
Comparison of Recent Advances in Set-membership1

Techniques: Application to State Estimation, Fault2

Detection and Collision Avoidance3

Daniel Silvestrea,b,c
4

aDepartment of Electrical and Computer Engineering, NOVA University of Lisbon, Largo
da Torre, Caparica, 2829-516, Lisbon, Portugal

bCOPELABS, Lusofona University, Campo Grande
376, Lisbon, 1749-024, Lisbon, Portugal

cInstitute for Systems and Robotics, University of Lisbon, Av. Rovisco Pais
1, Lisbon, 1049-001, Lisbon, Portugal

Abstract5

There has been a vast body of research on set-membership techniques in re-
cent years. These algorithms compute convex sets that contain the state of a
dynamical system given bounds on disturbance and noise signals. Recently,
a thorough comparison of zonotopes-based methods against interval arith-
metic and ellipsoids has been presented in the literature. However, two main
issues were left unexplored: i) added conservatism in the presence of bounds
of different kinds such as ℓ2-norm for the disturbance and an ℓ∞-norm bound
on the noise: ii) set-membership methods can be used in different settings
apart from guaranteed state estimation, such as fault detection and isolation
and collision avoidance of autonomous vehicles. In this paper, we extend this
comparison by considering state estimation, fault detection and isolation, and
collision avoidance for interval arithmetic, ellipsoids, zonotopes, constrained
zonotopes, polytopes and constrained convex generators in the presence of
various combination of bounds for the exogenous signals. The main objective
is to compare accuracy, computation time and the scalability of the growth of
the data structures required by each set representation. The results indicate
that intervals, ellipsoids and zonotopes have a much worse accuracy. The re-
cently introduced Constrained Convex Generators have a negligible increase
in computation time in comparison with constrained zonotopes but have a
better accuracy when bounds for disturbances, noise and initial conditions
are heterogeneous or at least not polytopic.

Preprint submitted to European Journal of Control October 7, 2024



Keywords: Observers for Linear Systems, Estimation and fault detection,6

Guidance, Navigation and Control.7

1. Introduction8

State estimation of a dynamical system is the problem of producing a9

value for the unknown state vector, which can be accomplished considering10

the stochastic and the deterministic settings [11]. The former poses assump-11

tions on the knowledge of the probability distribution of the disturbance and12

measurement noise whereas the latter consists in providing a description for13

a set where the state of a dynamical system belongs at some point in time14

given bounds for the exogeneous signals. In a recent article [5], the authors15

have compared interval arithmetic, zonotope-based methods and polytopes16

in their formulation of constrained zonotopes for the problem of guaranteed17

state estimation. However, two main issues were left unaddressed, namely:18

i) set-membership techniques can be employed for other interesting problems19

with different emphasis on what constitutes performance; ii) there have been20

proposed additional techniques such as A-H polytopes ([29]), Ellipsotopes21

([17]), and the more general Constrained Convex Generators (CCGs) [36]22

that should also be compared.23

In this paper, we propose to expand the comparison in [5] to encom-24

pass two other applications of interest, namely Fault Detection and Isolation25

(FDI) and Collision Avoidance. Whereas state estimation requires the ob-26

server to compute the set description data structures and possibly a value27

in its center, FDI or collision avoidance require other operations regarding28

the sets. In FDI, one needs to check if the set-valued estimates generated by29

a bank of observers for each faulty scenario are the empty set to invalidate30

that model. On the other hand, collision avoidance requires testing the in-31

tersection of the set-valued estimates with the obstacle. Thus, the further32

comparisons in this paper should better contextualize how each set descrip-33

tion fairs with respect to a) computing the set representation, b) calculating34

the center of the set, c) checking if a set is empty and d) verifying if two sets35

intersect. Another overlooked issue with respect to ii) in a fair comparison is36

how the bounds for the disturbances and noise are selected. If a researcher37

picks an article proposing an ellipsoid method, most likely the comparison38

is against other ellipsoid-based algorithms or with the implicit assumption39

that bounds for disturbances and noise are written using the ℓ2-norm, and40
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thus directly translated as an ellipsoid and approximated for the competi-41

tor’s technique. The reverse is also true if the article is about polytopes or42

constrained zonotopes.43

The objective of this paper is to offer a comparison of a variety of set-44

membership techniques in the three specified application scenarios, namely;45

i) state estimation, ii) FDI and, iii) collision avoidance of autonomous vehi-46

cles. We will be considering examples of linear models for which most of the47

techniques have been developed. We remark to the reader that as long as the48

numerical values of all the involved matrices are known up to time instant49

k, the set-membership task is equivalent irrespective of whether those matri-50

ces change over time. Thus, we will be adopting Linear Parameter-Varying51

(LPV) models introduced by the work of Michael Athans (see [32]) to en-52

compass a class of nonlinear dynamics that can be treated as linear systems53

when designing observers. These models have widespread applications in54

aerospace industry, mechatronic systems, automotive, robotic manipulators,55

vehicle motion, active magnetic bearings, among other academic examples56

as reported in the survey [15]. We point out that parameters in LPVs are57

not known at the design phase but can be measured during the execution at58

a specific time instant. A particular subset of LPVs are the standard Linear59

Time-Varying (LTV), where the entries are known functions over time and60

can therefore be determined for each time instant even at design phase.61

The approaches for set-valued estimation can also be grouped as direct62

and indirect methods. The former, manipulates sets by applying the equiv-63

alent set operations to those appearing in the equations that model the dy-64

namics. This means a forward propagation that corresponds to reachability65

analysis of the dynamics followed by an intersection with the set of state val-66

ues complying with the measurements [4, 26]. Indirect approaches are based67

on the idea of running a Luenberger observer to perform a point estima-68

tion and then computing the possible set-valued estimate of the errors using69

forward reachability but avoiding the set intersection. The direct methods70

have their root on the early work in [30] using ellipsoids and then evolving71

to parallelotopes in [8]. Later, with the work [33] and [2] it is shown how to72

perform state estimation using polytopes and zonotopes.73

The more recent literature for direct state estimation for LTVs encom-74

passes using interval arithmetic [47, 46, 21], zonotopes [9][22], ellipsoids75

[18, 7], constrained zonotopes [31], polytopes [42] and even by combining dif-76

ferent convex generators [36]. For the sake of completeness, it is also pointed77

out that these strategies have been extended for nonlinear systems at the78
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expenses of approximating functions and using the same types of set descrip-79

tion as for the LTVs as in [1], [2], [16], [25], [48], respectively. The interested80

reader can get further references in [5] for variations on these methods. The81

case of considering uncertainties can be accomplished through the convex82

hull of the sets propagated for each of the vertices of the polytopic dynamics.83

Such an alternative has been pursued for polytopes stored as vertices in [37]84

or hyper-planes [12], CCGs in [35, 38] and Constrained Zonotopes in [24].85

On the other hand, the indirect methods have gained popularity in recent86

years. For instance, polytopic and ellipsoidal representations are used in [6].87

Using intervals has also been accomplished in [51] and [45] through the use of88

two sub-observers to compute upper and lower enclosures that can be unified89

through the convex hull of both sets (which in interval notation is a rather90

low-complexity method). The application of zonotopes to this approach to91

state estimation has been accomplished in [10] through the so-called Zono-92

topic Kalman Filter (ZKF) that selects an observer gain to minimize the93

FW-radius of the zonotope for the error. Later, the work in [23] compared94

the indirect methods in [10] both theoretically and numerically.95

For nonlinear systems or models with uncertainties, the reduced wrap-96

ping effect is an interesting property to avoid that the conservatism is being97

propagated with the dynamics. Zonotopes have been advocated in the lit-98

erature since they have been shown to reduce this effect in comparison with99

ellipsoids and intervals like the work in [49] and [20]. However, zonotopes,100

ellipsotopes, constrained zonotopes, and any form of polytopes alleviate (or101

eliminate when all the operations are exact) by increasing the size of the data102

structures associated with the sets. Therefore, reductions methods must be103

used to obtain a lower dimensional representation by increasing the hyper-104

volume. Order reductions for zonotopes and constrained zonotopes have been105

compared in [50]. In order to focus on the data structures themselves, we106

will avoid order reduction methods or considerations regarding privacy [3]107

that are outside the scope of the paper.108

Regardless of whether we select to represent the error set of an indirect109

approach or use the set description to directly estimate the state, it is im-110

perative that a thorough comparison is presented that allows the community111

to better place each of the approaches in terms of computational complex-112

ity, accuracy and memory requirements. Moreover, given the aforementioned113

shortcommings of [5], it is necessary to have such a comparison be performed114

within the same programming language and paradigm to avoid having draw-115

ing conclusions with different implementations that may have been written116
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with distinct applications in mind. Therefore, the main contributions of this117

paper can be summarized as:118

• A comparison is performed for a variety of methods and different com-119

binations of bounds for the disturbances and noise in order to to assess120

if state estimation is degraded;121

• All set representations mentioned in this section have been implemented122

and are available in https://github.com/danielmsilvestre/ReachTool;123

• The problem of FDI is considered from the model falsification point-of-124

view showcasing performance to check for emptiness of the produced125

sets and possible certificates;126

• The use case of collision avoidance with convex obstacles is also in-127

vestigated to assess performance of solving a feasibility problem with128

constraints given by the set-membership techniques.129

The remainder of the paper is organized as follows. In Section 3.1, we130

formalize the type of model assumed for the comparisons in this paper and131

present the set operations definitions in the various proposals for state es-132

timation in LPV models. Sections 3.2 and 3.3 expand the details of the133

applicability of set-membership techniques to fault detection and isolation,134

and, the problem of collision avoidance in autonomous vehicles. Simulations135

for the various scenarios are presented in Section 4, while conclusions and136

directions of future work are offered in Section 5.137

Notation: In this paper, we denote by v an anonymous variable in an138

optimization problem that corresponds to a possible value for the vector v.139

The Minkowski sum of two sets X and Y is defined as X⊕Y := {v+u : v ∈140

X, u ∈ Y }. The infinity norm of a vector is denoted by ∥v∥∞ and corresponds141

to maxi |vi| for the absolute value function |a| for the scalar a. The vector142

of all ones, all zeros and the identity matrix is denoted by 1n, 0n and In for143

dimension n. If we require non-square matrices, dimensions will be updated144

as n× r for n rows and n columns. When the modulus is applied to a matrix145

it is meant element-wise, i.e., |A| = [|aij|],∀i, j. The Moore-Penrose inverse146

of a matrix A is denoted by A†. The function diag(v) returns a diagonal147

matrix whose diagonal elements consists of the entries in vector v.148
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2. Set Representations149

Before introducing the applications related to set-membership techniques,150

we provide a presentation of the set representations under the same format151

and present the three required set operations when dealing with linear dy-152

namics without uncertainties:linear map, Minkowski sum and intersection153

through a map. In particular, we will highlight the reasons why some of the154

operations can be performed in closed-form while the others require iterative155

procedures or the solution of optimization problems.156

2.1. Interval Arithmetic157

The simplest type of sets would be intervals, which translate into hyper-158

rectangles in Rn. In order to store them, there are two viable representation:159

i) using the minimum and maximum value for each coordinate like x(k) ∈160

[a, b], where a, b ∈ Rn; or by saving the midpoint and radius like x(k) ∈161 [
m− r, m+ r

]
with m, r ∈ Rn. The latter formulation is more amenable162

to the computations required for the state estimation.163

Definition 1 (Interval). A set I is an interval defined by the tuple (m, r) ∈164

Rn × Rn such that:165

I = {ξ : m− r ≤ ξ ≤ m+ r},

where the above inequality applies element-wise.166

Having Definition 1, one can introduce the three required set operations167

for intervals as:168

Lemma 2 (Interval operations). Consider three intervals as in Defini-169

tion 1:170

• Z = (mz, rz) ⊂ Rn;171

• W = (mw, rw) ⊂ Rn;172

• Y = (my, ry) ⊂ Rm;173

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set operations are174

defined as:175

RZ + t ⊆ (Rmz + t, |R|rz)
176

Z ⊕W = (mz +mw, rz + rw)
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177

Z ∩R Y ⊆ Z ∩

(
m⋂
i=1

Ỹi

)
(1)

where the interval for each observation Ỹi = (m̃i, r̃i) is defined as178

m̃i = diag(Ri,:)
−1 [my1n − (1nRi,: − diag(Ri,:))mz]

r̃i =
∣∣diag(Ri,:)

−1 [ry1n + (1nRi,: − diag(Ri,:)) rz]
∣∣

for a non-zero i-th row Ri,: and the standard intersection being given by:179

Z ∩W =

(
min(bz, bw) + max(az, aw)

2
,
min(bz, bw)−max(az, aw)

2

)
using180

az = mz − rz, bz = mz + rz, aw = mw − rw, bw = mw + rw.

Proof. Both the linear map and the Minkowski sum expressions can be181

found in [46] where the expression for the linear map can be seen as taking182

the box of the zonotope resulting from the linear map.183

Lastly, the generalized intersection operation can be split by considering184

the interval Ỹi obtained by each measurement represented by the i-th row185

Ri,: of matrix R. This means that after computing Ỹi, these sets need to be186

intersected with Z as written in (1). A point resulting from the generalized187

intersection must satisfy being a member of both Z and Y after multiplying188

by R, which results in the equation189

Ri,:(mz + diag(∆z)rz) = my +∆yry, ∥∆z∥∞ ≤ 1, |∆y| ≤ 1,∆z ∈ Rn,∆y ∈ R.

From the definition of midpoint of an interval, this corresponds to the average190

of the minimum and maximum values along any coordinates. Consider that191

the maximum (conversely the minimum) of each coordinate corresponds to192

setting the remaining to be their minimum (conversely maximum), while193

still satisfying the equation. Therefore, the terms associated with the radius194

average to zero and we can stack each of the n equations where we replaced195

all of the remaining variables by the average of the minimum and maximum196

(i.e., the midpoint mz):197

diag(Ri,:)m̃i + (1nRi,: − diag(Ri,:))mz = 1nmy

⇐⇒ diag(Ri,:)m̃i = 1nmy − (1nRi,: − diag(Ri,:))mz

⇐⇒ m̃i = diag(Ri,:)
−1 [1nmy − (1nRi,: − diag(Ri,:))mz] ,
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which is well defined for non-zero rows of R.198

The definition of radius is the average of the difference between the max-199

imum and the minimum, or equivalently, the absolute value between the two200

extreme points. Similarly to the midpoint computation, we need to stack201

n equations where in each we allow a coordinate to change and fix the re-202

maining from the interval Z. We will denote p̃ as the stack of the changing203

coordinates and p as the remainder of applying Ri,: to a point in Z, leading204

to the stack of equations:205

p̃+ p = 1nmy +∆y1nry, ∥∆y∥∞ ≤ 1,∆y ∈ Rn

⇐⇒ p̃ = 1nmy +∆y1nry − p, ∥∆y∥∞ ≤ 1,∆y ∈ Rn. (2)

The next step is to compute the radius of the signal on both sides of the206

equation:207

|diag(Ri,:)r̃i| =
1

2

∣∣∣∣ (1nmy + 1nry −min p)︸ ︷︷ ︸
max of right-hand side of (2)

− (1nmy − 1nry −max p)︸ ︷︷ ︸
min of right-hand side (2)

∣∣∣∣
⇐⇒ |diag(Ri,:)r̃i| = |1nry + 0.5 (max p−min p)|
⇐⇒ |diag(Ri,:)r̃i| = |1nry + (1nRi,: − diag(Ri,:)) rz|
⇐⇒ r̃i =

∣∣diag(Ri,:)
−1
∣∣ |1nry + (1nRi,: − diag(Ri,:)) rz|

⇐⇒ r̃i =
∣∣diag(Ri,:)

−1 [1nry + (1nRi,: − diag(Ri,:)) rz]
∣∣ ,

which concludes the proof.208

One of the main questions that is often overlooked in this type of com-209

parison is how to obtain an actual estimate to be used by a controller. When210

using intervals, the estimate can simply be the midpoint of the interval,211

meaning a very efficient computation.212

2.2. Ellipsoids213

Given the natural occurrence of ℓ2-norm bounds related to the magnitude214

of a physical noise signal, a natural approach is to consider ellipsoids. In215

order to do so, one needs a center c and a shape matrix Q as in the following216

definition.217

Definition 3 (Ellipsoids). A set E is an ellipsoid defined by the tuple218

(c,Q) ∈ Rn × Rn×n such that:219

E = {ξ : (ξ − c)⊺Q−1(ξ − c) ≤ 1}.
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In this formulation, there is no need to store an extra vector for the220

right hand-side of the above inequality. Let us introduce function regularize221

applied to an ellipsoid Z = (c,Q) ∈ Rn where Q has rank r to be:222

regularize(Z) = (c, 0.5(Qr +Q⊺
r))

where223

Qr = Q+ U

[
0r×r 0r×(n−r)

0r×(n−r) cnstIn−r

]
U⊺

with cnst being a large constant.224

Having both definitions, one can introduce the three required set opera-225

tions as:226

Lemma 4 (Ellipsoids operations). Consider three ellipsoids as in Defi-227

nition 3:228

• Z = (cz, Qz) ⊂ Rn;229

• W = (cw, Qw) ⊂ Rn;230

• Y = (cy, Qy) ⊂ Rm;231

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set operations are232

defined as:233

RZ + t = (Rcz + t, RQzR
⊺)

234

Z ⊕W ⊆
(
cz + cw,

(
1 +

1

β⋆

)
Qz + (1 + β⋆)Qw

)
with β⋆ as the steady-state solution of the iteration:235

βk+1 =

(∑n
i=1

1
1+βkλi∑n

i=1
λi

1+βkλi

) 1
2

and λi as the eigenvalues of the matrix Q−1
z Qw.236

Z ∩R Y ⊆
(
c+,
(
E+
)−1
)
,

where237

E+ = γ⋆Ez + (1− γ⋆)Ẽy

c+ =
(
E+
)−1
(
γ⋆Ezcz + (1− γ⋆)Ẽycy

)
9



for, Ez = Q−1
z , Ey =

(
regularize

(
Q̃y

))−1

,
(
cy, Q̃y,

)
= R†Y and γ⋆ being238

the value of γ satisfying239

n∑
i=1

1− λi

γ + (1− γ)λi

= 0

using λi to denote the eigenvales of E−1
z Ey.240

Proof. The Minkowski expression proof can be found in [13] whereas the241

remaining are given in [19]242

The center of the ellipsoid can be used as the state estimate given that it243

is the center of the convex set.244

2.3. Zonotopes245

The main disadvantage in terms of accuracy from the intervals is that it246

does not allow for facets that are not aligned with the axis. The first step247

is considering zonotopes that are characterized by having all its facets be248

symmetric in pairs with relation to the center of the set. One possible way249

is the following definition.250

Definition 5 (Zonotopes [2]). A set Z is a zonotope defined by the tuple251

(H, p) ∈ Rn×ng × Rn such that:252

Z = {Hξ + p : ∥ξ∥∞ ≤ 1}.

We remark that zonotopes can be viewed as a linear transformation of the253

ℓ∞ unit ball in the same way that ellipsoids can be viewed as a linear trans-254

formation of the ℓ2 unit ball. This will be quite helpful in the intuition behind255

constrained convex generators that unites all the set-membership approaches.256

Let us also define the function box(Z) for Z ∈ Rn with ng generators that257

returns a zonotope Zb = (Hb, pb) that is also a box:258

Hb = diag
(
|H|1ng

)
, pb = p.

Having Definition 5, the needed set operations are defined as:259

Lemma 6 (Zonotope operations [2]). Consider three zonotopes as in Def-260

inition 5:261

• Z = (Hz, pz) ⊂ Rn;262
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• W = (Hw, pw) ⊂ Rn;263

• Y = (Hy, py) ⊂ Rm;264

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set operations are265

defined as:266

RZ + t = (RHz, Rpz + t)
267

Z ⊕W =
([
Hz Hw

]
, pz + pw

)
268

Z ∩R Y ⊆
(
Ĥm, p̂m

)
,

where
(
Ĥm, p̂m

)
= Z ∩R box(Y ), with box(Y ) = (diag(σ1, σ2, · · · , σm), d).269

Then, the intersection can be found from the following relationship with Ĥ0 =270

Hz and p̂0 = pz:271

Ĥi =
[
(In − λir

⊺
i )Ĥi−1 σiλi

]
p̂i = p̂i−1 + λi(di − r⊺i p̂i−1)

λi =
Ĥi−1Ĥ

⊺
i−1ri

r⊺i Ĥi−1Ĥ
⊺
i−1ri + σ2

i

where R =

r
⊺
1
...
r⊺m

.272

Proof. The proof can be found in [2].273

The center of the zonotope can still be used as the estimate for the state of274

the dynamical system since it still represents the center of the set, following275

the analogy between ellipsoids and zonotopes.276

2.4. Constrained Zonotopes277

An improvement on zonotope is to consider additional linear constraints278

on the set to allow to represent general polytopes [31]. The formal definition279

for a constrained zonotope is given as:280

Definition 7 (Constrained Zonotope [31]). A set Z is a constrained zono-281

tope defined by the tuple (G, c, A, b) ∈ Rn×ng ×Rn ×Rnc×ng ×Rnc such that:282

Z = {Gξ + c : ∥ξ∥∞ ≤ 1, Aξ = b}.
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The main difference in comparison with the standard zonotopes is the283

inclusion of the equality constraint Ax = b. Such change also means that all284

the three set operations can be performed in closed-form.285

Lemma 8 (Set operations [31]). Consider three constrained zonotopes as286

in Definition 7:287

• Z = (Gz, cz, Az, bz) ⊂ Rn;288

• W = (Gw, cw, Aw, bw) ⊂ Rn;289

• Y = (Gy, cy, Ay, by) ⊂ Rm;290

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set operations are291

defined as:292

RZ + t = (RGz, Rcz + t, Az, bz)
293

Z ⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

])
294

Z ∩R Y =

[Gz 0
]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 .

Proof. The proof can be found in [31].295

By including the equality, it allows for the definition of the intersection296

at the expenses of adding additional generator variables that are constrained297

to belong to the intersection. Given that the sets are no longer symmetric, a298

lot of possibilities can be taken as the estimate for the state. A very efficient299

alternative is to find the minimum norm solution to the equality Ax = b and300

then use that as the numerical values for the generators.301

2.5. Polytopes302

The previous formulation represents general polytopes that were typically303

stored in a different formulation. For the sake of completeness, we have also304

included the standard format to store polytopes.305

Definition 9 (Polytopes). A set P is a polytope defined by the tuple (A, b, C, d, n) ∈306

Rnc1×ng × Rnc1 × Rnc2×ng × Rnc2 such that:307

Z = {ξ : Aξ ≤ b, Cξ = d}.

12



Notice that we must store the size of the space since there might be ad-308

ditional generator variables used as auxiliary terms. Also, the equality con-309

straint could be represented as two inequalities as an alternative. The three310

operations are still performed in closed-form but with a key difference. In the311

current formulation, intersections are quite easy to define but the dynamics312

matrix must be non-singular, whereas constrained zonotopes can allow for313

a general linear map but add more generator variables for the intersection.314

There are alternatives to deal with this issue such as in [42, 40, 41, 43]. Both315

strategies are implemented, although for the physical systems being tested,316

the dynamics matrix is always going to be non-singular. In the following317

definition, we will be using a Matlab-like notation where A[:, i : j] stands for318

all the rows of matrix A (: is used to denote all rows) and columns from i to319

j.320

Lemma 10 (Set operations). Consider three polytopes as in Definition 9:321

• Z = (Az, bz, Cz, dz, n) ⊂ Rn;322

• W = (Aw, bw, Cw, dw, n) ⊂ Rn;323

• Y = (Ay, by, Cy, dy,m) ⊂ Rm;324

and a non-singular matrix R ∈ Rm×n and a vector t ∈ Rm. The three set325

operations are defined as:326

RZ + t =

([
Az[:, 1 : n]R−1 Az[:, (n+ 1) : ng]

]
,

bz + Az[:, 1 : n]R−1t,[
Cz[:, 1 : n]R−1 Cz[:, (n+ 1) : ng]

]
,

dz + Cz[:, 1 : n]R−1t,m

)
327

Z ⊕W =

([
Az 0
0 Aw

]
,

[
bz
bw

]
,

 In −In 0 −In 0

0
Cz 0
0 Cw

 ,

 0
dz
dw

 , n

)
328

Z ∩R Y =

[Az 0
0 Ay

]
,

[
bz
by

]
,

 Cz 0
0 Cy

R 0 −In 0

 ,

dzdy
0

 , n

 .
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Proof. The derivation is equivalent to that in [42].329

We remark to the reader that all operations have closed-form expres-330

sions given that the use of equality constraints allow to represent intersection331

through the addition of auxiliary variables, much like was done for the case332

of constrained zonotopes.333

2.6. Constrained Convex Generators334

From the presented intuition related to the surveyed set representations,335

it becomes apparent that ellipsoids are linear transformations of the ℓ2 unit336

ball as zonotopes are linear maps of the ℓ∞ unit ball whereas constrained337

zonotopes added an equality constraint to allow representation of the inter-338

section operation in closed form. Similarly, polytopes can be viewed as a339

convex set represented by Ax ≤ b to which an equality constraint can di-340

rectly be represented using two inequalities or by explicitly storing them in341

a different data structure as was done in Section 2.5. Nevertheless, the key342

components for a set-membership technique is the possibility to store simple343

convex sets along with an equality constraint to ensure that the intersection344

has closed-form expression. This is precisely the definition of constrained345

convex generators that are given in a formal definition by:346

Definition 11 (Constrained Convex Generators [36]). A Constrained347

Convex Generator (CCG) Z ⊂ Rn is defined by the tuple (G, c, A, b,C) with348

G ∈ Rn×ng , c ∈ Rn, A ∈ Rnc×ng , b ∈ Rnc, and C := {C1, C2, · · · , Cnp} such349

that:350

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp}.

Having the above definition, the set operations can still be formulated as:351

Lemma 12 (Set operations [36]). Consider three Constrained Convex Gen-352

erators (CCGs) as in Definition 11:353

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn;354

• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn;355

• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm;356

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set operations are357

defined as:358

RZ + t = (RGz, Rcz + t, Az, bz,Cz)
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359

Z ⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
360

Z ∩R Y =

[Gz 0
]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 , {Cz,Cy}

 .

Proof. The derivation can be found in [36].361

We remark that all of the previously introduced set representations are362

specific instances of constrained convex generator and that are additional sets363

that can be represented under this formulation. In Figure 1, it is depicted364

the intersection of a polytope and an ellipsoid and the intersection of two365

ellipsoids that can be both modeled as constrained convex generator but366

cannot be represented neither using constrained zonotopes nor ellipsoids. In367

particular, we have that:368

• an interval corresponds to (G, c, [ ], [ ], ∥ξ∥∞ ≤ 1), for a diagonal matrix369

G;370

• a zonotope is given by (G, c, [ ], [ ], ∥ξ∥∞ ≤ 1);371

• an ellipsoid is defined by (G, c, [ ], [ ], ∥ξ∥2 ≤ 1), for a square matrix G;372

• a CZ or polytope is (G, c, A, b, ∥ξ∥∞ ≤ 1);373

• a convex cone in Rn is (G, c, [ ], [ ], ξ ≥ 0);374

• ellipsotopes are given by (G, c, A, b, ∥ξ∥p1 ≤ 1, · · ·375

, ∥ξ∥pm ≤ 1), for some pi > 0, 1 ≤ i ≤ m;376

• AH-polytopes are given by (G, c, [ ], [ ], Aξ ≤ b).377

3. Application of Set-membership Techniques378

In this paper, we use 3 particular applications of set-membership tech-379

niques, although these are quite representative of other applications, since380

we can pinpoint the main operation procedure that is required in each case.381

We wanted to showcase applications where, aside from building the set data382

structures, the main operations can be grouped as: i) finding the center of383
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Figure 1: Two sets that can be modeled using constrained convex generators. On the left:
set resulting from the intersection of a square with an ellipse. On the right: intersection
of two ellipses.

the set or its boundary ; ii) checking whether a set is empty ; and iii) testing384

for the intersection of sets. State estimation for dynamical systems belongs385

to class i). However, we could have provided other instances where the same386

issue appears like constructing constraints for Model Predictive Control to387

ensure feasibility of the optimization problem, calculating Robust Positively388

Invariant Sets, estimating the uncertainty of parameter estimation in a con-389

sensus algorithm, among many others. In all such cases, the problem reduces390

to building a set that represents all possible values for a given uncertain391

variable and then using that description to either calculate a center point,392

introduce in optimization problems or provide a measure of its size. The393

standard version of i) is state estimation for dynamical systems as a deter-394

ministic version of what is accomplished with stochastic observers like the395

Kalman filter.396

Class ii) translates problems of testing whether the measurements are397

compliant with a given model and bounds for the exogeneous signals. In-398

stances can arise in Fault Detection and Isolation (our selected application)399

since we are checking if each model with the presence of a different fault is400

valid, but we could have picked other examples. In Multiple Model Control,401

set-membership techniques can be used to check which model is currently402

compatible with the measurements whereas in the Distinguishability prob-403
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lem we would be interested in testing how many measurements are required404

before we are able to separate a given set of models regardless of initial con-405

ditions or noise and disturbances. Given that an attacker can be viewed as406

a malicious fault design, FDI also plays a key role in detecting the presence407

of intruders in linear iterative distributed algorithms.408

Lastly, since the produced sets by deterministic methods in Section 2409

represent all possible trajectories for a system, intersecting with other sets410

can be used to test for safety. In particular, if those sets represent obstacles,411

set-membership can be used for collision avoidance by testing the intersection412

of the set describing all possible values for future time instants with the413

obstacles. However, this can be used for active fault detection by computing414

actuation signals that render an empty intersection of the sets for the faulty415

and non-faulty models. Regardless of the specifics of the application, testing416

intersections typically requires solving an optimization problem. Thus, class417

iii) is used to assess this operation and how the set representations fair against418

each other when intersections need to be computed.419

3.1. State Estimation using Set-membership approaches420

In this paper, the problem of state estimation for LPVs using a set-421

membership approach consists in finding a set of possible values given the422

dynamics and measurements obtained from the system modeled as:423

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) + L(ρ(k))d(k)

y(k) = C(ρ(k))x(k) +N(ρ(k))w(k)
(3)

where x(k) ∈ Rn, u(k) ∈ Rnu , d(k) ∈ Rnd , y(k) ∈ Rm and w(k) ∈ Rnw are the424

system state, input, disturbance signal, output and noise, respectively. The425

parameter ρ(k) can be measured at time k, which allows to model some non-426

linear systems as (3) while not posing additional difficulties for the estimation427

using a set-membership approach. To lighten the notation, we will consider428

Ak := A(ρ(k)) and similarly for all the remaining matrices in (3). Moreover,429

in order to have a well-posed problem, we assume that all unknown signals430

are bounded within a compact set denoted by the correspondent capital let-431

ter, i.e., x(0) ∈ X(0), d(k) ∈ D(k) and w(k) ∈ W (k). The only exception432

to this assumption would be the use of CCGs that can accommodate, for433

instance, cones as the generator sets.434

The state estimation problem can be summarized as:435
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Problem 13. Given compact sets X(0), D(k) and W (k) for all k ≥ 0 and436

measurements y(k), how to compute a set X(k) such that it is guaranteed437

that x(k) ∈ X(k), ∀k ≥ 0.438

Problem 13 can be solved iteratively from the previous estimate by first439

performing the propagate phase corresponding to the set-valued version of440

the dynamics equation:441

Xprop(k + 1) = AkX(k)⊕Bku(k)⊕ LkD(k)

where a matrix multiplying a set corresponds to applying that linear map442

to all vectors in the set. In a similar fashion, given the measurement y(k),443

the update phase to conform with the information y(k) corresponding to the444

set-valued version of the measurement equation can be performed by:445

X(k) = Xprop(k) ∩Ck
y(k)⊕NkW (k)

where the symbol ∩Ck
stands for the intersection through the map Ck such446

that both sets being intersected constrain the possible values of x(k).447

3.2. Fault Detection and Isolation448

An algorithm that produces set-valued estimates possessing the property449

that x(k) ∈ X(k), ∀k can be used in the logic to perform fault detection450

and isolation. Intuitively, if the algorithm does not introduce conservatism,451

X(k) is the set of all possible valid solutions x(k) that satisfy the set of452

equations in (3) and verifies all past measurements y(0), · · · , y(k). With453

that view present, fault detection corresponds to checking whether X(k) is454

empty, which would invalidate the assumed model for the system (please view455

examples of this usage in [31, 41] for polytopes and constrained zonotopes).456

Fault isolation corresponds to extending this concept to that of distinguishing457

which model is actually generating the measurement data. The concept is458

also known as distinguishability [44] in the literature. When isolating a fault,459

a bank of observers has to be computed using the set-membership approach460

for each model assuming the specific combination of faults that are possible461

to happen.462

Let us construct a concrete example considering two faults for the system463

in (3) where: i) there is an unmodeled disturbance vector f1; and, ii) there464

is additional noise f2 in the measurements. Moreover, if no assumption465
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of exclusivity among faults is posed, FDI requires 4 models, namely M0466

corresponding to (3) (the nominal model), and three additional ones:467

M1 :

{
x(k + 1) = Akx(k) +Bku(k) + Lkd(k) + f1

y(k) = Ckx(k) +Nkw(k)

468

M2 :

{
x(k + 1) = Akx(k) +Bku(k) + Lkd(k)

y(k) = Ckx(k) +Nkw(k) + f2
469

M12 :

{
x(k + 1) = Akx(k) +Bku(k) + Lkd(k) + f1

y(k) = Ckx(k) +Nkw(k) + f2
.

Let us associate Xi(k) to the set produced by a set-membership algorithm470

for the model labeled as i. Then, the logic for FDI is as follows:471

• X0(k) = ∅ means that a fault is detected;472

• X0(k) = ∅ and ∀i ̸= j,Xi(k) = ∅, then fault j is isolated and is473

guaranteed to be the one occurring.474

We remark to the reader that set-membership FDI has the advantage475

of providing guarantees (meaning that once it declares a fault, it must be476

happening) but has a combinatorial growth in the number of filters since a477

model has to be computed for each possible valid scenario.478

3.3. Collision Avoidance for Autonomous Vehicles479

Multi-agent missions for surveillance or exploration have seen the intro-480

duction of distributed iterative algorithms with the use of set-membership481

techniques to avoid collisions with obstacles or other nodes by computing the482

set of all possible positions for both the agent and its surroundings [27, 28].483

In essence, given that a set X(k) translates all valid instances for x(k), it is484

possible to detect potential collisions by constructing a set-valued estimate485

for the position of the vehicle and all remaining obstacles. Notice that using486

a linear map and a projection matrix, one can retrieve the set-valued esti-487

mate for the position from the whole X(k), although it is more efficient to488

construct a dynamical model only for the position variables.489

Two main steps influence the overall performance of the application of490

set-membership techniques to collision avoidance: i) the set operations them-491

selves, ii) the computation time to construct and solve the feasibility problem492
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to check whether the vehicle position set intersects with that of an obstacle.493

Step ii) is worsen since to avoid non-convex problems, it is required to cycle494

over each obstacle in the list.495

4. Simulation496

In order to assess the characteristics of all set-membership techniques in497

the surveyed use cases, a thorough simulation was conducted and the code498

is made available at GitHub so that the research community can have a fair499

comparison of all the methods implemented in Matlab and resorting to the500

same optimization solver. Simulations were run in Matlab R2018a running501

on a HP machine with a Intel Core i7-8550U CPU @ 1.80GHz and 12 GB of502

memory resorting to Yalmip as the language to model optimization problems503

and Mosek as the underlying solver. Videos, figures and code can be found504

in https://github.com/danielmsilvestre/SETcomparison.505

4.1. Comparison for State Estimation506

An important aspect of set-membership algorithms applied to state esti-507

mation is that they are going to be applied to physical systems. In such cases,508

matrix Ak is invertible for continuous-time systems that were discretized via509

Euler method. For singular Ak matrices, structures like polytopes or ellip-510

soids have particular bad performance either due to numerical issues or due511

to a larger increase in the number of auxiliary variables required for the set512

representation. Therefore, some of the conclusions in [5] need to be comple-513

mented by the comparison in this section.514

We have selected the physical systems from the tutorials in https://515

ctms.engin.umich.edu/CTMS/index.php, namely: i) cruise control, ii) mo-516

tor speed, iii) suspension, iv) inverted pendulum and v) aircraft pitch. All517

parameters for the models and their correspondent dynamical equations can518

be found in the mentioned link. The sampling time Ts = 0.1 s and a519

state feedback controller was designed to each model with eigenvalues for520

the closed-loop dynamics matrix that range from 0.01 to 0.1 with a linear521

spacing among them. Simulations are run for 20 time instants as it is suffi-522

cient to highlight the trends for the reported 4 quantities relevant in assessing523

each of the algorithms, namely: i) estimation error, ii) computation time to524

produce both the set-valued estimates and the vector estimate, iii) hyper-525

volume of the sets, and iv) number of double values necessary to represent526

the data structures for each set-membership approach.527
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The operations to produce a vector estimate from the sets X(k) and to528

compute the hyper-volume are not universal throughout the literature. For529

intervals, ellipsoids and zonotopes, since all sets have an inherent symmetry530

with respect to a center point, the vector estimate was assumed to be the531

center of each set. Constrained zonotopes and CCGs share the idea of an532

auxiliary set (defined by means of a linear equation) that is deformed by a533

linear transformation to obtain X(k). For that reason, the vector estimate534

corresponds to the linear transformation applied to the minimum ℓ2-norm535

solution of the linear equation. On the other hand, polytopes are stored in536

a different formulation and was selected the Chebyshev center that can be537

formulated as a linear program.538

Intervals, zonotopes and ellipsoids all have closed-form expressions for539

their hyper-volume that can be found in the surveyed literature regarding540

these methods. However, the same does not hold for polytopes, constrained541

zonotopes and CCGs. These last were approximated by a ray shooting tech-542

nique that consists in selecting a center point (the vector estimate) followed543

by random rays shooting until hitting the surface of the convex body. Those544

points are taken as vertices of an inner polytope and the approximation for545

the volume uses a triangulation algorithm that is available in Matlab ex-546

change and using qhull. The procedure is stopped when the hyper-volume547

increase is below 1% from the previous iteration after taking 800 new vertices.548

In order to improve the performance, in the initial iterations, the vertices are549

taken as the canonical vectors (get an inner hyper-rectangle) and then for550

all vertices of a unit hyper-cube (to get an inner diamond-shape or rhombic551

approximation).552

For the cruise control model, we depict in Figure 2 the evolution of com-553

putation time to obtain X(k) and a vector estimate. Given the scalar state554

for this model, algorithms are very close in terms of hyper-volume and es-555

timation error and the space for the data structures trend is similar to the556

remaining examples in this section. As observed in Figure 2, zonotopes were557

the fastest with an average computation time for iteration of 5.23 × 10−5 s,558

followed by ellipsoids, CCGs and constrained zonotopes with similar perfor-559

mance among them (5.94×10−4 s, 3×10−4 s and 2.64×10−4 s, respectively).560

Intervals and polytopes behave similarly with 0.25 s and 0.27 s on average.561

These values shall be compared with the models with larger state space size.562

An interesting trend can be observed from the motor speed model with563

respect to the hyper-volume of the produced set-valued estimates. Intervals564

have the worst accuracy with a volume of 4.85 at iteration 20 followed by565
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Figure 2: Computation time to obtain X(k) and a vector estimate for the cruise control
model when using a unit ℓ∞-ball as bound for the disturbance and a unit ℓ2-ball for the
noise.

0 2 4 6 8 10 12 14 16 18 20
10-2

10-1

100

101

102

103

104

105

Intervals
Zonotopes
Polytopes
Constrained Zonotopes
CCG
Ellipsoids

Figure 3: Hyper-volume of X(k) for the motor speed model using a unit ℓ∞-ball as bound
for the disturbance and a unit ℓ2-ball for the noise.
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Figure 4: Hyper-volume of X(k) for the suspension model using a unit ℓ∞-ball as bound
for the disturbance and a unit ℓ∞-ball for the noise.

ellipsoids with 1.08. The best performing methods are polytopes, constrained566

zonotopes and CCGs with 0.105 while zonotopes achieved 0.131 at the same567

stage. The fact that the update step introduces conservatism when using568

sets with inherent symmetries means that the produced sets are larger, even569

though, for this model, error for vector estimates are still very similar.570

In the third simulation using the suspension model, the wraparound ef-571

fect due to the propagation of conservatism affects the interval computation,572

leading to divergence of its volume as seen in Figure 4. For this example with573

n = 4, zonotopes and ellipsoids still had similar accuracy and worse than the574

remaining set-membership approaches. However, we remark that the vector575

estimate for all methods still presents very similar error. The main drawback576

of using intervals for this model seems to be numerical problems as the center577

of the set is still a reasonable estimate for the state.578

In Figure 5, it is depicted the evolution of the volume of the sets for a case579

that should benefit ellipsoids and CCGs as the bounds for the disturbances,580

noise and initial conditions are all ℓ2-norm bounds that can be directly rep-581

resented. The application of intervals is still diverging both in terms of the582

volume of X(k) but also the vector estimate. Taking the average over the583

last 10 iterations to account for the part of the simulation where the volumes584

have converged, the worst accuracy comes from the use of zonotopes with585

8.59× 103, followed by ellipsoids with a volume of 4.15× 103. Polytopes and586

constrained zonotopes are equivalent (their difference in volume is caused by587

the ray shooting algorithm) with 1.28×103 and 1.34×103, respectively. The588

best results were achieved using CCGs with 667.71 in volume, almost half of589
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Figure 5: Hyper-volume of X(k) for the linearized version of the inverted pendulum model
using a unit ℓ2-ball as bound for the disturbance and a unit ℓ2-ball for the noise.
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Figure 6: Number of doubles required to store the description of X(k) for the aircraft
pitch model using a unit ℓ∞-ball as bound for the disturbance and a unit ℓ2-ball for the
noise.

what was achieved by constrained zonotopes.590

An important question related to each set-membership approach is how it591

scales with the number of iterations without any reduction methods. Figure592

6 reports how many double values are required to store the data structure593

associated with each set description for the aircraft pitch model. We remark594

that we have tested whether storing the variables as sparse structures in595

Matlab and then comparing the associated space overhead was helpful and596

only in the matrix accounting for linear constraints in polytopes we found a597

reduction. However, this is not significant with respect to the scalability as598

it still underperforms in comparison with constrained zonotopes and CCGs.599

In this metric, after 20 iterations, intervals are the best with 6 doubles (2n)600
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Figure 7: Computation time for the aircraft pitch model using a unit ℓ∞-ball as bound
for the disturbance and a unit ℓ∞-ball for the noise.

followed by ellipsoids with 12 (n2 + n). Zonotopes required 332, while con-601

strained zonotopes and CCGs used 1932 and 2012 doubles, respectively. The602

scalability depends on the description of the disturbances and noise bounds.603

The worst structure is polytopes totaling 35424 doubles.604

From the previous discussion, one might expect that the performance605

of the methods in terms of computational time followed the same ordering606

in magnitude than the amount of auxiliary variables added to store the set607

description. This is often a point made in [5] to dismiss polytopes. Figure608

7 illustrates the computation time for all methods in a favorable case where609

all bounds are described using ℓ∞-norm bounds (and for example can be610

directly mapped in constrained zonotopes, zonotopes and CCGs). Due to611

the update step, intervals have a close performance to polytopes taking an612

average computing time 0.4495 s and 0.454 s, respectively. These methods613

would not be implementable in real-time given our sampling time of 0.1 s.614

Ellipsoids are quite efficient with an average time of 10−3 s. The remaining615

methods have very similar computational times and are ordered as CCGs616

(4 × 10−4 s), constrained zonotopes (3 × 10−4 s) and zonotopes (2 × 10−4).617

This points towards the trend that, although having much less auxiliary618

variables, zonotopes offer similar performance to constrained zonotopes and619

CCGs but with very different characteristics in terms of accuracy given the620

aforementioned discussion. We would like to remark that no pre-processing621

of optimization programs in Yalmip was implemented and that directly using622

the numerical solvers can improve the performance of polytopes and intervals.623

There are no such considerations for the remaining structures as they do not624
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Figure 8: Evolution of the number of active filters in the bank for each of the set-
membership methods.

resort to Yalmip.625

4.2. Comparison for Fault Detection and Isolation626

The FDI task has also been proposed for consensus systems such as in627

[39, 34]. In such a scenario, n agents are updating their scalar state according628

to a doubly stochastic (assuming that the topology is bidirectional), i.e.,629

Ak in (3) depends on a set of parameters that account for the adjacency630

matrix. Following the concept in the aforementioned literature, there are631

no disturbances affecting the nodes and the input vector accounts for the632

possible faults. For that reason, we do not present results for ellipsoids since633

these would be degenerate ellipsoids. In order to correct that, we would have634

to add artificial noise or have numerical issues in the computations, which635

would compromise a fair comparison. In the simulation setup, ∀k, ∥u(k)∥∞ ≤636

1 and matrix Bk = e5, where e5 is the fifth canonical vector of size n (node 5637

is faulty). We assume the topology varies randomly with a 0.4 probability of638

each link being established. The detector has access to the topology in each639

time instant (making it an LPV) and also takes noise-corrupted measures640

of the state values for nodes 1, 2, 7 and 8. The noise signal is assumed to641

satisfy ∥w(k)∥2 ≤ 0.15. Under the assumption that only one node can be642

faulty, it requires to run a bank of 7 filters with 6 accounting for each possible643

corrupted node and M0 for detection.644

Figure 8 depicts the number of active filters in the bank for each method.645

As expected given the mixture of bounds in the model, the CCG method646

outperforms the remaining with a detection after 4 iterations and an isola-647

tion after 5. In comparison, both constrained zonotopes and polytopes were648
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Figure 9: Sum of elapsed time for all the active filters in the bank for each of the set-
membership methods.

capable of detecting a fault at iteration 5 but only isolated which node was649

causing it at iteration 10. Intervals also performed a detection at iteration 31650

even though none of the remaining filters became empty to help the isolation.651

This simulation reinforces the trend observed for the volume evolution in the652

state estimation problem.653

We also report in Figure 9 the total computation time for the entire bank654

of filter of each method. Since zonotopes and intervals were not successful in655

the FDI task, the main conclusion pertains to how CCGs performed against656

constrained zonotopes and polytopes. Interestingly, since both zonotopes657

and polytopes have linear description, the feasibility problems were solved in658

roughly the same time over all time instants with an average of 1.0435 s and659

1.0832 s, respectively. The CCGs took additional time due to the quadratic660

constraints with an average 1.7034 seconds. Given the performance of the661

filter banks, it is not expected that these mechanisms work in real-time and662

the added CCGs accuracy is beneficial to the task.663

4.3. Comparison for Collision Avoidance for Autonomous Vehicles664

In this section, we recover the example considering unicycle dynamics665

described in [14]. The vehicle schematic representation is given in Figure 10666

and has the following dynamics in discrete-time:667 [
pi
qi

]
(k + 1) =

[
pi
qi

]
(k) + Ts Ai(θi)

[
vi
wi

]
(k)

where the state (pi, qi) identify the position of the front of the ith vehicle and668

the inputs (vi, wi) account for the linear velocity and rotation. Moreover,669
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Fig. 1: Kinematic model of the unicycle

The coordinates of the point αi for each agent robot Ri

as shown in Figure 1, are described by:

αi =
[
pi

qi

]
=
[
xi + ℓ cos (θi)

yi + ℓ sin (θi)

]
(2)

The kinematics of (2) are determined by:

α̇i = Ai(θi)
[

vi

wi

]
(3)

Where

Ai(θi) =
[

cos (θi) −ℓ sin (θi)

sin (θi) ℓ cos (θi)

]
(4)

is the decoupling matrix of each Ri. It is easy to see
that the decoupling matrix is non-singular since det(Ai) =
ℓ ̸= 0. Therefore it is possible to design control strategies
for positioning αi at a desired location or even track a
trajectory. The idea of controlling the point αi instead of
(xi, yi) to avoid singularities in the control law is usual in
the literature [5].

B. Approximate Discrete-Time Model
In order to discretize the model (3) we use the Euler

approximation. This approximation is given by:

α+
i = αi + T α̇i (5)

where T > 0 is the sampling period. For the sake of
simplicity, in the rest of the paper, the following notation
is adopted α = α(kT ), α+ = α(kT +T ), this is α+ denotes
forward-shift.

The control vector u = [v, w]T holds its value between
two consecutive sampling instants. i.e., we consider a
zeroth order hold for the control vector.

Substituting (2) into (5), the discrete-time model be-
comes

α+
i =

[
p+
i

q+
i

]
=
[
pi

qi

]
+ TAi(θi)

[
vi

wi

]
(6)

It is possible now to design a control strategy for track-
ing a trajectory (or positioning αi at a desired location)
using the control law:

[
vi

wi

]
= A−1

i (θi)
T

([
ν1i

ν2i

]
−
[
pi

qi

])
(7)

where

A−1
i (θi) = 1

ℓ

[
ℓ cos (θ) ℓ sin (θ)

− sin (θ) cos (θ)

]
(8)

and νi is a new control variable

Let αid(k) be a prescribed trajectory and define the new
control variable νi by

νi = α+
id − ki(αi − αid) (9)

Proposition 1: Consider the closed loop system (6) - (7)
and let νi be defined by (9). Suppose |ki| < 1. Then
limk→∞ ||αi(k)− αid(k)|| = 0 exponentially.

Proof: The proof is simple and is omitted because of
lack of space.

Since we have a control law that allows tracking trajec-
tory we can use it in the leader robot for marching control.
Precise definitions of formation and marching control are
given in the next section.

III. Problem Statement

A. Discrete-Time Formation
Let α∗i be the desired relative position of Ri in a

particular formation. In this work, we can stablish the α∗i
as

α∗i = αi+1 + c(i+1)i
α∗n = α1 + c1n

(10)

where c(i+1)i = [h(i+1)i, v(i+1)i]T denote a vector rep-
resenting the desired relative position of robot Ri with
respect to robot Ri+1 in a particular configuration.

The goal is to design a control law ui(k) = fi(αi+1(k))
for each robot Ri such that:

lim
k→∞

(αi (k)− α∗i (k)) = 0, i = 1, ..., n (11)

i.e. the desired position of the robot Ri with respect to
the robot Ri+1 is achieved. Fig. 2 shows the position
of the vectors αi when the robots satisfy the desired
formation configuration.

Figure 10: Schematic of the unicycle model for the vehicles.
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Figure 11: Computation time to detect potential collisions with a polytopic and ellipsoidal
obstacles.

Ts = 0.1 stands for the sampling time, θi (we omit the time dependence in670

k for a more compact presentation) for the orientation and matrix Ai(θi) is671

given as:672

Ai(θi) =

[
cos θi −l sin θi
sin θi l cos θi

]
.

In this simulation, we consider a single vehicle and, assuming that its ori-673

entation θ1(k) can be measured at each time instant k, matrix A1 can be674

computed and the model falls under the umbrella an LPV as in (3).675

The control law applied to the vehicle to track a trajectory is:676 [
vi(k)
wi(k)

]
=

A−1
i (θi)

Ts

(
τ(k + 1)− τ(k)

2
− 0.5

[
pi(k)
qi(k)

]
+ d(k)

)
where τ(k) accounts for the discrete sequence of waypoints in the trajectory.677
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In Figure 11, it is presented the time taken by each of the methods, en-678

compassing constructing the set-valued estimate for the position, construct679

the feasibility problem using Yalmip and finding whether there is an inter-680

section with any of the obstacles using Mosek. As depicted in Figure 11,681

the values in each iteration are clustered which indicate that the various set-682

membership techniques are rather equivalent in terms of performance for this683

task. In terms of average computation time, we have the following results:684

constrained zonotope (1.9181 s), intervals (1.9243 s), polytopes (1.9428 s),685

CCGs (1.9459 s), zonotopes (1.9482 s) and ellipsoids (1.963 s).686

5. Conclusions and Future Work687

In this paper, a comparison was presented related to the state-of-the-art688

in set-membership techniques both for state estimation, fault detection and689

isolation and collision avoidance. Whenever faced with a Linear Parameter-690

Varying system, given the absence of bilinear constraints in the set definition,691

the produced sets will remain convex assuming bounds for disturbances, noise692

and initial conditions are also convex. The current proposals allow to define693

various sets with different properties and in polytopes, constrained zonotopes694

and CCGs, all required set operations can be performed in closed form, which695

substantially increases their performance.696

In the state estimation realm, we have covered various physical systems697

in order to assess how the proposals fair in terms of accuracy of an estimate,698

hyper-volume of the entire set, number of doubles required in the data struc-699

ture and computation time. The following conclusions can be drawn from700

this study:701

• intervals, zonotopes and ellipsoids are rather inefficient due to the lack702

of a closed-form expression for the update step;703

• intervals, zonotopes and ellipsoids present poor accuracy given the re-704

quired symmetries of the sets (which in turn saves storing space);705

• constrained zonotopes are a better alternative to polytopes by present-706

ing a similar accuracy but storing a much smaller number of auxiliary707

variables;708

• CCGs have a negligible increment in the required computation time in709

comparison to constrained zonotopes but offer better accuracy espe-710
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cially when dealing with ℓ2 bounds or a combination of polytopic and711

ℓ2 bounds.712

In the fault detection and isolation experiment, the aforementioned con-713

clusions can be better visualized since isolation was done in half the number714

of time instants than when using constrained zonotopes. We also remark715

that CCGs have the ability to represent unbounded sets, which are partic-716

ularly interesting when dealing with bearings measurements in autonomous717

vehicles. The main avenue of future research would be to perform a similar718

study for techniques that can be applied to linear systems in the presence719

of uncertainties. Results in this regard could clarify the literature related to720

a subset of nonlinear systems known as uncertain Linear Parameter-Varying721

models.722
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