fication in cyber-physical systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 11, pp. 2715–2729, 2013.

[19] D. Silvestre, “Constrained convex generators: A tool suitable for set-
based estimation with range and bearing measurements,” IEEE Control
Systems Letters, vol. 6, pp. 1610–1615, 2022.

[20] R. E. H. Thabet, T. Raı̈ssi, C. Combastel, D. Efimov, and A. Zolghadri,
“An effective method to interval observer design for time-varying
systems,” Automatica, vol. 50, no. 10, pp. 2677 – 2684, 2014.

[21] C. Combastel, “A state bounding observer based on zonotopes,” in
European Control Conference (ECC), 2003, pp. 2589–2594.

[22] F. Chernousko, “Ellipsoidal state estimation for dynamical systems,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 5,
pp. 872 – 879, 2005, invited Talks from the Fourth World Congress
of Nonlinear Analysts (WCNA 2004).

[23] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Set-based
fault detection and isolation for detectable linear parameter-varying
systems,” International Journal of Robust and Nonlinear Control,
vol. 27, no. 18, pp. 4381–4397, 2017.

[24] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126 – 136, 2016.

[25] S. Kousik, A. Dai, and G. X. Gao, “Ellipsotopes: Uniting ellipsoids
and zonotopes for reachability analysis and fault detection,” IEEE
Transactions on Automatic Control, pp. 1–13, 2022.

[26] S. Sadraddini and R. Tedrake, “Linear encodings for polytope contain-
ment problems,” in IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 4367–4372.

