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(e-mail: dsilvestre@isr.tecnico.ulisboa.pt)

Abstract: Robust Positively Invariant (RPI) sets play a crucial role in constructing terminal
constraints for Model Predictive Control (MPC) optimizations and the definition of the invariant
sets to be used in Control Barrier Functions (CBFs). However, the solutions in the literature
involve either an iterative method that is approaching the true set or an approximation
using optimization programs. In this paper, by leveraging the fact that Constrained Convex
Generators (CCGs) can represent both polytopes, ellipsoids and other sets, we propose closed-
form expressions for outer and inner approximations. Moreover, the tightness can be defined by
the system designer based on a straightforward analysis of the norm of the dynamics matrix. We
then illustrate how our proposal fairs against the iterative approach highlighting how changing
the horizon value influences the added conservatism.

Keywords: Observers for linear systems; Parameter-varying systems; Guidance navigation and
control.

1. INTRODUCTION

Reachability tools are a key component of the design
of robust Model Predictive Control (MPC) such as in
(Bravo et al., 2006), (Langson et al., 2004) and (Mayne
et al., 2005). A particular problem of interest is the
computation of a Robust Positively Invariant (RPI) set
(Rakovic et al., 2005) that can be used to define a terminal
constraint such that, when applying a feedback controller,
it maintains the system state within the RPI set. However,
the computation of the RPI set can also serve to design
and check path planning methodologies with obstacle
avoidance (Blanchini et al., 2004), check the security of
flocking algorithms with collision avoidance techniques
(Ribeiro et al., 2020, 2021), and in studying the recursive
feasibility of predictive controllers (Mayne et al., 2000).
However, in general, these sets must be approximated by
iterative algorithms (Rakovic et al., 2005) or by one-step
optimizations like (Trodden, 2016) or (Raghuraman and
Koeln, 2022).

The computation of the RPI set is linked with that of
set-valued state estimation for linear systems. There are
various set representations that offer different trade-offs
between accuracy and computing time. On the faster
spectrum but rather inaccurate we have intervals (Thabet
et al., 2014), zonotopes (Combastel, 2003) and ellipsoids
(Chernousko, 2005), which add conservatism since inter-
sections do not have a closed-form expression. Other op-
tions like polytopes in hyperplane representation (Silvestre
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Fig. 1. Comparison between the proposed and the solution
of the iterative method for computing the RPI set.

et al., 2017b) (Silvestre et al., 2017a), in constrained zono-
topes (Scott et al., 2016) format, represented by points
(Silvestre, 2022c) or even as A-H polytopes (Sadraddini
and Tedrake, 2019) improve on the accuracy with the
implicit assumption that disturbances and other unknown
signals must belong to a polytope. A generalization named
Constrained Convex Generators (CCGs) proposed in (Sil-
vestre, 2022b) has the advantage of being able to represent
directly both polytopes, ellipsoids, convex cones, among
others and their respective intersections. This set repre-
sentation will be instrumental for the proposed closed-form
expression since it will allow to represent the residual of
the approximation by an ℓ2 ball. The type of sets that
CCGs allow to represent are illustrated in Fig. 1, where a
toy example for a randomly selected 2×2 dynamics matrix
was used and the RPI set was computed with the iterative
method with 1000 iterations (a constrained zonotope with
2002 generators) in comparison with the type of set that
is being presented (a CCG with 44 generators). The main
contributions can be summarized as:

• We propose a method that, once a level of conser-
vatism is defined by setting a horizon parameter H,



has a closed-form expression that can be compiled
and used online with a small computing time;

• Leveraging the previous analysis, it is also possible to
provide inner and outer approximations through the
use of the corresponding approximation for the input
set;

• The tightness of the approximations can be computed
a priori by inspecting the norm of an expression
related to the dynamics matrix.

The remainder of the paper is organized as follows. Section
2 formalizes the problem of computing the RPI set, high-
lighting the main difficulties associated with its infinite
description. We review in Section 3 the definition and main
set operations for CCGs, while Section 4 describes the pro-
posed approach and implementation details. Simulations
are provided in Section 5 with conclusions and directions
of future work being given in Section 6.

Notation : We let 0n denote the n-dimensional vector of
zeros and In the identity matrix of size n. The operator
diag(v) creates a diagonal matrix with v in the diagonal
or extracts the diagonal if the argument is a matrix. The
transpose of a vector v is denoted by v⊺, while the Eu-
clidean norm for vector x is represented as ∥x∥2 :=

√
x⊺x.

On the other hand, ∥x∥∞ := maxi |xi|. The cartesian
product is denoted by ×, the Minkowski sum of two sets
by ⊕ and the intersection after applying a matrix R to the
first set by ∩R.

2. ROBUST POSITIVELY INVARIANT SET
COMPUTATION

In this paper, we are interested in calculating the RPI
set for a discrete-time Linear Time-Invariant (LTI) system
that is described by the equation:

x(k + 1) = Ax(k) + w(k) (1)

where x(k) ∈ Rn, A ∈ Rn×n is a strictly stable matrix
and w(k) ∈ Rn. Moreover, in order for the problem to
be well-posed, it is necessary that the disturbance signal
w(k) be bounded by a compact set containing the origin.
The problem is then how to compute a set such that any
trajectory will stay inside it regardless of the values for
the disturbance signals. More formally, we can retrieve the
definition found in (Blanchini, 1999).

Definition 1. (RPI (Blanchini, 1999)). A set Ω ⊂ Rn is a
Robust Positively Invariant (RPI) set for the system in (1)
if and only if AΩ⊕W ⊆ Ω.

In (Rakovic et al., 2005), it is given an iterative solution
to find such a set with minimum volume set F∞ among
all possible Ω sets that satisfy Definition 1 by iteratively
doing

F∞ =

∞⊕
i=0

AiW. (2)

Naturally, unless very specific conditions are met regarding
the dynamics matrix, one cannot compute exactly the set
F∞. In (Rakovic et al., 2005), the iterative approximation
that is proposed is to compute a set denoted by F (α, s)
such that F∞ ⊆ F (α, s) ⊆ F∞ ⊕ ϵB∞ for some user
specified error ϵ and B∞ being the unit ℓ∞-norm ball. The
α parameter should satisfy AsW ⊆ αW . The procedure
then iterates over s = 0, 1, · · · until the desired error ϵ is
met, at which point the approximated RPI set is given by:

F (α, s) = (1− α)−1
s⊕

i=0

AiW.

As discussed both in (Rakovic et al., 2005) and (Trodden,
2016), the procedure can require thousands of linear pro-
grams even for a two state system, depending on how W
is represented.

The work in (Trodden, 2016) and (Raghuraman and
Koeln, 2022) give a single optimization procedure that is
based on the idea of assuming a shape for the RPI set
to be calculated and then establishing the containment
constraints such that F∞ is a subset of the solution. The
work in (Trodden, 2016) uses a hyperplane format and
assumes the normal vectors to the facets of the poly-
tope whereas (Raghuraman and Koeln, 2022) uses the
constrained zonotope format and assumes the generator
vectors are provided. In this paper, we will go a different
route by leveraging the error associated with a norm ap-
proximation given that CCGs are capable of representing
other sets apart from polytopes.

3. CONSTRAINED CONVEX GENERATORS
OVERVIEW

In this section, for the sake of completeness, we recover the
CCG definition and main operations that can be found in
(Silvestre, 2022b) and (Silvestre, 2022a) in Definition 2
and Definition 3.

Definition 2. (CCGs). A Constrained Convex Generator
(CCG) Z ⊂ Rn is defined by the tuple (G, c,A, b,C)
with G ∈ Rn×ng , c ∈ Rn, A ∈ Rnc×ng , b ∈ Rnc , and
C := {C1, C2, · · · , Cnp

} such that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp
}.

Definition 3. Consider three Constrained Convex Gener-
ators (CCGs) as in Definition 2:

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn;
• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn;
• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm;

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three
set operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz)

Z ⊕W =

(
[Gz Gw] , cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
Z ∩R Y =

(
[Gz 0] , cz,

[
Az 0
0 Ay

RGz −Gy

]
,

[
bz
by

cy −Rcz

]
, {Cz,Cy}

)
.

A particular feature that is important for the computa-
tions that follow in the next section is the ability of the
CCGs to generate multiple other sets like:

• an interval corresponds to (G, c, [ ], [ ], ∥ξ∥∞ ≤ 1), for
a diagonal matrix G;

• a zonotope is given by (G, c, [ ], [ ], ∥ξ∥∞ ≤ 1);
• an ellipsoid is defined by (G, c, [ ], [ ], ∥ξ∥2 ≤ 1), for a

square matrix G;
• a constrained zonotope or polytope is

(G, c,A, b, ∥ξ∥∞ ≤ 1);

• a convex cone in Rn is (G, c, [ ], [ ], ξ ≥ 0);
• ellipsotopes (Kousik et al., 2022) are given by

(G, c,A, b, ∥ξ∥p1 ≤ 1, · · · , ∥ξ∥pm ≤ 1),

for some pi > 0, 1 ≤ i ≤ m;
• AH-polytopes (Sadraddini and Tedrake, 2019) are

given by (G, c, [ ], [ ], Aξ ≤ b).



4. RPI CALCULATION USING CCGS

The RPI computation in this paper draws inspiration from
the general expression in (2) and the remark that it could
be simplified provided a bound exists for the remainder of
the infinite Minkowski sum. We start by rewriting formula
(2) in a format amenable to this intuition and using a
horizon H as

F∞ =

H⊕
i=0

AiW ⊕
∞⊕

i=H+1

AiW︸ ︷︷ ︸
remainder Θ

, (3)

where the remainder of the horizon Minkowski sums is
represented by Θ. As a consequence of (3), if we can
provide inner and outer approximations for Θ, given that
all operations are done exactly, we will arrive at closed-
form expression for sets that serve as an upper and lower
bounds.

4.1 Outer Approximation of the RPI set

We will start by looking at the outer approximation as
it will build intuition for the inner approximation. In
the next theorem, we provide the expression for an outer
approximation for a given ℓ2 ball enclosing set W .
Theorem 1. Let us assume an ℓ2 ball
Bu := (βIn, 0n, [ ], [ ], ∥ξ∥2 ≤ 1) such that W ⊆ Bu. Then,
the CCG given by:

Γouter
H =

H⊕
i=0

AiW ⊕ (αβIn, 0n, [ ], [ ], ∥ξ∥2 ≤ 1)

with α =
∑∞

i=1 ∥AH+i∥2 serves as an outer approximation
for F∞, i.e., F∞ ⊆ Γouter

H .

Proof. Given the outer approximation Bu for W , we can
compute a point of maximum norm within Θ in (3) as
follows:

max
x∈Θ

∥x∥2 = max
xi∈AH+iW,

i≥H+1

∥∥∥∥∥
∞∑

i=H+1

xi

∥∥∥∥∥
2

.

Resorting to the triangular inequality, the maximum norm
point satisfies

max
x∈Θ

∥x∥2 ≤ max
p1∈W

∥AH+1p1∥2 + max
p2∈W

∥AH+2p2∥2 + · · ·

≤
∞∑
i=1

max
pi∈W

∥AH+ipi∥2.

Each of the terms ∥AH+ipi∥2 can be further approximated
by ∥AH+i∥2∥pi∥2 leading to

max
x∈Θ

∥x∥2 ≤
∞∑
i=1

max
pi∈W

∥AH+i∥2∥pi∥2

≤
∞∑
i=1

∥AH+i∥2 max
p∈W

∥p∥2

≤ β

∞∑
i=1

∥AH+i∥2

where we dropped the subscript on p given that all the
maximization programs are equivalent. Thus, we can write
an approximation Γouter

H for the RPI set F∞ based on the
definition in (3) as:

Γouter
H =

H⊕
i=0

AiW ⊕ (αβIn, 0n, [ ], [ ], ∥ξ∥2 ≤ 1),

with α =
∑∞

i=1 ∥AH+i∥2. Given that all operations have
exact closed-form expressions, the conclusion follows.

There are some relevant remarks regarding Theorem 1.
First, the ℓ2 ball that contains W can be formulated as
a SemiDefinite Program (SDP) as done in (Hu et al.,
2020) for the reachability analysis of closed-loop systems
with neural networks as controllers. If W is an interval in
n dimensions centered at the origin with maximum side
length of L, such a bound is trivial since the point with
the largest norm is simply

√
nL, leading to Bu being

(
√
nLIn, 0n, [ ], [ ], ∥ξ∥2 ≤ 1).

The α value can be computed with the following iterative
procedure. Simply run a loop cycle until two consecutive
values of the norm have a difference below some numerical
threshold and then add the remaining terms until ∞ as
the more conservative ∥A∥i2 instead of ∥Ai∥2. However,
the infinite sum part becomes calculating the sum of a
geometric progression with a common ratio given by ∥A∥2.
Recall that, at some point, these terms are shrinking due
to the strictly stable dynamics matrix A.

The expression in Theorem 1 corresponds to H Minkowski
sums of polytopes (assuming W is a polytope) with an
additional Minkowski sum with an ellipsoid. Moreover,
the α computation involves a finite number of matrix
products and maintaining a running sum of powers of
the norm of A. Therefore, the method has a much better
computational complexity in comparison with the option
of linear programs used in the literature.

The derivation in Theorem 1 and the assumption of a ℓ2
ball of radius β for the set W can lead to a different set
approximating the true RPI. Consider a point p in the
outer bound. Then, we would have

Θ ≈

{ ∞∑
i=1

AH+ip, p ∈ Bℓ

}
⊆

{
β

∞∑
i=H+1

Aip, ∥p∥2 ≤ 1

}
.

However, the sum is much easier to compute given that

∞∑
i=H+1

Ai = (In −A)
−1 −

H∑
i=0

Ai,

resulting in having to compute H matrix multiplications,
H matrix additions and 1 matrix inverse. Using this
approach, it results in an approximation CCG F̃∞ written
as:
H⊕
i=0

AiW⊕

(
β

[
(In −A)

−1 −
H∑
i=0

Ai

]
, 0n, [ ], [ ], ∥ξ∥2 ≤ 1

)
.

In the simulations sections, we will see that such an
approach results in a set that more closely resembles the
true F∞.

4.2 Inner Approximation of the RPI set

Having presented the outer approximation for the RPI set,
we can recover that the ℓ2 norm of a matrix matches
the largest singular value. So in essence, Theorem 1 is
translating that an outer approximation for the remainder
set corresponds to enlarging the ball set Bu with the
maximum expansion factor that results from the linear
map with A. Therefore, we can leverage that interpretation
to provide an inner approximation by considering an
inner set Bℓ for W and computing the set resulting from
applying the smallest singular value.



Lemma 1. Let us assume an ℓ2 ball Bℓ := (βIn, 0n, [ ], [ ], ∥ξ∥2
≤ 1) such that Bℓ ⊆ W . Then, the CCG given by:

Γℓ
H =

H⊕
i=0

AiW ⊕ (

∞∑
i=H+1

σmin(A
i)βIn, 0n, [ ], [ ], ∥ξ∥2 ≤ 1)

with σmin(A) being the minimum singular value of A. The
set Γℓ

H satisfies Γℓ
H ⊆ F∞.

Proof. Given that Bℓ ⊆ W , we also have that :
∞⊕

i=H+1

AiBℓ ⊆ Θ.

Moreover, for any point p we also have that ∥σmin(A
i)Inp∥2

≤ ∥Aip∥2 and, thus, the conclusion follows.

An important remark regarding this lemma is that com-
puting the infinite summation for the approximation set
is not problematic as with the outer approximation. In
this case, if we stop the summation at any given index,
the resulting Minkowski sum will be a subset of the set
that would be obtained if the summation was carried out
until infinity. As done with the previous subsection, we can
also investigate what happens if we fix the same point in
each of the terms of the Minkowski sum corresponding
to Θ. However, given that we are aiming at an inner
approximation, we are able to provide the following result.
Theorem 2. For some CCG set W , the CCG given by:

Γinner
H =

H⊕
i=0

AiW ⊕

[
(In −A)

−1 −
H∑
i=0

Ai

]
W

satisfies Γinner
H ⊆ F∞.

Proof. The set Θ can be written explicitly as{ ∞∑
i=1

xi : xi = AH+ipi, pi ∈ W, ∀i = 1, 2, · · ·

}
.

Fixing the same vector p for all terms of the Minkowski
sum results in a subset such that:{ ∞∑

i=1

xi : xi = AH+ip, p ∈ W

}

⊆

{ ∞∑
i=1

xi : xi = AH+ipi, pi ∈ W, ∀i = 1, 2, · · ·

}
.

Therefore, we also have that:{ ∞∑
i=1

xi : xi = AH+ip, p ∈ W

}
=

{ ∞∑
i=1

AH+ip, p ∈ W

}
.

However, the set on the right-hand side corresponds to
the definition of a linear map applied to the original set
W , which after the same reformulation of the infinite sum
results in [

(In −A)
−1 −

H∑
i=0

Ai

]
W,

and the conclusion follows.

In the next section, we highlight how the proposed
closed-form approximations relate to the RPI set obtained
through the iterative method and point out the data struc-
ture sizes required to store the sets.

5. SIMULATIONS

In this section, the proposed methods for finding in-
ner and outer approximations of the Minimal Robust
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Fig. 2. Comparison between the approximations presented
in this paper for a horizon H = 5 and a randomly
selected A matrix with eigenvalues given by 0.8 and
0.9.

Positively Invariant (RPI) set for Linear Time Invariant
(LTI) systems are illustrated. Simulations were run in
Matlab R2021b running on a Fujitsu machine with a
Intel Core i7-10510U CPU @ 1.80GHz and 16 GB of
memory resorting to the implementation in https://
github.com/danielmsilvestre/ReachTool where plots
are drawn using the overloaded method plot of Yalmip
with Mosek as the underlying solver. Figures and code can
be found in https://github.com/danielmsilvestre/
RobustPositivelyInvariantPaper.

For the first simulation, the disturbance set used is an
interval centered at zero corresponding to [−2, 2]× [−2, 2]
but written in CCG format. Since matrix A must be
strictly stable and fast eigenvalues are going to result in
better approximations, we have fixed the eigenvalues to be
0.8 and 0.9 and select the eigenvectors by sampling each
entry uniformly on the the interval (0, 1). The results for
a horizon H = 5 are illustrated in Figure 2. Interestingly,
the outer RPI Γouter

5 is rather conservative along the di-
rection of the smaller singular value. We recover that the
theoretical analysis exposed the bound being constructed
by applying the largest singular value to the entire set
and disregarding the inherent structure in the SVD de-
composition. Nonetheless, it is noticeable that the outer
approximation is tight along the singular vector associated
with the maximum singular value. The set depicted in
yellow represents an approximation that may be desirable
provided there is no requirement in enforcing it to be an
outer or inner bound since the yellow set has points that
are outside of the RPI but also does not include the entire
RPI set. Lastly, using the minimum singular value is very
conservative and can be used whenever there is the need
to use an approximation that is strictly inside the RPI.

Another important aspect is the size of the set represen-
tation required for each bound. Assuming that we run the
iterative algorithm until the maximum norm of a point in
Aip, p ∈ W is below the threshold of 10−6, we would get a
CCG with 294 generators (there are no constraints since
the set was an interval). On the other hand, the approxi-
mation sets reproduced in Figure 2 require 14 generators.

From Figure 2, it is of relevance to understand how both
Γinner
H and Γouter

H evolve with H. Figure 3 shows the
evolution of the Γouter

H when we vary H ∈ {5, 10, 12, 40}.
As expected, the required horizon H is rather small since
the remainder set Θ is reducing in size exponentially fast
as we increase H.
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Fig. 3. Variation of the outer approximation Γouter
H when

H ∈ {5, 10, 12, 40}.
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Fig. 4. Variation of the inner approximation Γinner
H when

H ∈ {1, 4, 6, 12}.
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Fig. 5. Variation of the inner approximation Γinner
H when

H ∈ {1, 4, 6, 12} for a generic disturbance set W .

Contrarily to the outer approximation in Figure 3, the
set Γinner

H approaches the true RPI much faster for this
example. At H = 12, the set shown in black covers almost
the entire RPI set. However, since we are still using a
rather simple disturbance set, it is of importance to test
the approximation in a more complicated structure.

A second simulation was conducted with W having matrix
G ∈ R2×20, c ∈ R2×1, A ∈ R10×20, b ∈ R10×1 and C being a
ℓ∞ unit ball for the first 10 ξ variables and a ℓ2 unit ball for
the remainder. The entries of all matrices and vectors inW
were selected from a standard Gaussian distribution. The
dynamics matrix was still generated in a similar fashion as
the previous simulation.

In Figure 5, it is shown the same evolution for the set Γinner
H

with very similar results as the case of a simple interval. Set

0 5 10 15 20
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Fig. 6. Ratio of the volumes of the RPI set computed with
the iterative procedure versus the inner approxima-
tion Γinner

H as H ∈ [1, 20] for 100 pairs of random
generic disturbance set W and random LTI systems
generated using drss.

W has round facets caused by the addition of the ℓ2 bounds
on the generator variables. For this more complicated set
W , the advantage of the proposed methodology becomes
clearer in comparison with the iterative method. Still
maintaining the threshold that the norm bound of the
term AiW be smaller than 10−6, the RPI computed by the
iterative method had 3120 generators and 1560 constraints
whereas Γinner

12 had 280 and 140, respectively. Calculating
the RPI using the iterative method took 0.66 s whereas
the inner approximation for H = 12 took 0.0011 s.

The above results point towards the conclusion that inner
approximations following the proposed technique are very
efficient since we can use a minimal number of actual
Minkowski sums in the horizon (similar to the iterative
method) but then compensate the remainder to improve
the accuracy that would otherwise require a large number
of extra steps of the procedure.

A last point of relevance is to understand the relationship
between the hyper-volume of the true RPI in comparison
with the inner approximation. In Figure 6, it is depicted
the evolution of the ratio between the volumes of the
RPI and its inner approximation when considering 100
pairs of random generic sets generated as in the previous
simulation and a random system created with drss function
from Matlab. As expected, increasing the horizon reduces
the difference between the two sets. Moreover, the ratio
increases exponentially with systems having larger eigen-
values being the most problematic.

The eigenvalues of the dynamics matrix also play a critical
role in the amount of iterations and horizon required for
low-conservatism solution. Figure 7 depicts the volume of
the sets computed using convhull function of Matlab that
uses vertex tessellation on the output of the overloaded
plot method from Yalmip. This serves as a metric of how
efficient it is to solve optimization problems with the RPI
as constraint set as Yalmip computes hundreds of those
problems to find vertices. There is a clear advantage as for
a horizon H = 20 it is taking 5.87 s in comparison with
9.34 s when using the RPI from the iterative method.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of computing
inner and outer approximations for the minimal Robust
Positively Invariant (RPI) set. This problem has a notable
application in the design of Control Barrier Functions,
terminal constraints for Model Predictive Control and as-
sessing security of a state feedback controller. The current



0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

Fig. 7. Average elapsed time over the 100 pairs of random
disturbance set and dynamical system for the volume
computation for the RPI obtained using the iterative
method against the inner approximation Γinner

H as
H ∈ [1, 20].

proposal is founded on the idea of splitting the traditional
computation in two components: a sequence of Minkowski
sums to get the general shape of the set and an extra sum
with an ellipsoid or with the affine transformation of the
disturbance set with the result of the power series of the
dynamics matrix for the outer and inner sets, respectively.

The accuracy and performance is illustrated in simulation
with the proposed method being able to capture the shape
of the RPI even for small horizon values. These results
enable future research into the enforcement of feasibility
of Model Predictive Controllers, Collision Avoidance for
dynamical systems and others where the RPI set must be
used within the context of an optimization problem.
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