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Abstract— Autonomous vehicles in GPS-denied areas or
when cooperating in missions might have access to bear-
ing and range measurements corrupted by noise, rendering
the reachable set to be nonconvex since the measurement
set is a segment of an annulus in 2D or a spherical shell
in 3D. There are various alternatives that could be used in
the literature to over-approximate the set by a convex one.
However, given the circular part caused by the range mea-
surement, adopting an exact polytopic description would
require an infinite number of hyperplanes. In a similar
fashion, using ellipsoids suffers from the same problem
due to the hyperplane constraints arising from the bearing
part. Moreover, if only bearing measurements are available,
the measurement set should be unbounded. Motivated by
these observations, we propose a generalization of the
definition for constrained zonotopes recently introduced in
the literature to also consider the `2 norm and cones (or
any other convex set for that matter) as to represent these
sets with less conservatism. Given the exact nature of the
propagation, these can serve as a worst-case bounds for
the true state which is relevant in some applications such
as collision avoidance. In simulations, we also illustrate
the performance of the computations to be suitable for
relatively small sampling times.

Index Terms— State Reachability; Range and bearing
readings; Constrained Convex Generators

I. INTRODUCTION

IN missions with autonomous vehicles in GPS-denied loca-
tions or where the local sensors are reduced to a minimum,

it is beneficial to have a small subset of the agents be equipped
with range and bearing sensors to provide estimates for the
remaining autonomous vehicles of their relative positioning
(see for example [1], [2]). If the available measurements are
bearing and range corrupted by noise, ideally, the measurement
set is a segment (between minimum and maximum bearing
angle) of an annulus where the inside circle has radius equal
to the smallest possible value for the range and the outer
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(a) Tight over-approximation for
small angles.
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(b) Conservative case caused by a
larger error in the angle.

Fig. 1: Two examples of different levels of conservativeness
on the over-approximation by a polytope of the measurement
set corresponding to a bearing and range reading corrupted by
noise. The line on top is perpendicular to the outer circle.

circle is the maximum value admissible for the range. In
three dimensions, it would be the intersection of a cone
(defined by the bearing angles) and spherical shell (defined
based on the range). A typical solution in the literature is
to over-approximate the measurement set by a partition of
intervals as done in [3] for range-only measurements or by an
ellipsoid as done in [4]. However, these introduce unnecessary
conservatism to the solution.

A direct approach based on the aforementioned techniques
would be to over-approximate by a polytope, be it described in
the hyper-plane representation such as [5] or in a constrained
zonotope formulation [6]. Figure 1 depicts two cases where
the approximation presents different levels of conservatism.
In Figure 1a, for a small angle error and short distances, the
approximation does not introduce too much conservatism to
be problematic. However, if we increase the angle error, the
conservatism added is represented in Figure 1b, where the
added area would increase with the distance. Therefore, the
presence of bearing measurements requires a set representation
capable of including unbounded sets and, the addition of
range measurements requires the possibility to have facets like
an ellipsoid and others like a polytope, which motivated the
introduction of a novel set representation.

There is a vast literature on set representations for state
estimation of Linear Time-Varying (LTV) systems in discrete
time such as: interval arithmetic [7], zonotopes [8], ellipsoids
[9], constrained zonotopes [6] and polytopes [10] for the
propagation and update of the set-valued estimates while using



an over-approximation for the nonconvex annulus that corre-
sponds to the choice of set representation. If we considered
a nonlinear system, these techniques can be applied provided
that the dynamics are approximated by a linear function that
enables the propagation of the sets, as was done in [11], [12],
[13], [14], [15], for each of the respective representation.

In the literature of autonomous vehicles, this problem is
often tackled by employing a stochastic estimation resorting
to a Kalman filter or an Extended Kalman filter depending
on the assumed model dynamics. For instance, the problem
with a single beacon range measurement was addressed in
[16] by first converting the dynamics to a LTV model and then
applying a Kalman Filter. Working directly with the nonlinear
model of the vehicle was done in [17]–[19] where an Extended
Kalman filter was presented and extensively studied. However,
these approaches are not possible if the intended objective is
to ensure safe passage of the vehicle with no collision with
obstacles modeled as convex bodies.

In this paper, the main contributions can be summarized as
follows:
• By noticing that the constrained zonotope formulation for

polytopes can be adapted to have the generators belong to
a convex set, we propose a novel set representation Con-
strained Convex Generators (CCGs), which in particular
can include the `2 unit balls to generate smooth surfaces,
`∞ unit balls to generate facets, and cones to generate
unbounded sets;

• We then present how to apply these novel sets to address
the three variants of the problem with reduced conser-
vatism: i) range-only, ii) bearing-only, and iii) range and
bearing measurements.

The remainder of the paper is organized as follows. We
formalize the estimation problem in Section II highlighting
the limitations arising from the current polytopic descriptions.
Based on the insights of Section II, we present a general
set representation to include convex sets as generators in
Section III. In Section IV, it is provided the details on how to
represent the measurement sets arising from range and bearing
measurements and simulations showcasing the performance
and accuracy are provided in Section V. Conclusions and
directions of future work are given in Section VI.

Notation : We let 0n denote the n-dimensional vector of
zeros and In the identity matrix of size n. The transpose of
a vector v is denoted by vᵀ, while the Euclidean norm for
vector x is represented as ‖x‖2 :=

√
xᵀx. On the other hand,

‖x‖∞ := maxi |xi|. The cartesian product is denoted by ×,
the Minkowski sum of two sets by ⊕ and the intersection after
applying a matrix R to the first set by ∩R.

II. PROBLEM STATEMENT

In this paper, we model the vehicle dynamics by a linear
model:

x(k + 1) = Fkx(k) +Bku(k) + d(k) (1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and d(k) ∈ Rnd are
respectively the state, input and disturbance signals. Following
the derivation in [20], one can assume the model for a vehicle

like a quadrotor to be a double integrator subject to constraints
on the velocity and acceleration, which fits the formulation
for a linear dynamical system. The objective is to estimate
the state x(k) using a set reachability approach from bearing
and range measurements. Let us assume that there are j
nodes providing measurements, which will be referred by
towers. Under such conditions, we are interested in 3 different
problems, namely:

Problem 1 (State estimation using range/bearing data):
Let us consider a LTV model for a vehicle as in (1) with
position evolving in Rp and j towers with known locations
tower1, · · · , towerj .
• If range measurements are available, they will be denoted

by yr(k) defined as follows:

yr(k) =

‖x[1,··· ,p](k)− tower1‖2
...

‖x[1,··· ,p](k)− towerj‖2

+ w(k),

• If bearing measurements are available, they will be de-
noted by yb(k) defined as follows:

yb(k) =

ang(x[1,··· ,p](k)− tower1)
...

ang(x[1,··· ,p](k)− towerj)

+ w(k),

where we used the notation x[1,··· ,p](k) to select the entries 1
through p that correspond to the position of the vehicle and
w(k) ∈ Rnw is the noise signal. The operator ang(v) returns
either the angle of vector v in polar coordinates when p = 2
or a vector of 2 angles in spherical coordinates for v. Let us
define the vector of all available measurements at time k by
y(k).

The problem is defined as computing a set of possible state
values X(k) for k > 0 such that x(k) ∈ X(k),∀d(k) ∈
D(k),∀w(k) ∈ W (k), for some convex sets D(k) and
W (k), from range measurements (i.e., y(k) = yr(k)), bearing
measurements (i.e., y(k) = yb(k), or range and bearing

measurements (i.e., y(k) =

[
yr(k)
yb(k)

]
).

III. GENERALIZATION OF THE CONSTRAINED ZONOTOPE
REPRESENTATION

In this section, we first review the constrained zonotope
representation introduced in [6] to model polytopes, highlight-
ing how the basic set operations can be viewed in terms of
convexity-preserving operations of a basic generator set.

Let us first review the definition of constrained zono-
tope from [6] and the basic set operations: affine map (2),
Minkowski sum (3) and intersection after a linear map (4).

Definition 2 (constrained zonotope): A set Z is a con-
strained zonotope defined by the tuple (G, c,A, b) ∈ Rn×ng ×
Rn × Rnc×ng × Rnc such that:

Z = {Gξ + c : ‖ξ‖∞ ≤ 1, Aξ = b}.
Definition 3 (Set operations): Consider three constrained

zonotopes as in Definition 2:
• Z = (Gz, cz, Az, bz) ⊂ Rn;
• W = (Gw, cw, Aw, bw) ⊂ Rn;



• Y = (Gy, cy, Ay, by) ⊂ Rm;
and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set
operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz) (2)

Z ⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

])
(3)

Z ∩R Y =

[Gz 0
]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,
 bz

by
cy −Rcz

 .

(4)
Given the Definition 3 for the three major set operations

that will be required, let us write the complete definition for
these operations, which will make it easier to introduce the
novel definition for the proposed sets. The affine map for a
constrained zonotope Z can also be defined as:

RZ + t = {RGzξ +Rcz + t : ‖ξ‖∞ ≤ 1, Azξ = bz}
= {RGzξ +Rcz + t : ξ ∈ Cz, Azξ = bz}

(5)

where the second equation is implicitly assuming that Cz is
the unit `∞-norm ball. In a similar fashion, we can present
the same extended definition for the Minkowski sum and the
intersection after linear map, where we use ξz , ξw and ξy as
the auxiliary variables for the constrained zonotopes Z, W
and Y :

Z ⊕W = {Gzξz +Gwξw + cz + cw :Azξz = bz, Awξw = bw,

ξz ∈ Cz, ξw ∈ Cw}
(6)

Z ∩R Y = {Gzξz + cz :Azξz = bz, Ayξy = by, ξy ∈ Cy,
RGzξz +Rcz = Gyξy + cy, ξz ∈ Cz}

(7)
From the above definition, it becomes clear that there is

nothing forcing the use of the unit `∞-norm ball as the
generator and one could resort to any unit ball following a
p-norm but also extend the definition to convex cones (and
other convex sets). We are now in condition of presenting
the definition for Constrained Convex Generators (CCG) and
a proposition establishing the equivalence between the set
operations and its definition in the CCG format that will
explore the relationship identified in (5), (6) and (7).

Definition 4 (Constrained Convex Generators): A
Constrained Convex Generator (CCG) Z ⊂ Rn is defined
by the tuple (G, c,A, b,C) with G ∈ Rn×ng , c ∈ Rn,
A ∈ Rnc×ng , b ∈ Rnc , and C := {C1, C2, · · · , Cnp} such that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp
}.

Remark 5: Remark that it is possible to provide a definition
for nonlinear operations g on CCGs as long as g is convex and
nondecreasing in each argument of the input vector ξ and have
g(ξ) instead of Gξ + c in Definition 4. However, that would
only be useful if we were dealing with a nonlinear dynamical
model such that its dynamics was control separable (meaning
that g(x, u) could be written as f(x) + h(u)) in addition to
being convex and nondecreasing. Given space constraints in
this paper and the type of model assumed for the system, we
refrain from presenting such trivial extension from the CCG
definition.

Given Definition 4, we could present a proposition asserting
all set operations for CCGs.

Proposition 1: Consider three Constrained Convex Gener-
ators (CCGs) as in Definition 4:
• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn;
• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn;
• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm;

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set
operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz) (8)

Z⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
(9)

Z ∩R Y =

[Gz 0
]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,
 bz

by
cy −Rcz

 , {Cz,Cy}

 .

(10)
Proof: In order to prove (8), let us define the set resulting

from the affine map as {z′ : z′ = Rz + t, ∀z ∈ Z} which can
be expanded as:

{z′ : z′ = Rz + t, z = Gzξz + cz, Azξz = bz, ξz ∈ Cz}

where we used the notation ξz ∈ Cz to mean ξz ∈ C1 × · · · ×
Cnp , |Cz| = np. Replacing the value of z in the expression we
get:

{z′ : z′ = RGzξz +Rcz + t, Azξz = bz, ξz ∈ Cz}

which is precisely the definition for the CCG on the right-hand
side of (8).

For the Minkowski sum, we can do a similar analysis by
first defining the set corresponding to the application of this
operation by {z′ : z′ = z + w,∀z ∈ Z,∀w ∈W} and expand
it as:
{z′ : z′ = z + w,z = Gzξz + cz, Azξz = bz, ξz ∈ Cz,

w = Gwξw + cw, Awξw = bw, ξw ∈ Cw}.
By replacing the values of z and w we can further simplify
the definition as:
{z′ : z′ = Gzξz + cz +Gwξw + cw,Azξz = bz, ξz ∈ Cz,

Awξw = bw, ξw ∈ Cw}.
Stacking ξz and ξw in a single vector, we obtain the following
expression:{
z′ : z′ =

[
Gz Gw

] [ξz
ξw

]
+ (cz + cw),

[
Az 0
0 Aw

] [
ξz
ξw

]
=

[
bz
bw

]
,[

ξz
ξw

]
∈ {Cz,Cw}

}
,

which is the right-hand side of (9).
Lastly, the intersection after a linear map can be defined as

{z′ : z′ = z,∀z ∈ Z,Rz ∈ Y }, which can also be expanded
to:
{z′ : z′ = z,z = Gzξz + cz, Azξz = bz, ξz ∈ Cz,

Rz = Gyξy + cy, Ayξy = by, ξy ∈ Cy}.
Replacing the value of z in the expression yields:

{z′ :z′ = Gzξz + cz, Azξz = bz, ξz ∈ Cz,

RGzξz +Rcz = Gyξy + cy, Ayξy = by, ξy ∈ Cy},



which by stacking the values of ξz and ξy into a single vector
becomes:{
z′ : z′ =

[
Gz 0

] [ξz
ξy

]
+cz,

 Az 0
0 Ay

RGz −Gy

[ξz
ξy

]
=

 bz
by

cy −Rcz

 ,
,

[
ξz
ξy

]
∈ {Cz,Cy}

}
,

which is the right-hand side of (10), thus concluding the proof.

From the operations in Proposition 1 and the fact that by
construction, CCG as defined in Definition 4 are convex sets, it
means that they are well-suited to be applied to state estimation
and fault detection of LTV models. Computationally speaking,
it is required to store which type of generator we are using
for which entries of the vector of auxiliary variables ξ. In
the next section, we illustrate the use of CCGs and will only
use unit `∞-norm balls, unit `2-norm balls and cones as the
convex generators for designing an observer to estimate the
state of a vehicle. Also notice that it is always possible to
over-approximate CCG sets by the hyper-cubes resulting from
interval analysis so the results in [5] regarding the boundedness
of the hyper-volume of these sets can be directly applied.

IV. STATE ESTIMATION USING CONSTRAINED CONVEX
GENERATORS (CCGS) WITH RANGE/BEARING DATA

In this section, the state estimation strategy is presented
by exploiting the properties of CCGs introduced in Section
III and over-approximations to the exact non-convex measure-
ment sets. The propagation equation of the estimates using
the dynamical model in (1) can be accomplished using the
set operations in Proposition 1, namely that with previous
set-valued estimates X(k) can be propagated to obtain set
Xprop(k+1) that contains all points that are consistent with the
previous estimate and the dynamics in the following fashion:

Xprop(k + 1) = FkX(k) +Bku(k)⊕D(k),

meaning that Xprop(k + 1) is the result of an affine map
on X(k) using matrix Fk and vector Bku(k) and then the
Minkowski sum with the disturbance set.

The update set of the observer requires performing an
intersection following the linear map C =

[
e1 · · · ep

]ᵀ
,

which is defined to obtain the first p entries of vector x
that store the vehicle position, i.e., x[1,··· ,p](k) = Cx(k).
This means that the set-valued estimates for state at time
k + 1, X(k + 1), can be obtained as an intersection between
propagated set Xprop(k+1) with the measurement set Y (k+1)
(which will be defined for the three cases of range, bearing
and range/bearing data) as follows:

X(k + 1) = Xprop(k + 1) ∩C Y (k + 1).

Note that the set Y (k+1) is going to be the intersection of
the individual measurement set for each tower. For simplicity
of exposition, we will present the various Y (k+ 1) assuming
a single tower (and drop the subscript for that matter) but we
can perform the intersection using the identity linear map over
all the sets.

A. Bearing-only measurements

Let us define the minimum and maximum error on a
single bearing measurement as bl and bu, meaning that
we have in two dimensions that ang(x[1,2](k) − tower) ∈[
yb(k)− bl yb(k) + bu

]
.

Thus, the bearing-only measurement set Y b(k) is a cone,
which can be expressed by the CCG:

Y b(k) =

([
cos(yb(k) + bu) cos(yb(k)− bl)
sin(yb(k) + bu) sin(yb(k)− bl)

]
, tower, 0ᵀ2 , 0, {R2

+}
)
,

(11)
where R2

+ is the nonnegative orthant in R2. The definition
in (11) did an affine transformation of R2

+ where G was
selected as to change the canonical vectors to the desired ones
corresponding to the minimum and maximum angles allowed
by the measurement yb(k). We remark that setting A =

[
0 0

]
in Y b(k) as we have done can be omitted and treated as the
empty matrix provided that dimensions are kept consistent
when using block diagonal operations. In 3 dimensions, one
can address each angle separately and then use the intersection
to construct the shape.

B. Bearing and Range measurements

Prior to presenting the range-only measurements, it is
easier to first look at a segment of the annulus and then
to resort to the equivalent of Zonotope Bundles [21] with
CCGs instead. Let us define the minimum and maximum
error on a single range measurement as rl and ru, meaning
that we have in two dimensions that ‖x[1,2](k) − tower‖2 ∈[
yr(k)− rl yr(k) + ru

]
in addition to the constraint from

the bearing. Figure 1b hints at the need to first compute
the four points that result from the intersection of each of
the circles and the minimum and maximum angles (getting
two outer points in the outer circle and conversely two inner

points). The coordinates of each point is simply ρ
[
cos(α)
sin(α)

]
for

ρ ∈ {yr(k)−rl, yr(k)+ru} and α ∈ {yb(k)−bl, yb(k)+bu}.
We also need a fifth point with the maximum range possible
and α = (2yr(k) − rl + ru)/2. It is then straightforward
to find the line equation that is parallel to the outer points
and passes through the fifth point as well as the remaining
line equations and write the trapezoidal shape as Mx ≤ m.
By applying the formula from Theorem 1 in [6], we obtain
the Constrained Zonotope (G, c,A, b) that is equivalent to the
CCG representation Ztrap = (G, c,A, b, {B∞}) where B∞
is the unit `∞-ball. The outer circle is given by the CCG(

(yr(k) + ru)I2, tower, 0ᵀ2 , 0, {B2}
)

, where B2 is the unit

`2-ball. Thus, the measurement set Y br(k) is given by:

Y br(k) = Ztrap ∩I2
(

(yr(k) + ru)I2, tower, 0ᵀ2 , 0, {B2}
)
.

C. Range-only measurements

The measurement set Y r(k) when there are only range
measurements available cannot be approximated as done in
the previous section. However, one can partition the full circle
into segments with 2π/∆ angles and use as minimum and



maximum angles the values 2πq/∆ and 2π(q + 1)/∆ for
q = 0, 1, · · ·∆− 1 and repeat the computations done in Sub-
section IV-B replacing the interval

[
yr(k)− rl yr(k) + ru

]
by
[
2πq/∆ 2π(q + 1)/∆

]
. These ∆ sets Y r

1 (k), · · · , Y r
∆(k)

need to be intersected independently with the propagated
set Xprop(k) to obtain X(k) =

⋃∆−1
q=0 Y r

q (k) ∩I2 Xprop(k).
Naturally, this increases the computational complexity as in
the subsequent time step we may end up with ∆ times more
sets to propagate. Each set can be checked to see if it is empty
and discarded if so to reduce the amount of future computation
with unnecessary sets. In the envisioned scenario of a tower
providing range measurements or a beacon emitting a sound
or a signal to help the vehicle in its localization, most of these
sets will be empty as the beacon will be far away.

V. SIMULATIONS

In this section, simulation results are presented with the
objective of characterizing the behavior of the proposed CCG
definition with respect to 4 important factors: i) size of the
matrices and vectors used in the definitions; ii) computational
time to achieve the representation; iii) solver time to check
that a point belong to the set and also if it is empty; and, iv)
comparison against the size of the estimate set produced by
the Constrained Zonotopes. Notice that i) is not of particular
interest unless the set representation needs to be sent to
other agents (as for example to implement a distributed state
estimation algorithm such as in [22]) whereas ii) is crucial
when running the observer online as the computation has to
be faster than that of the sampling time. Lastly, checking for
a collision with another convex obstacle can be achieved by
modeling it as a CCG and checking whether the intersection
is the empty set, which emphasizes the importance of iii).
Moreover, computing the centroid of the set, what is the point
maximizing some direction among other questions can all be
formulated as an optimization problem which means that it
should be efficient to solve a program constrained to a CCG.

In the following simulations, we adopted a double integrator
dynamics (which is a fair model provided hard constraints are
enforced on the velocity and trajectory [20]) for a vehicle
moving in R2 motivated by applications in maritime and
underwater vessels where range and bearing measurements
are a relevant type of sensor information. The continuous
dynamics are discretized with a sample and hold strategy and a
sampling time of Ts = 0.1s and it is assumed to exist a state-
feedback controller on board corresponding to the solution K
of the discrete Linear Quadratic Regulator with parameters
Q = 10I4 and R = I2:

K =

[
2.5857 0 3.4434 0

0 2.5857 0 3.4434

]
.

Initial state is x(0) =
[
9 9 0 0

]ᵀ
(meaning that the vehi-

cle is stopped at point with coordinates
[
9 9

]
)ᵀ and the initial

estimate X(0) =
(
5I4,

[
10 10 0 0

]ᵀ
, 0ᵀ4 , 0, {B∞}

)
, i.e.,

both position and velocity have an uncertainty of ±5 with
the center of the estimate representing a stopped vehicle at
coordinates

[
10 10

]ᵀ
. Lastly, the source of the readings is

placed at the origin and the simulations were run in Matlab
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(a) Vehicle performing a 200 time
instant trajectory of a figure 8.
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(b) Vehicle performing a 250 time
instant trajectory of a of a spiral.

Fig. 2: Trajectory intended (light blue dots) and realized
path done by the vehicle (grey) and the set-valued estimates
obtained from Range and Bearing measurements drawn at each
15 iterations going from time instant 1 (lighter) to the end of
the simulation (darker).

R2018a running on a HP machine with a Intel Core i7-
8550U CPU @ 1.80GHz and 12 GB of memory resorting
to the overloaded plot function by Yalmip to depict the sets
and using Mosek as the underlying solver. Videos of the
simulations and figures can be found in https://github.
com/danielmsilvestre/CCGpaper.

Figure 2a depicts the vessel doing a figure-8 with both range
and bearing measurements during a simulation of 200 time
instants corresponding to 20s. The sets are shown every 15
iterations to avoid cluttering the image. Over the 200 iterations,
the construction of the sets took on average 8.1×10−3 seconds
with a variance of 3.87× 10−5, which is much faster than the
10−1 for the sampling time. In terms of the sizes of the data
structures, the CCG at time k required storing 4+8k generator
variables, 1 + 9k linear equalities and an additional vector
with 4 + 8k entries (one for each generator variable) storing a
numeric value starting by an identifier number for the type of
generator followed by a unique identifier so that we can group
generator variables that are defined within the same generator.
This means a linear growth of 2nx and 2nx+1 for this type of
measurement. At each iteration, we solved a linear objective
function constrained on the point belonging to X(k). Over
the 200 iterations, it took on average 0.0151 seconds with the
maximum being 0.0516 seconds. For instance, a problem at
iteration 200 took 0.024 seconds and a collision check took
around 0.0197 seconds. In addition, we compared the hyper-
volume of the sets produced by Constrained Zonotopes against
CCGs and on average throughout the whole simulation they
are larger 6.6% with a maximum 34.35%. This percentage
increases with the difference bu−bl, i.e., with the error on the
bearing measurement as seen in Figure 1b.

In Figure 2b, we present a simulation with a different trajec-
tory that promotes a sharper turn that offers the possibility for
a better estimate since the control law is exciting the system
from an earlier point in the simulation. This is confirmed by
the sizes of the sets that decrease after the turn. With respect
to the performance of constructing the sets and conservatism,
the results are similar to those of Figure 2a.

We have also simulated a case where the observer has access
to bearing-only measurements corrupted by noise from two
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(a) Vehicle performing a 200 time
instant trajectory of a figure 8.
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(b) Vehicle performing a 300 time
instant trajectory of a spiral.

Fig. 3: Trajectory intended (light blue dots) with the actual
trajectory done by the vehicle (grey) and the set-valued esti-
mates drawn at each 15 iterations going from time instant 1
(lighter) to time instant 200 (darker) obtained using bearing-
only measurements from the two towers (red crosses).

beacons assuming that the vessel is within 10 distance units.
This is a case that cannot be represented by a Constrained
Zonotope unless we assume some arbitrarily large constant to
eventually bound the set as it is not possible to represent un-
bounded sets. The beacons are placed at positions

[
10 15

]ᵀ
and

[
20 10

]ᵀ
as to make segments of the trajectory be

served by a different beacon. The estimation task has a better
performance given that the measurement sets can be described
using fewer generator variables. The mean time to compute
the sets was 0.0016s with the worst-case taking 0.007s, which
reinforces the usability of CCGs in real time. The number of
generator variables increases as 4+2k given that the set Y (k)
can be described with 2 variables. The reduced description of
the sets also decreases the time it took to check whether the
set is empty or if a point belongs to the set, achieving a mean
solver time of 0.0035s with the worst-case being 0.0073s.

The last simulation used a spiral trajectory in order get a
richer set of measurements. The results are depicted in Figure
3b and show that the set shrinks rapidly and allows for a good
estimation performance. No order reductions were performed
and the computational times are very similar to the case of the
figure 8 with bearing measurements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of estimating the
state of a dynamical system described by a linear model with
nonlinear measurements, namely a combination of bearing
and range measurements. Given the nonconvexity of the sets
arising when we introduce range measurements, a novel set
representation was introduced named Constrained Convex
Generators (CCGs) which can be viewed as a generalization
of the constrained zonotope representation of polytopes by
allowing an arbitrary set of convex sets to encase the generator
variables. In doing so, the approximation of the nonconvex
measurement set can be made sufficiently tight, while retaining
efficiency and performance to be used in real-time scenarios.
The three main set operations are given in closed form and
the results are illustrated through simulations, validating that
the computational times can be accommodated in real-time
applications.
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