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Abstract— Guaranteed state estimation for autonomous ve-
hicles in GPS-denied areas that resort to landmarks detection
and onboard sensors requires set-membership techniques that
are capable of representing heterogeneous bounds using hyper-
planes and ellipsoids. Recently, in the literature, the concept of
Convex Constrained Generators (CCGs) has been introduced
for the case where the dynamical system can be represented by a
Linear Parameter-Varying (LPV) model. However, in practical
applications, dynamics have uncertain parameters caused by
noise-corrupted measurements of quantities of interest such
as mass or orientation angles. In this paper, we first explore
a closed-form solution for the convex hull of polytopes to
showcase the main challenges of guaranteed state estimation for
uncertain LPVs. We then propose the use of CCGs to have low
conservatism when in the presence of distance measurements
and avoid the exponential growth of the generators used in
the state representation by performing an approximation using
ray-shooting. Simulations illustrate the ability of CCGs to ac-
curately model distance measurements with the corresponding
decrease in volume without adding additional constraints.

Index Terms— Uncertain Systems; Autonomous Systems; Es-
timation

I. INTRODUCTION

Missions where autonomous vehicles have onboard sen-
sors to help their localization or use a guaranteed state
estimation filter to perform collision avoidance [1], [2] can
benefit from having very accurate set representations as con-
servative estimates would translate in very restricted move-
ment control signals. Incorporating noise-corrupted range
and bearing measurements is typically done in the literature
through an over-approximation of the set resulting from
range-only measurements by intervals [3] or using ellipsoids
[4]. Recently, Constrained Convex Generators (CCGs) [5]
allow to model this type of measurements for linear models
with no uncertainties. CCGs have the advantage of allowing
the representation of circular or ellipsoidal shapes as well
as intersections of different convex bodies. Figure 1 show-
cases the intersection of a square and an ellipsoid and two
ellipsoids that can be directly represented as CCGs.

The state estimation task can also be carried following the
stochastic approach with Kalman filters that vary depending
on the assumptions. Single beacon range measurement was
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Fig. 1: Two sets that can be modeled using constrained con-
vex generators. On the left: set resulting from the intersection
of a square with an ellipse. On the right: intersection of two
ellipses.

tackled in [6] by a transformation of the nonlinear dynamics
to obtain a Linear Time Varying (LTV) which allows for a
Kalman Filter. The nonlinear model can be directly used by
an Extended Kalman Filter [7]–[9]. The stochastic approach
is not desirable when a guaranteed state estimation is needed
as in the case of fault-tolerant control, Model Predictive
approaches, or vehicle collision detection with obstacles.

Estimation for uncertain Linear Parameter-Varying (LPV)
has mostly considered polytopes such as in [10]. In the
case of LTVs in discrete-time, there are proposals using
intervals [11], zonotopes [12] and ellipsoids [13] which
are not accurate since intersections cannot be expressed in
closed-form. Techniques resorting to polytopes [14] and in
the format of constrained zonotopes [15] are the relevant
techniques, although uncertainties inherently point towards
computing a convex hull over the trajectories for vertices
of the uncertain dynamics matrix. Please note that the
uncertainties can also be modeled as exogenous signals at
the expenses of a larger conservatism when the uncertainty
matrices do not have rank equal to the unity [16]. The case
of uncertainties cannot be addressed even considering the
equivalent estimation tools for nonlinear systems in [17],
[18], [19], [20], [21], respectively.

The recent work in [22] has introduced various set oper-
ations using constrained zonotopes and zonotopes. Among
them is the introduction of a convex hull computation in
closed-form. This is a direct alternative to the employed so-
lution using polytopes stored in the half-plane representation
such as in [10]. Nevertheless, it is desirable to extend the



techniques to CCGs as to encode reachable sets such as the
ones in Figure 1. In this paper, we first present a closed-form
expression for a CCG enclosing the union of two CCGs
and then propose an order reduction method to avoid the
exponential growth of the auxiliary variables within the set
description. The main contributions can be highlighted as:

• Leveraging the definition for the exact convex hull
for constrained zonotopes, it is shown an equivalent
formulation for CCGs, which have the ability to repro-
duce reachable sets resulting from range and bearing
measurements;

• Identifying a key caveat in the growth of auxiliary
variables in the set representations, we propose to use
an order reduction algorithm based on ray-shooting to
decrease the computation time for the state estimation
task of uncertain LPVs.

The remainder of the paper is organized as follows. Sec-
tion II formalizes the state estimation problem, highlighting
the exponential growth of the auxiliary variables. We review
in Section III the definition and main set operations for
CCGs, while Section IV is dedicated to presenting the pro-
posed convex hull algorithm and the order reduction method.
Simulations using a unicycle model for a land autonomous
vehicle are provided in Section V. Conclusions and directions
of future work are given in Section VI.

Notation : We let 0n denote the n-dimensional vector of
zeros and In the identity matrix of size n. The operator
diag(v) creates a diagonal matrix with v in the diagonal
or extracts the diagonal if the argument is a matrix. The
transpose of a vector v is denoted by v⊺, while the Euclidean
norm for vector x is represented as ∥x∥2 :=

√
x⊺x. On the

other hand, ∥x∥∞ := maxi |xi|. The cartesian product is
denoted by ×, the Minkowski sum of two sets by ⊕ and the
intersection after applying a matrix R to the first set by ∩R.

II. PROBLEM STATEMENT

The problem of state estimation in uncertain LPVs can be
cast as finding a set of possible values given the measure-
ments, disturbance, noise and initial state bounds and the
model is given by:

x(k + 1) =
(
F (ρ(k)) +

n∆∑
ℓ=1

∆ℓ(k)Uℓ

)
x(k) +B(ρ(k))u(k)

+ L(ρ(k))d(k)

y(k) = C(ρ(k))x(k) +N(ρ(k))w(k)
(1)

where x(k) ∈ Rn, u(k) ∈ Rnu , d(k) ∈ Rnd , y(k) ∈ Rm and
w(k) ∈ Rnw are the system state, input, disturbance signal,
output and noise, respectively. The parameter ρ(k) is the part
of the parameters that can be measured at time k, which can
be treated as in the case of LTVs. The main challenge appears
from considering the n∆ uncertainties denoted by ∆ℓ and the
constant matrices Uℓ that account for how the uncertainties
affect the nominal dynamics matrix given by F (ρ(k)). To
lighten the notation, we will consider Fk := F (ρ(k)) and
similarly for all the remaining matrices in (1). Notice that

we have to explicitly consider ρ to account for nonlinearities
that enter the model in a linear fashion as will happen with
unicycle model used in Section V. Moreover, in order to
have a well-posed problem, we assume that all unknown
signals are bounded within a compact convex set denoted by
the correspondent capital letter, i.e., x(0) ∈ X(0), d(k) ∈
D(k) and w(k) ∈ W (k). Without loss of generality, we will
assume that ∀k, |∆ℓ(k)| ≤ 1.

The problem addressed in this paper is summarized as:
Problem 1: Given compact convex sets X(0), D(k) and

W (k) for all k ≥ 0 and measurements y(k), how to compute
a set X(k) such that it is guaranteed that x(k) ∈ X(k),
∀k ≥ 0.
Notice that Problem 1 is called state estimation although a
converse definition could be presented for the output of the
system (this is of particular interest in sensitivity analysis
[23] and system distinguishability [24]). Problem 1 is quite
general in terms of the measurement set Y (k), i.e., the set
of all state values that conform with the measurements y(k).
If there is range information, Y (k) is an ellipsoid; in case
of bearing angles, one would get Y (k) to be a convex cone;
and, if we have some norm-based measurement, Y (k) is an
affine transformation of an ℓp unit ball.

III. CONSTRAINED CONVEX GENERATORS OVERVIEW

In this section, we first review the main operations and
introduce an approximation for the convex hull of the union
of two CCGs. Definition 2 and Definition 3 provide a formal
description of CCGs and the required operations.

Definition 2 (Constrained Convex Generators): A
Constrained Convex Generator (CCG) Z ⊂ Rn is defined
by the tuple (G, c,A, b,C) with G ∈ Rn×ng , c ∈ Rn,
A ∈ Rnc×ng , b ∈ Rnc , and C := {C1, C2, · · · , Cnp

} such
that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp
}.

Definition 3: Consider three Constrained Convex Gener-
ators (CCGs) as in Definition 2:

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn;
• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn;
• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm;

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set
operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz)

Z ⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
Z ∩R Y =

[Gz 0
]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 , {Cz,Cy}

 .

Computationally speaking, it is required to store which
type of generator we are using for which entries of the vector
of auxiliary variables ξ. We would like to point out that all
the aforementioned set representations are subsets of CCGs,
namely:

• an interval corresponds to (G, c, [ ], [ ], ∥ξ∥∞ ≤ 1), for
a diagonal matrix G;



• a zonotope is given by (G, c, [ ], [ ], ∥ξ∥∞ ≤ 1);
• an ellipsoid is defined by (G, c, [ ], [ ], ∥ξ∥2 ≤ 1), for a

square matrix G;
• a constrained zonotope or polytope is

(G, c,A, b, ∥ξ∥∞ ≤ 1);
• a convex cone in Rn is (G, c, [ ], [ ], ξ ≥ 0);
• ellipsotopes [25] are given by (G, c,A, b, ∥ξ∥p1

≤
1, · · · , ∥ξ∥pm ≤ 1), for some pi > 0, 1 ≤ i ≤ m;

• AH-polytopes [26] are given by (G, c, [ ], [ ], Aξ ≤ b).

IV. STATE ESTIMATION FOR UNCERTAIN LPVS USING
CONSTRAINED CONVEX GENERATORS (CCGS)

In this section, the state estimation strategy is presented
using CCGs and introducing the necessary convex hull
operation to deal with the uncertainties. The main issue
arising from each of the uncertainty parameters ∆ℓ in (1)
is that a product appears of the set [−1, 1] with the CCG
X(k) when computing the set X(k + 1). The alternative
that is typically explored is to consider the polytopic set
of dynamics matrices and perform the convex hull for each
of the vertices corresponding to [−1, 1]n∆ where the power
of a set is understood as the cartesian product taken n∆

times. Therefore, the propagation of the previous estimate
X(k) using the state equation in (1) corresponds to the set
Xprop(k + 1):

Xprop(k + 1) =cvxHull

 ⋃
∆∈vertex([−1,1]n∆ )

(
Fk +

n∆∑
ℓ=1

∆ℓ(k)Uℓ

)
X(k)


+Bku(k)⊕ LkD(k),

(2)
where cvxHull computes the convex hull of the argument.

Using the measurement equation in (1) corresponds to
an intersection with Y (k + 1) that has all possible state
values that conform with y(k + 1), meaning an update on
the estimates given as follows:

X(k + 1) = Xprop(k + 1) ∩C Y (k + 1).

A. Convex Hull for CCGs

Let us start by defining the convex hull of two sets:

cvxHull (Z1, Z2) :=
{
z :z = λz1 + (1− λ)z2,

λ ∈ [0, 1], z1 ∈ Z1, z2 ∈ Z2

}
.

We can now state a proposition introducing a novel over-
approximation to the convex hull operation of two CCGs.

Proposition 1: Consider two Constrained Convex Gener-
ators (CCGs) as in Definition 2:

• Z1 = (G1, c1, A1, b1,C1) ⊂ Rn;
• Z2 = (G2, c2, A2, b2,C2) ⊂ Rn;

such that ξ1 ∈ C1 =⇒ αξ1 ∈ C1, for α ∈ [0, 1] and
similarly for C2. The CCG bounding the convex hull Zh =

(Gh, ch, Ah, bh,Ch) ⊂ Rn is given by:

Gh =
[
G1 G2

c1−c2
2 0

]
, ch =

c1 + c2
2

,

Ah =


A1 0 − b1

2

0 A2
b2
2

0

I 0 − 1
21

−I 0 − 1
21

0 I 1
21

0 −I 1
21

I

 , bh =

 1
2b1
1
2b2
− 1

21



Ch = {C1,C2,B2ng1+2ng2+1
∞ },

where Br
∞ is the ℓ∞ unit ball for a ξ auxiliary variable of

size r.
Proof: We start by introducing an auxiliary variable

ξ0 = 2λ− 1 that is zero-centered to replace the parameter λ
in the convex hull definition. Let us label ξ′1 and ξ′2 as the
auxiliary variables in Z1 and Z2 definitions, respectively.
A point z in the convex hull has to satisfy the following
equality with the transformed variables ξ0 and ξ1 = λξ′1 and
ξ2 = (1− λ)ξ′2:

z =
c1
2
(1 + ξ0) +G1ξ1 +

c2
2
(1− ξ0) +G2ξ2. (3)

The original constraints can also be converted to involve the
transformed variables ξ1 and ξ2 obtaining:

A1ξ
′
1 = b1 ⇐⇒ A1ξ1 = b1

(1 + ξ0)

2

⇐⇒ A1ξ1 −
b1ξ0
2

=
b1
2

(4)

and in a similar fashion for ξ′2 constraints:

A2ξ
′
2 = b2 ⇐⇒ A2ξ2 = b2

(1− ξ0)

2

⇐⇒ A2ξ2 +
b2ξ0
2

=
b2
2
.

(5)

Up to this point, all transformations have been exact and
equations (3), (4) and (5) written in matrix form result in:(
z =

[
G1 G2

c1−c2
2

] ξ1ξ2
ξ0

+
c1 + c2

2
:

[
A1 0 − b1

2

0 A2
b2
2

]ξ1ξ2
ξ0

 =

[
1
2b1
1
2b2

]
, {C1,C2, |ξ0| ≤ 1}

)
.

The above definition is just a part of what is presented in the
statement since we are still missing constraints to enforce the
relationship that ξ1 and ξ2 are related through ξ0 in a convex
sum. To that end, we need to add inequalities to constrain
ξ1 → 0 when 1− λ → 1 and be ξ1 when 1− λ → 0. These
results in the inequalities:

−1 ≤ ξ1 + (1− λ) ≤ 1

−1 ≤ −ξ1 + (1− λ) ≤ 1

and in a similar fashion to ξ2 but using λ, resulting in:

−1 ≤ ξ2 + λ ≤ 1

−1 ≤ −ξ2 + λ ≤ 1.
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Fig. 2: Comparison between the set Zh and the convex hull
that one would obtain if first converted both Z1 and Z2 to
constrained zonotopes by overbounding all convex generators
by the ℓ∞ unit ball.

The above inequalities can be converted to equality con-
straints resorting to the use of additional auxiliary variables
to serve as residuals. Rearranging the terms to have all
auxiliary variables in the left-hand side and the numerical
values on the right-hand side and placing them in matrix
form results on the last block of Ah in the statement.

Proposition 1 is not the exact convex hull since the last
inequalities added were relaxed with the use of residual
variables for a general convex generator. Figure 2 depicts
an example of sets Z1 and Z2 with the respective set Zh

as given by Proposition 1 and what one would get if first
converted the sets to constrained zonotopes and then applied
the exact convex hull given in [22]. As observed, even though
the proposed method in Proposition 1 is not exact for CCGs,
it still offers a better accuracy than computing the exact
convex hull of the polytopic over-approximation of the sets.

The convex hull operator increases linearly the number
of auxiliary variables by an additional 2(ng1 + ng2) + 1,
however, this step has to be performed for all vertices which
are exponential in the number of uncertainties. Such an issue
was already present in [10] for polytopic set descriptions
using the optimal convex hull formulation. In the following
lemma, we establish an equivalent exponential growth of
auxiliary variables for CCGs, even for 1 uncertainty parame-
ter, thus pointing out a critical limitation of guaranteed state
estimation for uncertain LPV systems.

Lemma 1: Consider a system as in (1) with a state space
of dimension n and a single uncertainty parameters ∆1. If
the initial set X(0) and the disturbance sets are represented
respectively by nx and nd auxiliary variables, then, even
without the intersection with the measurements, X(k) re-
quires 6knx + (1 + nd)

6k−1
5 auxiliary variables.

Proof: We start by pointing out that the linear map
adds no variables, the Minkowski sum returns a set with
the number of variables of both sets combined and that the
convex hull returns a set with 3 times the number of variables
of both sets plus ξ0. The propagate phase in (2) requires
computing the convex hull of two sets (one uncertainty
results in 2 vertices) followed by the Minkowski sum with

D(k). Since the linear maps add no additional variables, we
can write the recursive evolution of the number of auxiliary
variables δ(k) at time k as:

δ(k + 1) = 6δ(k) + 1 + nd

by noting that both sets within the convex hull have always
the same number of auxiliary variables. Therefore, we get:

δ(k) = 6kδ(0) + (1 + nd)

k−1∑
τ=0

6τ

= 6knx + (1 + nd)
1− 6k

1− 6

= 6knx + (1 + nd)
6k − 1

5
,

which concludes the proof.
In order to keep the computation time for each iteration

bounded, we introduce the order reduction in Algorithm
1, which computes a CCG with a specified number of
constraints γ using n + γ generators which is of the form
of a polytope. The procedure starts by constructing a collec-
tions hyperplanes tangent to the surface in order to have
a bounding polytope v⊺x ≤ b, which is then converted
to the CCG representation. We remark that if the CCG is
representing a polytope (i.e., it is equivalent to a CZ) and
vectors in v are all orthogonal to the facets of the polytope,
then Xred(k) = X(k) but with a decreased order in the
representation. This is a trivial observation from the fact that
v′x ≤ b would be the exact polytope. The min and max
operations are element-wise.

Algorithm 1 Order Reduction using points on the surface.

Require: Set X(K) ⊆ Rn and desired order γ.
Ensure: Calculation of X(k) ⊆ Xred(k) ⊆ Rn with ng =

γ + n generators and nc = γ constraints.

1: /* Get points pi on the surface such that pi =
argmax v⊺i pi, 1 ≤ i ≤ γ */

2: [v, p] = sampleSurface(X(k), γ)
3: /* Compute box Z̃ for the points p */
4: Z̃ = ( 12diag(max p−min p), 1

2 (max p+min p), [ ], [ ], ∥ξ̃∥∞ ≤ 1)

5: /* Calculate b and σ such that all entries v⊺i pi ∈ [σ, b]*/
6: σ = min v⊺p
7: b = diag(v⊺p)

8:
Xred(k) = (

[
Z̃.G 0n×γ

]
, Z̃.c,

[
v⊺Z̃.G 1

2diag(σ − b)
]
,

b+ σ

2
− v⊺Z̃.c, ∥ξ̃∥inf ≤ 1)

V. SIMULATIONS

In this section, simulations results are presented for
a unicycle model of an autonomous vehicle in discrete-
time for which there is a digital compass as an on-
board sensor providing measurements of the orientation
angle with a ±5◦ error. Simulations were run in Matlab
R2018a running on a HP machine with a Intel Core i7-
8550U CPU @ 1.80GHz and 12 GB of memory resorting



Fig. 1: Kinematic model of the unicycle

The coordinates of the point αi for each agent robot Ri

as shown in Figure 1, are described by:

αi =
[
pi

qi

]
=
[
xi + ℓ cos (θi)

yi + ℓ sin (θi)

]
(2)

The kinematics of (2) are determined by:

α̇i = Ai(θi)
[

vi

wi

]
(3)

Where

Ai(θi) =
[

cos (θi) −ℓ sin (θi)

sin (θi) ℓ cos (θi)

]
(4)

is the decoupling matrix of each Ri. It is easy to see
that the decoupling matrix is non-singular since det(Ai) =
ℓ ̸= 0. Therefore it is possible to design control strategies
for positioning αi at a desired location or even track a
trajectory. The idea of controlling the point αi instead of
(xi, yi) to avoid singularities in the control law is usual in
the literature [5].

B. Approximate Discrete-Time Model
In order to discretize the model (3) we use the Euler

approximation. This approximation is given by:

α+
i = αi + T α̇i (5)

where T > 0 is the sampling period. For the sake of
simplicity, in the rest of the paper, the following notation
is adopted α = α(kT ), α+ = α(kT +T ), this is α+ denotes
forward-shift.

The control vector u = [v, w]T holds its value between
two consecutive sampling instants. i.e., we consider a
zeroth order hold for the control vector.

Substituting (2) into (5), the discrete-time model be-
comes

α+
i =

[
p+
i

q+
i

]
=
[
pi

qi

]
+ TAi(θi)

[
vi

wi

]
(6)

It is possible now to design a control strategy for track-
ing a trajectory (or positioning αi at a desired location)
using the control law:

[
vi

wi

]
= A−1

i (θi)
T

([
ν1i

ν2i

]
−
[
pi

qi

])
(7)

where

A−1
i (θi) = 1

ℓ

[
ℓ cos (θ) ℓ sin (θ)

− sin (θ) cos (θ)

]
(8)

and νi is a new control variable

Let αid(k) be a prescribed trajectory and define the new
control variable νi by

νi = α+
id − ki(αi − αid) (9)

Proposition 1: Consider the closed loop system (6) - (7)
and let νi be defined by (9). Suppose |ki| < 1. Then
limk→∞ ||αi(k)− αid(k)|| = 0 exponentially.

Proof: The proof is simple and is omitted because of
lack of space.

Since we have a control law that allows tracking trajec-
tory we can use it in the leader robot for marching control.
Precise definitions of formation and marching control are
given in the next section.

III. Problem Statement

A. Discrete-Time Formation
Let α∗i be the desired relative position of Ri in a

particular formation. In this work, we can stablish the α∗i
as

α∗i = αi+1 + c(i+1)i
α∗n = α1 + c1n

(10)

where c(i+1)i = [h(i+1)i, v(i+1)i]T denote a vector rep-
resenting the desired relative position of robot Ri with
respect to robot Ri+1 in a particular configuration.

The goal is to design a control law ui(k) = fi(αi+1(k))
for each robot Ri such that:

lim
k→∞

(αi (k)− α∗i (k)) = 0, i = 1, ..., n (11)

i.e. the desired position of the robot Ri with respect to
the robot Ri+1 is achieved. Fig. 2 shows the position
of the vectors αi when the robots satisfy the desired
formation configuration.

Fig. 3: Schematic of the unicycle model for the vehicles.

to Yalmip as the language to model optimization prob-
lems and Mosek as the underlying solver. Videos, fig-
ures and code can be found in https://github.com/
danielmsilvestre/CCGuncertainLPV

We recover the example considering unicycle dynamics
described in [27]. The vehicle schematic representation is
given in Figure 3 and has the following dynamics in discrete-
time: [

pi
qi

]
(k + 1) =

[
pi
qi

]
(k) + Ts Ai(θi)

[
vi
wi

]
(k)

where the state (pi, qi) identify the position of the front of
the ith vehicle and the inputs (vi, wi) account for the linear
velocity and rotation. Moreover, Ts = 0.1 stands for the
sampling time, θi (we omit the time dependence in k for a
more compact presentation) for the orientation and matrix
Ai(θi) is given as:

Ai(θi) =

[
cos θi −l sin θi
sin θi l cos θi

]
.

In this simulation, we consider a single vehicle running for
a total of 15 seconds and, assuming that the compass takes
measurements θ̂1 of the true variable θ1 that have a maximum
of ±5◦ following a uniform distribution. Therefore, at each
iteration time k, matrix A1 in the dynamics is not available
to the observer and we have to consider θ̂1 to generate the
nominal dynamics and an uncertainty ∆1 with maximum
magnitude of 5◦, which fits (1).

The trajectory-tracking control law used is:[
vi(k)
wi(k)

]
=

A−1
i (θi)

Ts

(
τ(k + 1)− τ(k)

2 − 0.5

[
pi(k)
qi(k)

]
+ d(k)

)
where τ(k) accounts for the discrete sequence of waypoints
in the trajectory. Once again, we assume that there is a
telemetry sensor that produces estimates corrupted by noise
of the value of p1(k) and q1(k) and add the corresponding
disturbance term d(k) to account for those differences.
Moreover, there are two beacons at positions

[
5 25

]⊺
and[

23 10
]⊺

that can be detected within a 5 and 2 units of
distance which allows to better localize the vehicle.

The vehicle performs a figure 8 trajectory such that it
can only get measurements from each beacon in one time
interval. Figure 4 illustrates the volume evolution for the set-
valued estimates X(k) when using constrained zonotopes
[15] and CCGs when both used the same order reduction
method in Section IV. Since the vehicle is moving and most
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Fig. 4: Comparison of the volume for both set-valued esti-
mates when using constrained zonotopes (CZ) and CCGs for
the figure 8 trajectory.
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Fig. 5: Trajectory executed by the vehicle and the correspon-
dent set-valued estimates at multiples of 65 iterations when
using constrained zonotopes (CZ) and CCGs for the figure
8 trajectory.

of the time performing dead reckoning with the uncertain
LPV model, the volume keeps increasing and is lowered
when the vehicle reaches the beacon areas. The main trend to
observe is that the added accuracy of the ℓ2 ball representing
the range measurement from the beacon contributes to a
better performance of the CCG filter.

In Figure 5, it is illustrated the trajectory executed by
the vehicle and the corresponding set-valued estimates using
both the CZ and CCG approaches. We have selected a small
number of time instants to display the sets as to avoid
cluttering the image, but the full video can be found in the
GitHub repository associated with the paper.

A last relevant issue is the elapsed time in each iteration
taken by both filters with different set representations. Figure
6 shows the computation times across iterations during the
whole simulation. At the beginning, both filters have very
similar behavior pointing out to the fact that the CCG is
yet to have round facets and the order reduction produces
equivalent representations. However, as the simulation pro-
gresses the set is intersected with the range measurements.
The curved boundaries of the CCGs result in a more complex
representation. When the vehicle finds the second beacon
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Fig. 6: Elapsed time for each iteration of both methods taking
into account the constructiong of the set, approximation
algorithm and volume computation.

and the set is considerably reduced in size, the CZ approach
has a better performance given that X(k) has a shape close
to an interval, where its accuracy is the worst. This result
points out to the need to further develop order reduction
methods for CCGs that can exploit the nature of the sets.
This is not a trivial task given the requirement of computing
an outer-approximation to maintain the guaranteed feature in
the estimation using set-membership approaches.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have address the problem of set-valued
estimation of autonomous vehicles with uncertainties in the
dynamics. A direct example is the case of land robots that can
be cast as uncertain Linear Parameter-Varying (LPV) models
where the orientation angle being uncertain causes issues for
techniques developed for LPVs. We then introduce a closed-
form expression for convex hulls of Convex Generators
(CCGs) and an order reduction algorithm.

In a simulation representing a vehicle performing dead
reckoning with occasional access to range measurements
from beacons, it is shown that the current proposal sig-
nificantly improves the estimation quality with a smaller
increase in the computational time caused mainly by the
order reduction algorithm. As future work, increasing the
performance of order reduction methods for CCGs that take
into account the round nature of some of its facets can greatly
improve the performance of the filter.
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