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Abstract

The paper addresses the problem of designing distributed observers for discrete linear time-varying (LTV) systems with distributed
sensor nodes. It is shown, under the conditions of collective observability, strong connectivity of the sensor communication network, and
invertibility of the state transition matrix, that the resulting observer yields exponential stability of the estimation errors, with a pre-defined
convergence rate, and in certain situations requires less data exchange. It is shown that for linear time-invariant (LTI) systems this method
yields fixed gains that can be computed in a few steps of a distributed algorithm with the underlying communication network. A design
example is given where the asymptotic performance of the proposed observer is shown to be similar to that obtained using a distributed
Kalman filtering approach.
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1 Introduction

1.1 Motivation

Spawned by recent advances in wireless sensor networks
and distributed sensing, there has been a flurry of activity
on the topic of distributed state estimation, see for exam-
ple [14] and the references therein. Distributed state esti-
mation and control have a wide range of applications, from
network localization to environmental monitoring and for-
mation control of vehicles (see [1, 6] for an introduction to
these topics).

One of the most studied families of distributed estimation al-
gorithms in discrete-time is distributed Kalman filters, which
extend the theory of Kalman filtering to a distributed set-
ting [7,8,11,15]. The concept of distributed Kalman filtering
is also suitable to the problem of distributed state estimation
of LTV systems. This problem is often addressed through the
method of information diffusion [4, 16, 17], or with covari-
ance intersection [3]. These methods in general require that
the estimation error covariances be computed locally and
exchanged among nodes. The issue of bandwidth efficiency
is of paramount importance in practical applications since
lower bandwidth translates into lower energy consumption
and therefore increased operational autonomy. Moreover, it
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is difficult to obtain in-hand convergence rates for the esti-
mation errors.

Borrowing from the theory in [3], in this paper we present an
alternative design for a distributed observer for LTV systems
with guaranteed stability, which requires only collective ob-
servability. However, in contrast with the method in [3], each
node is required to transmit at each time a special version
of the global output matrix, instead of the local information
matrix. Therefore, the resulting observer requires the trans-
mission of fewer data if the total dimension of the measure-
ments in the network is smaller than the dimension of the
system state. In addition, with this method, the convergence
rate of the estimation errors is defined beforehand.

The problem of designing LTI distributed observers with
fixed gains that guarantee the stability of the estimation er-
ror for general collectively observable LTI discrete-time sys-
tems has only recently been addressed [10,12]. Most meth-
ods require in general centralized computations of the ob-
server parameters, however, in practical applications central-
ized computations may not be possible if the sensors are de-
ployed without information about the sensor network topol-
ogy and global observation model. To address this problem,
the works in [5, 13] allow for a distributed computation of
the observer parameters in finite time methods. We show that
for LTI systems the LTV observer proposed in this paper is
equivalent to that in [13].

The main result of this paper is a distributed observer for
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LTV systems with guaranteed stability with the following
characteristics:

• has a pre-defined convergence rate.
• requires the transmission of fewer data than the methods

in [3,4] if the total dimension of the measurements in the
network is smaller than the dimension of the system state.

• is equivalent to the method in [13] for LTI systems.

1.2 Paper structure

The paper is structured as follows. Section 2 formulates the
problem of distributed observer design and describes the as-
sumptions required. Section 3 describes the new estimation
algorithm proposed and the distributed parameter computa-
tion algorithm for LTI systems. Section 4 contains the main
theorem of this paper. To illustrate the performance of the
algorithm proposed, Section 5 shows the results of the appli-
cation of the estimation algorithms to an illustrative design
example. Finally, Section 6 contains the conclusions of the
paper.

1.3 Notation

Throughout this paper, we will use the symbol ⊗ for the
Kronecker product. The notation | · | represents the cardinal-
ity of a set. The notation ⌊·⌋ represents the floor operator, or
the rounding down to the closest lower integer, while ρ(·)
denotes the spectral radius of a square matrix. IM denotes an
M×M identity matrix, and 1 represents anN×1 vector with
ones in every entry. When clear from the context, the super-
script of a variable, e.g. xi, refers to the node index of that
variable, where i ∈ {1, . . . , N} := N . The operator row(·)
is defined by row(Xi) := [X1, . . . , XN ], the operator col(·)
represents the column operator, i.e. col(Xi) := row(XiT )T ,
and the operator diag(Xi) yields a block diagonal matrix
whose diagonal elements are X1, . . . , XN . The operator
trimn(·) yields a matrix containing only the first n rows of
the argument.

2 Problem definition

Consider the discrete autonomous dynamical system

xt+1 = Atxt, (1)

where xt ∈ Rn denotes the state vector at time step t, and
At ∈ Rn×n is the dynamics matrix and satisfies the follow-
ing assumption
Assumption A1 The matrix At is invertible for all t ≥ 0.

We also define the following state transition matrix for any
times t and t0 such that t > t0,

Φ(t, t0) := At−1 . . . At0 , (2)

Φ(t0, t) := A−1
t0 . . . A−1

t−1, (3)

and therefore
xt = Φ(t, t0)xt0 . (4)

The state vector is observed by a set of sensor nodes N , with
cardinality N = |N |. The measurement equation associated
with the generic node i ∈ N is defined as

yit = Ci
txt, (5)

where yit ∈ Rmi denotes the observation vector at time t, and
Ci

t ∈ Rli×n is the observation matrix. The overall network
can be described by the pair (N ,A) where A ⊆ N × N
is the set of node pairs that denote the directed connections
between the nodes. We let N i be the set of in-neighbors of
i, i.e., N i := {j : (j, i) ∈ A}.

The following assumption describes the communication lim-
itations among sensors.
Assumption A2 At each time step, the nodes are allowed
to communicate once according to the network structure
defined by A, i.e. a node i is allowed to communicate once
with node j if and only if (i, j) ∈ A.

In this paper, we consider a matrix Π, henceforth referred to
as the consensus matrix, whose value in row i and column
j is defined as πi,j , where πi,j = 0 if (i, j) /∈ A. The
above matrix is assumed to satisfy the following standard
assumption:
Assumption A3 The consensus matrix Π is stochastic and
primitive, that is Π1 = 1, Π is nonnegative and there exists
a positive integer k such that all elements of Πk are strictly
positive.

For strongly connected graphs, a matrix Π satisfying As-
sumption A3 can be generated simply by taking πi,j =
1/|N i| for j ∈ N i.

To describe the necessary observability assumption we first
need to define the following matrices which contain infor-
mation about the available data at node i at time t from a
previous time τ

Ci
t,τ :=

∑
j∈N

πi,j
τ C̄jT

t−τ−1C̄
j
t−τ−1 (6)

C̄i
t :=

{
Ci

t if t ≥ 0

0 if t < 0
, (7)

Gi
t,τ := Φ(t− τ − 1, t)TCi

t,τΦ(t− τ − 1, t), (8)

where πi,j
τ is the value of Πτ in row i and column j. The

required observability assumption is the following
Assumption A4 There exists a positive constant α and an
information horizon k ≥ 0 such that the distributed con-
structibility gramian

Gi
t :=

k∑
τ=0

Gi
t,τ . (9)
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satisfies Gi
t ≻ αIn for all time t > k and all nodes i ∈ N

The problem of distributed state estimation that will be ad-
dressed in this paper is defined as follows.
Problem 1 Under assumptions A1-A4 and given that each
node i ∈ N has access at each time t to the dynamics ma-
trix At, the local measurement yit, the local observation ma-
trix Ci

t and information transmitted by the in-neighbours of
i, the problem of distributed state estimation addressed in
this paper consists of designing a distributed LTV observer,
with parameters computed based on the global consensus
matrix Π and a pre-selected global decrease rate β, such
that each node reconstructs locally the state of the global
system (1), as x̂i

t, with the estimation error xt− x̂i
t converg-

ing to zero exponentially with rate β, that is, ∥xt − x̂i
t∥ ≤

aβt maxj∈N ∥x0 − x̂j
0∥ for some a > 0.

3 Algorithm

3.1 State estimate

The algorithm proposed in this paper has the following form

x̂i
t+1 = At

(
Ωi

t

)−1

∑
j∈N

πi,jΩ̄j
t x̂

j
t + CiT

t yit

 , (10)

where
Ωi

t := CiT
t Ci

t +
∑
j∈N

πi,jΩ̄j
t x̂

j
t , (11)

and Ω̄j
t is an information matrix to be determined.

This observer algorithm is similar to the distributed Kalman
filter with consensus on information given in [3]. However,
in the present, we consider that the matrices Ω̄i are based on
the constructibility gramian. Given a desired decrease rate
β with 0 < β < 1, and the information horizon k ≥ 0 the
information matrix of node i, which can be interpreted as a
discounted constructibility gramian, is given by

Ω̄i
t :=

k∑
τ=0

βτ+1Gi
t,τ + χt, (12)

where χt := αβt+1Φ(0, t)TΦ(0, t). In the next subsection,
we show how to compute the matrices Ω̄i

t in a distributed
fashion, given that at each time step the nodes can just com-
municate once with their neighbours a limited amount of
information.

3.2 Information matrix computation

The information matrix Ω̄i
t can be computed in a distributed

fashion by noting that

Ω̄i
t = OiT

t ∆iOi
t + χt, (13)

where

∆i := diag
(
Λi
0, . . . ,Λ

i
k

)
(14)

Λi
τ := diag

(
βτ+1πi,1

τ Il1 , . . . , β
τ+1πi,N

τ IlN
)
. (15)

and Oi
t is a constructibility matrix defined as

Oi
t :=

[
OiT

t,0, . . . ,OiT
t,k

]T
, (16)

Oi
t,τ :=


Oi1

t,τ

...

OiN
t,τ

 , (17)

Oij
t,τ :=

{
C̄j

t−τ−1Φ(t− τ − 1, t) if πi,j
τ ̸= 0

0lj×n otherwise
. (18)

It can be seen that ∆i can be pre-computed offline with
knowledge of Π and β. Therefore, to compute Ω̄i

t one needs
to compute Oi

t at each node in a recursive and distributed
fashion.

3.3 Distributed computation of Oi
t

For each i, j ∈ N define an integer τ ij := min{τ : πi,j
τ ̸=

0}, which represents the minimum time for information from
node j to reach node i. Also, define an index nij such that
nii = i for all i ∈ N and, if i ̸= j, nij ∈ N i and τ ij =
τnijj+1. That is, nij indicates one of the nodes from which
node i receives information from node j first.

Then, with τ ij and nij one can compute matrices Dij and
Ei given by

Dij :=


Dij

1 . . . 0
...

. . .
...

0 . . . Dij
N

 , (19)

Dij
p :=

{
Ilp if nip = j

0lp otherwise
, (20)

and

Ei := col(Ei
0, . . . , E

i
k), (21)

Ei
q := diag(Ei

1,q, . . . , E
i
N,q), (22)

Ei
p,q :=

{
Ilp if q = τ ip

0lp otherwise
. (23)

Having computed Dij and Ei, the distributed computation
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of Oi
t achieved by defining

T i
t :=


Oi1

t,τ i1

...

OiN
t,τ iN

 , (24)

which is computed recursively as follows

T i
t+1 =

∑
j∈N i\{i}

DijT j
t A

−1
t +DiiOi

t+1,0, (25)

where T i
−1 = 0l×n for all i ∈ N and Oi

t+1,0 can be com-
puted by agent i at time t from (7), (17) and (18). Having
obtained T i

t one can compute Oi
t as

Oi
t+1 := triml(k+1)

([
0l×n

Oi
t

]
A−1

t

)
+ EiT i

t+1 (26)

where l :=
∑

i∈N li and Oi
−1 = 0l(k+1)×n.

3.4 Overview

In summary, the observer can be described by the following
algorithm

Algorithm 1 Observer algorithm for node i.
Input: β, α, k, πi,j , ∆j , Dij , and Ej , j ∈ N i

T i
−1 = 0l×n

Oi
−1 = In

χ−1 = αIn
for all t ≥ 0 do

χt = βA−1T
t−1 χt−1A

−1T
t−1

For all j ∈ N i Obtain Oj
t from T j

t using (26);
Ω̄j

t = OjT
t ∆j

tO
j
t + χt;

Ωi
t = CiT

t Ci
t +

∑
j∈N πi,jΩ̄j

t ;
Send T i

t+1, x̂
i
t+1 to out-neighbours;

Receive T j
t , x̂

j
t , j ∈ N i from in-neighbours;

T i
t+1 =

∑
j∈N i DijT j

t A
−1
t +DiiOi

t+1,0;

x̂i
t+1 = At

(
Ωi

t

)−1
(∑

j∈N πi,jΩ̄j
t x̂

j
t + CiT

t yit

)
;

end for

In contrast with the algorithm in [3] where at each time
each node transmits the state estimate x̂i

t and the information
matrix Ω̄i

t which is of size n×n, in the algorithm proposed
in this paper each node communicates its own estimate x̂i

t
and T i

t , which is of size l×n, to other nodes. Therefore, this
method requires the communication of less data if n > l.

3.5 Distributed computation of gains for LTI systems

For linear time-invariant systems, where At := A and Ct :=
C for all t ≥ 0, the information matrices Ωi

t and Ω̄i
t as

proposed in this paper, can be time-invariant, that is Ωi
t = Ωi

and Ω̄i
t = Ω̄i for all t ≥ 0. As is shown in [13], the design

process can be done beforehand in a distributed fashion in a
finite number of steps k̄ = k̃+n, where k̃ is the primitivity
index of Π, which is the smallest integer such that Πk̃ has
only strictly positive entries, and n is the dimension of the
state. The process is described in the following algorithm.

Algorithm 2 Design algorithm.
Input: β, A and πi,j , j ∈ N i

Output: Ω̄i and Ωi

Ω̃i = CiTCi

l = 0
while l < k̄ do

Receive Ω̄j , j ∈ N i from in-neighbours
Ω̃i = β

(
A−1

)T (∑
j∈N i πi,jΩ̃j

)
A−1

Send Ω̃i to out-neighbours
l = l + 1

end while
Ω̄i := β

(
A−1

)T
Ω̃iA−1

Ωi := CiTCi +
∑

j∈N πi,jΩ̄j

As noted in [13], for the distributed observer, the matrices
πi,jA

(
Ωi
)−1

Ω̄j and A
(
Ωi
)−1 (

Ci
)T (

Ri
)−1

for i ∈ N
and j ∈ N i can be precomputed offline, and therefore the
online computations consist of

∣∣N i
∣∣n2 + nmi multiplica-

tions and n
(∣∣N i

∣∣n+mi − 1
)

sums.

4 Stability analysis

Defining the local estimation error as eit := x̂i
t − xt, from

(1), (10), (11), and the fact that Π is stochastic, we obtain

eit+1 = At

(
Ωi

t

)−1
ēit, (27)

where ēit :=
∑

j∈N πi,jΩ̄j
te

j
t .

From Lemma 2 of [2], we obtain the following covariance
intersection result

ēiTt

∑
j∈N

πi,jΩ̄j
t

−1

ēit ≤
∑
j∈N

πi,jejTt Ω̄j
te

j
t . (28)

From the definition of Gi
t,τ in (8), of Ω̄i

t in (12) and Ωi
t in

(11), it follows that

βA−1T
t Ωi

tA
−1
t = Ω̄i

t+1 + βk+2Gi
t,k+1, (29)
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and noting that Gi
t,k+1 is positive semidefinite, we have that

Ω̄i
t+1 ⪯ βA−1T

t Ωi
tA

−1
t . (30)

We now present the main result of this paper.
Theorem 1 Consider the distributed LTV observer (10),
with matrices Ωi

t, and Ω̄i
t computed as in (11) and (13) re-

spectively. Given assumptions A1-A3, the estimation errors
x̂i
t − xt, i ∈ N converge exponentially to zero at a rate β.

Proof From Assumption A4 and (12) one has that Ω̄i
t ≻

βk+1αIn, for all i and t. Therefore we may define the local
Lyapunov candidate function Li

t := eiTt Ω̄i
te

i
t. From (27),

(28) and (30) we obtain

Li
t+1 =

(
ēit
)T (

Ωi
t

)−1
AT

t Ω̄
i
t+1At

(
Ωi

t

)−1 (
ēit
)

≤ β
(
ēit
)T (

Ωi
t

)−1 (
ēit
)

≤ β
(
ēit
)T ∑

j∈N
πi,jΩ̄j

t

−1 (
ēit
)

≤ β
∑
j∈N

πi,jejTt Ω̄j
te

j
t = β

∑
j∈N

πi,jLj
t .

In vector form, defining Lt := col
(
Li
t

)
yields

Lt+1 ≤ βΠLt, (31)

where the inequality is interpreted element-wise.

Since Π is stochastic, 1 is an eigenvalue and we can find
its left eigenvalue p which satisfies pTΠ = pT . Finally, by
defining the Lyapunov function Vt := pTLt we can compute

Vt+1 = pTLt+1 ≤ βpTΠLt = βpTLt = βV. (32)

Since the Lyapunov function decreases at each step, we have
that the estimation errors converge to zero.

5 Numerical results

In this section, we illustrate the performance of the algo-
rithm proposed in the paper through a design exercise. We
also compare its performance against that obtained with the
distributed Kalman filter algorithm with consensus on infor-
mation in [3]. In the algorithm proposed in this paper, the
parameter choice for β was 0.5, for α was 10−6 and for k
21.

To assess the performance of the distributed algorithms, we
will consider a distributed system of the form (1)-(5) with
collective but not local observability. We will consider a net-
work of 20 nodes. The dynamical system considered has the
state transition matrix defined as At := (1 + dAt )IN , where
dAt is a time-dependent random disturbance known to all the
agents, which is normally distributed with a covariance of
10−2.

Let ei be a row vector with 1 at position i and zero at every
other position. With this notation, the observation matrices
are defined as

Ci := (1 + dCt )

[
eiT − e(i+1)T

e(i−1)T − eiT

]
,

where dCt is a time-dependent random disturbance known
to all the agents, which is normally distributed with a co-
variance of 1, except at i = 1, where we replace i − 1 by
N , and at i = N , where we define CN := (1 + dCt )e

NT .
This set of observation matrices translates to a setting where
the heterogeneous systems with decoupled dynamics men-
tioned above have coupling in the measurements. It can be
observed that with this choice of state transition and ob-
servation matrices, we have collective observability but not
local observability at each node, thus requiring the use of
distributed observers to reconstruct the state.

To simulate a more realistic situation process and measure-
ment noise were added which were generated randomly with
a Gaussian distribution. The covariances chosen for the dis-
turbances were Q = I2N for process noise and Ri = Imi

for the measurement noise of each node. The initial state is
also randomly generated with a Gaussian distribution with
covariance P0 = 106I2N . The communication network con-
sidered was an undirected circular network, i.e. the neigh-
bour set at each node is defined as N i := {i − 1, i + 1}
except at node i = 1 where it is N i := {N, 2}, and at node
i = N where it is N i := {N − 1, 1}.

In Figure 5 we compare the different algorithms in terms
of the average of the norms of the estimation errors of all
agents, i.e. 1

N

∑
i∈N

∥∥x̂i − x
∥∥. In the following plots we

will present the results of a centralized Kalman filter (in
blue) of the distributed Kalman filter in [3] (in red) and the
algorithm of this paper (in yellow).
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From Figure 5 we can observe that the performance of the
observer proposed in this paper is comparable to that of [3].

6 Conclusion

In this paper, an alternative method to design a distributed
LTV observer with guaranteed stability is proposed, which
requires the exchange of a matrix of size l×n. It was shown,
under the conditions of collective observability, strong con-
nectivity of the sensor communication network, and invert-
ibility of the state transition matrix that the resulting ob-
server is stable. From the simulation results of an illustrative
example, we showed that the asymptotic performance of the
proposed observer is similar to that of [3]. In future work,
I envision extending the proposed method in this paper to
address the problem of distributed stabilization of LTV sys-
tems, possibly borrowing from the results in [9] for LTI sys-
tems.
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