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A B S T R A C T

This paper addresses the design problem of a resilient consensus algorithm for agents with continuous-
time dynamics. The main proposal is that by incorporating a switching mechanism selecting the
network topology to avoid malicious nodes from communicating, the remaining nodes will converge
to a value closer to the original steady-state without the attacker being present. The switching
occurs at discrete-time steps where each node evaluates the reputation score of the neighbors
and deactivates/ignores edges in the network. We explore the proposed method with illustrative
examples ranging from static topologies to dynamic ones, considering directed and undirected graphs,
presenting several attacking scenarios that are successfully mitigated with our method. Finally, we
compare the best undetectable attacking strategy and the commonly used approach named MSR,
highlighting the advantages of our method.

1. Introduction

The consensus problem is a central block in many net-
worked multi-agent systems. The issue is to have an iterative
algorithm such that the set of agents can agree upon a value
via local interactions through a communication network.
From another perspective, the problem consists of the de-
sign of a distributed procedure where the communication
between entities with computational power is restricted by
the network topology.

Examples of applications where consensus has a core
role are optimization [1, 2], motion coordination tasks [3,
4], rendezvous problems [5, 6, 7], resource allocation in
computer networks [8], desynchronization of transmitters
at the MAC layer in sensor networks [9], and measuring
the relative importance of web pages with PageRank-like
algorithms [10]. In [11], the authors proposed a distributed
Kalman Filter based on two consensus systems to estimate
the 2D motion of a target, and they experimentally assessed
it in [12] to estimate the motion of a real robot.
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The importance of consensus and its underlying commu-
nication aspect makes it crucial to delve into the resilience
aspects, i.e., the capability of overcoming abnormal situa-
tions. Therefore, an agent in a consensus network should
effectively and efficiently identify neighbors that are sharing
false information. By filtering out corrupted state values, the
normal agents aim to converge to a steady-state as close as
possible to the true value.

Resilient consensus. In [13], the authors study the continu-
ous-time consensus problem in the presence of adversaries.
They modeled the network of multi-agents as a switched
system, where the normal agents have integrator dynamics,
and the switching signal defines the network topology. Under
the assumption that, at most, a fraction of the neighbors
of any normal agent may be attacked, they presented a
novel graph-theoretic metric, called fractional robustness,
to analyze the network topologies where the set of normal
agents reach consensus.

The work in [14] considered resilient consensus and syn-
chronization of identical agents following a continuous-time
LTI system model. The authors devised a resilient consensus
protocol called ARC-P, which has a robustness parameter 𝑓 ,
together with resilient control laws for the synchronization
purposes. Also, they presented necessary and sufficient re-
quirements such that the distributed control laws accomplish
their goal for time-invariant and time-varying networks.

In [15], the resilient consensus of switched multi-agent
systems is studied. The author proposes a switched fil-
tering strategy that can cope with a subset of malicious
nodes in directed networks under arbitrary switching rules.
As generalizations, the authors addressed both the resilient
scaled consensus and the resilient scaled formation genera-
tion problems for multi-agent switched systems.
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The work in [16] addressed the general problem of reach-
ing resilient consensus among a set of agents in the presence
of faulty nodes. The authors developed a general method that
requires, as input, a consensus algorithm and the robustness
parameter 𝑓 . The method is an extension of [17] and is suit-
able for both discrete-time and continuous-time consensus,
letting the normal agents identify the set of attacked nodes
and correct the consensus value by ignoring the faulty nodes.

In [18], resilience in a type of consensus system was
achieved by computing the variance of the received state
values of the neighbors. In a sense, the variance can be
thought as providing a relative reputation of the node, with
the agent with the largest value being an attacker in that
case given the properties of a specific type of consensus
dynamics.

In this work, in contrast with the general method proposed
in [16], each agent does not require to keep in memory
an exponential number of variables. Here, each agent only
needs to store its state and Boolean values for each neighbor.
These Boolean values result from the reputation score that
the agent computes for each neighbor, and correspond to
an activation or not of their connection. Additionally, the
method that we propose has the advantage of not requiring,
as input, a parameter defining the maximum number of
attacked agents.

Reputation systems. The notion of an entity’s reputation
is an impression about that entity that naturally appears from
evaluating it using a set of criteria. Often, we cast reputations
on persons, corporations, services, and many other entities.
Usually, we compare the properties of an entity with other
related entities. Thus, we create a reputation based on what
we would expect of an entity, comparing it with others.
Therefore, the concept of reputation is omnipresent and
yields a powerful tool of social control in a plethora of areas.
For example, areas as natural societies, business, education,
social networks use the reputation concept.

Due to its importance and ubiquity, a galore of computer
science applications adopted this concept to develop effi-
cient, effective, and robust methods. For example, in [19, 20,
21, 22, 23], the authors develop methods using reputation as
a central concept to mitigate the effect of attacks and bribery.

Furthermore, reputation is also a relevant measure to be
evaluated in the field of Social Networks as in [24, 25, 26].
In [27], the authors propose a method to address the problem
of determining a degree of reputation for agents behaving as
assistants to the members of an electronic community. The
seminal work in [28] introduced a discrete-time reputation-
based consensus method, where each agent assigns a reputa-
tion to each neighbor to filter neighbors with low reputation.
We refer the reader to the surveys in [24, 29] and references
therein to a more detailed overview of reputation systems.

The main contribution of this paper is the development
of a reputation-based consensus method via a switching
system, where the agents’ states evolve in continuous-time,

but with discrete-time switching of the network topology
that depends on the reputation assigned among neighbors.
Our method limits what an attacker can do in the best
undetectable attacking strategy and is more robust than the
commonly used methods.

Paper structure: In Section 1.1, we define the adopted
notation. In Section 2, we present the main results of the pa-
per, providing a reputation-based resilient continuous-time
consensus method. Section 3 shows illustrative examples of
the proposed method, highlighting in particular the higher
robustness of the proposed algorithm in comparison with
typically used methods. Finally, Section 4 closes the paper
and points future research directions.

1.1. Notation
A directed graph or digraph is an ordered pair  = ( , ),

where  is a nonempty set of nodes, and  ⊆  ×  is a set
of edges. An edge is an ordered pair encoding a relationship
of accessibility between nodes. In other words, if 𝑢, 𝑣 ∈ 
and (𝑢, 𝑣) ∈  then the node 𝑣 directly accesses information
of node 𝑢. Given a digraph  = ( , ), if (𝑢, 𝑣) ∈  if
and only if (𝑣, 𝑢) ∈  (if there is an edge starting in 𝑢 and
ending in 𝑣 there is also the reciprocate edge), then we say
that the digraph is undirected or simply a graph. In the scope
of consensus methods, we also refer to a digraph (or graph)
as a network, and we refer to nodes as network agents.

Given a digraph  = ( , ), if for any 𝑢, 𝑣 ∈  , with
𝑢 ≠ 𝑣 we have that (𝑢, 𝑣) ∈  , then we say that  is a
complete digraph or complete network. Additionally, for an
agent 𝑣 ∈  , the set of nodes that 𝑣 can directly access
information in the network is defined as 𝑣 = {𝑣} ∪ {𝑢 ∶
(𝑢, 𝑣) ∈ }, and these agents are called the neighbors of
𝑣. The in-degree of 𝑣 ∈  , 𝑑𝑣 is the number of proper
neighbors of 𝑣, 𝑑𝑣 = |𝑣⧵{𝑣}|. Analogously, the out-degree
of a node 𝑣 ∈  , 𝑜𝑣, is the number of nodes that have 𝑣 has
a neighbor, 𝑜𝑣 = |{𝑢 ∶ 𝑣 ∈ 𝑢 ⧵ {𝑢}}|. If the digraph is a
graph, then the in-degree is the same as the out-degree, and
we refer to either as the node degree. A path in = ( , ) is a
sequence of distinct nodes (𝑣1, 𝑣2,… 𝑣𝑘), with (𝑣𝑖, 𝑣𝑖+1) ∈ 
for all 𝑖 = 1,… , 𝑘 − 1. We denote by  ≡ 𝑡 = ( ,  (𝑡)) a
network with || nodes (the nodes are fixed) such that the
edges  (𝑡) ⊂  ×  can vary with time (𝑡).

A common representation of a digraph with 𝑛 nodes is via
its adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛, where 𝐴𝑢,𝑣 = 1 if (𝑢, 𝑣) ∈  ,
and 𝐴𝑢,𝑣 = 0, otherwise. A subdigraph or a subnetwork
 = ( ′,  ′) of a digraph  = ( , ) is a digraph such
that  ′ ⊂  , and  ′ ⊂

(

 ′ ×  ′ ∩ 
)

. By  ⧵ , with
 ⊂  , we denote the subdigraph  = ( ⧵,  ′), where
 ′ = {(𝑢, 𝑣) ∈  ∶ 𝑢, 𝑣 ∉ }.

Last, we use the ceiling function ⌈⋅⌉ ∶ ℝ → ℤ that can be
defined as ⌈𝑥⌉ = argmin

𝑦∈ℤ
𝑦 such that 𝑥 ≤ 𝑦.
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2. A reputation-based resilient
continuous-time consensus method using a
switching topology

Let  = ( ,  (𝑡)) be a network with 𝑛 agents. The
agents can reach consensus following a distributed and linear
algorithm with dynamics given by:

𝑥̇𝑖(𝑡) = −
∑

𝑗∈𝑖

𝑤𝑖𝑗(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)), (1)

where 𝑤𝑖𝑗 is 0 if agent 𝑗 does not communicate with agent
𝑖, and 𝑤𝑖𝑗 > 0 otherwise, and 𝑥𝑖(0) = 𝑥0𝑖 .

Suppose now that we may have a set of agents,  ⊂  ,
that can be attacked or malfunctioning. In this situation, it
is desirable that the remaining agents in  ⧵  are able to
disclose which of their neighbor agents are not following the
consensus protocol and discard the erroneous information.

In this paper, we tackle the aforementioned problem under
the next assumption, which states that more than half of a
normal agent neighbors are also normal, and the network
of normal agents is connected (if undirected) or strongly
connected (if directed).

Assumption 𝐀𝟏: For every agent 𝑢 ∈  ⧵  that is
not malfunctioning, we have that |𝑢 ⧵ | ≥ |𝑢|∕2.
Additionally, we have that  ⧵  is connected (if  is
undirected) or strongly connected (if  is directed). ⋄

2.1. The attacker model
In this work, we consider an attacker that may corrupt

the states of a subset of agents  using an unbounded
signal. We assume that the attacker cannot corrupt the com-
munication between agents and send distinct messages to
different neighbors. Note that this assumption permits the
attacker to change the state of a subset of agents to (pos-
sibly) distinct values. For instance, in a network with a
dozen agents, the attacker may modify the states of agents
1 and 2, independently. However, it cannot alter the network
communication scheme and have two neighbors of an agent
receiving different value. Such a scenario is expected in a
wireless medium.

Moreover, the attacker cannot create artificial nodes nor
change the network topology. Notice that if a malicious en-
tity could create nodes in the network, it would be impossible
to deter, as the attacked nodes could become the majority.

Additionally, we do not allow the always undetectable sce-
nario where the attacker targets the initial state of an agent,
see Definition 3 (Undetectable Input) of [30]. Observe that
the state evolution of the network agents in a scenario where
the initial state of an agent is changed follows precisely the
same execution trace as the same scenario where the actual
initial state of the agents is the same value as the attacker
changed.

2.2. The proposed method
Now, we propose a switching system that uses the notion

of reputation to achieve resilient consensus. The continuous-
time dynamics of the method consists in each mode of
the switching system, i.e., when agents states are evolving
according to (1). The discrete-time behaviour happens at
sampling times when each agent calculates a reputation
score for each of its neighbors and uses is to (possibly)
change its communication with the neighbors, i.e., to switch
the network topology by (possibly) removing a set of edges
corresponding to those with poor reputation. In fact, each
agent considers only the information of the neighbor (or the
neighbors) with the maximum reputation (up to 𝜀 > 0 but
𝜀 ≈ 0).

The dynamics of each agent in a network  = ( , ) is
given as

𝑥̇𝑖(𝑡) = −
∑

𝑗∈𝑖

𝑐𝑖𝑗(𝜎(𝑡))𝑤𝑖𝑗(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)), (2)

where 𝜎 ∶ ℝ+
0 → {1,… , 𝑚,…} is a piece-wise constant

signal that only switches once in a given dwell-time, and
𝑐𝑖𝑗(𝜎(𝑡)) is the reputation that agent 𝑖 ∈  assigns to agent
𝑗 ∈ 𝑖 at time 𝑡 ∈ ℝ+

0 , computed as we next detail.

Given the dwell-times where the function 𝜎 is con-
stant, {[𝑡0, 𝑡1),… , [𝑡𝑘, 𝑡𝑘+1),…}, with 𝑡0 = 0, we compute
𝑐𝑖𝑗(𝜎(𝑡)), for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), using Algorithm 1.

Algorithm 1 Node’s neighbors reputation assignment
1: input: function 𝜎, time 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), agent 𝑖 ∈  and its neighbors

𝑖 states {𝑥𝑖(𝑡𝑘)} ∪
(

{𝑥𝑗 (𝑡𝑘)}𝑗∈𝑖

)

, and the smallest floating point
number that we can represent with a selected precision, 𝜀.

2: output: reputations 𝑐𝑖𝑗 (𝜎(𝑡)) ≡ 𝑐𝑖𝑗 (𝜎(𝑡𝑘)), for all 𝑗 ∈ {𝑖} ∪𝑖 and for
all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1)

3: if 𝑡𝑘 = 0 then
4: set

𝑐𝑖𝑗 (𝑡𝑘) = 1, ∀𝑗 ∈ {𝑖} ∪𝑖

5: else
6: set ⊳ Reputation computation

𝑐𝑖𝑗 (𝜎(𝑡𝑘)) = −
∑

𝑣∈𝑖∪{𝑖}

|𝑥𝑗 (𝑡𝑘) − 𝑥𝑣(𝑡𝑘)|
|𝑖|

, ∀𝑗 ∈ 𝑖

7: set ⊳ Normalized Reputation update

̃̃𝑐𝑖𝑗 (𝜎(𝑡𝑘)) =
𝑐𝑖𝑗 (𝜎(𝑡𝑘)) − min

𝑣∈𝑖
𝑐𝑖𝑣(𝜎(𝑡𝑘))

max
𝑣∈𝑖

𝑐𝑖𝑣(𝜎(𝑡𝑘)) − min
𝑣∈𝑖

𝑐𝑖𝑣(𝜎(𝑡𝑘))
, ∀𝑗 ∈ 𝑖

8: set ⊳ Final Reputation update

𝑐𝑖𝑗 (𝜎(𝑡𝑘)) =

{

1, if 𝑖 = 𝑗 ∨ ̃̃𝑐𝑖𝑗 (𝜎(𝑡𝑘)) ≥ 1 − 𝜀
0, otherwise

, ∀𝑗 ∈ {𝑖} ∪𝑖

9: end if

Furthermore, it is worth noticing that the derived con-
sensus value of normal agents has the usual guarantees for
resilient consensus, i.e., the final consensus lies within the
convex hull of the initial agents’ states [31, 32, 33]. This re-
sult is a consequence of having a continuous-time consensus
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method with switching network topology (3). In fact, what
we propose, in this work, is a reputation computation step
which triggers the switching of the network topology.

The next result shows that the normal agents are able
to correctly identify the attacked ones when each attacked
agent aims to drive (in the limit) the consensus value to a
common value (different from the non attacked scenario).
Other scenarios are illustrated in Section 3. Note that the
required normalization and “binarization” (Step 8) key steps
in Algorithm 1 make a general proof hard, being out of scope
of this paper.

Theorem 1. Consider a network of agents  with a subset
of agents  ⊂  , satisfying assumption 𝐀𝟏, that do not
behave as normal agents. If, by using (2) with Algorithm 1,
for 𝑎 ∈  lim

𝑡→∞
𝑥𝑎(𝑡) = 𝑥𝑎 and for 𝑣 ∈  ⧵  lim

𝑡→∞
𝑥𝑣(𝑡) =

𝑥∞ ≠ 𝑥𝑎 then the agents behaving normally identify the
attacked agents, i.e., assign them reputation equal to zero. ◦

Proof. Suppose, by contradiction, that the conditions of
the theorem hold but the agents behaving normally do not
identify the attacked agents, i.e., assigning reputation of 1.
The previous implies there is a normal agent that assigns
a reputation to an attacked neighbor agent greater or equal
to the normal neighbor agents. In other words, for each
𝑎 ∈  ∩𝑖 and 𝑗 ∈ 𝑖 ⧵, we have that

lim
𝑡→∞

𝑐𝑖𝑎(𝜎(𝑡)) ≥ lim
𝑡→∞

𝑐𝑖𝑗(𝜎(𝑡)),

which is equivalent to

lim
𝑘→∞

1 −
∑

𝑣∈̄𝑖

|𝑥𝑎(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)|
|𝑖|

≥

lim
𝑘→∞

1 −
∑

𝑣∈̄𝑖

|𝑥𝑗(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)|
|𝑖|

.

Now, the previous equation is equivalent to

lim
𝑘→∞

∑

𝑣∈̄𝑖

|𝑥𝑎(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)| ≤ lim
𝑘→∞

∑

𝑣∈̄𝑖

|𝑥𝑗(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)|,

which we can re-write as

lim
𝑘→∞

∑

𝑣∈̄𝑖
𝑣∉

|𝑥𝑎(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)| + lim
𝑘→∞

∑

𝑣∈̄𝑖
𝑣∈

|𝑥𝑎(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)| ≤

lim
𝑘→∞

∑

𝑣∈̄𝑖
𝑣∉

|𝑥𝑗(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)| + lim
𝑘→∞

∑

𝑣∈̄𝑖
𝑣∈

|𝑥𝑗(𝑡𝑘) − 𝑥𝑣(𝑡𝑘)|,

equivalent to

|𝑖 ⧵||𝑥𝑎 − 𝑥∞| + |𝑖 ∩||𝑥𝑎 − 𝑥𝑎| ≤
|𝑖 ⧵||𝑥∞ − 𝑥∞| + |𝑖 ∩||𝑥∞ − 𝑥𝑎|,

and, finally, the same as |𝑖 ⧵ | ≤ |𝑖 ∩ |, which
contradicts assumption 𝐀𝟏.

Remark: For each agent 𝑖 ∈  , the computational cost
of the discrete-time step of the consensus, i.e., the cost
of Algorithm 1, is (|𝑖|

2). This cost corresponds to
step 7, the step of maximum cost. In this step, the agent 𝑖
computes 𝑐𝑖𝑗(𝜎(𝑡)) for each 𝑗 ∈ 𝑖 with cost (|𝑖|). ⋄

Next, we illustrate the use of the proposed method with
several examples.

3. Illustrative examples

We start to explore the scenario where the attacked agents
behave as stubborn agents, i.e., always sharing the same
value. For all the experiments, we fixed 𝜀 = 10−16 in
Algorithm 1.

3.1. Attacked agents that share a constant value –
undirected network

1
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4

(a) Network topology graph 1.
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(b) State evolution without an attacker, i.e.,  = ∅.
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(c) State evolution with an attacker, i.e., = {1}, and without resilience.
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(d) Network resulting from (2) with Algorithm 1 for 1 with
attacked nodes  = {1}.
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(e) State evolution with an attacker,  = {1}, and (2) with Algorithm 1.

Figure 1: State evolution of agents from network 1 with
initial states 𝑥(0) for different configurations of the attacked
agent set .

In the first example, we consider a complete network of
4 agents, 1, as depicted in Figure 1 (a), and initial state
𝑥(0) =

[

0.4 0.35 0.3 0.1
]⊺.

In Figure 1 (b), we show the agents’ states evolution when
there are not attacked agents. Subsequently, we consider
that agent 1 is attacked and always communicates the same
value. In this scenario, using a continuous-time consensus
that is not resilient to attacks, the evolution of the agents’
sates is depicted in Figure 1 (c), and the attack takes effect.
Using (2) with Algorithm 1, we obtain the evolution depicted
in Figure 1 (e) and the attack is, therefore, mitigated. The
final communication network considered by the agents is
depicted in Figure 1 (d).

Subsequently, consider the network of 10 agents 2, de-
picted in Figure 2 (a) and initial state

𝑥(0) = [ 0.4 0.35 0.3 0.1 −0.2 −1.4 2.3 1 0.8 0.5 ]⊺ .

Next, using (2) with Algorithm 1 and attackers  = {4},
we obtain the evolution depicted in Figure 2 (b), and the
attack is successfully mitigated. Furthermore, using (2) with
Algorithm 1, we obtain the evolution depicted in Figure 2 (c)
and the attack is successfully mitigated, when  = {4, 8}.

3.2. Attacked agents that share a constant value -
directed network

The following example illustrates the scenario where the
network of agents is directed. We consider a network of 8
agents, 3, as depicted in Figure 3 (a), with initial state

𝑥(0) = [ 0.4 0.35 0.3 0.1 −0.2 −1.4 2.3 1 0.8 0.5 ]⊺ .

Next, using (2) with Algorithm 1, we obtain the evolution
depicted in Figure 3 (b) and the attack is, therefore, miti-
gated.

3.3. Attacked agents that do not share a constant
value

Here, we explore examples where the attacked agents do
not behave as stubborn agents, i.e., that share a non-constant
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(a) Network topology graph 2.
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(b) State evolution using (2) with Algorithm 1, with attacker set  = {4}.
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(c) State evolution using (2) with Algorithm 1, with attacker set = {4, 8}.

Figure 2: State evolution of agents from network 2 with
initial states 𝑥(0), with attacked nodes .

value. In the first example, we use the network of agents 1,
depicted in Figure 1 (a), set of attacked agents  = {1},
and initial state 𝑥(0) =

[

0.4 0.35 0.3 0.1
]⊺. The state

of agent 1 evolves as 𝑥1(𝑡) =
0.05 sin (40𝑡)

𝑡+0.1 + 0.1. In Figure 4,
we depict the evolution of the agents’ states using (2) with
Algorithm 1, and the attack is successfully deterred.

In the second example, we use the network of agents 4,
depicted in Figure 5 (a), set of attacked agents  = {4, 8},
and initial state

𝑥(0) = [ 0.4 0.35 0.3 0.1 −0.2 −1.4 2.3 1 0.8 0.5 ]⊺ .

In Figure 5 (b), we depict the evolution of the agents’
states using (2) with Algorithm 1, and the attack is, again,
successfully deterred.

3.4. Influence of function 𝜎
A question that emerges is if the role of the dwell-time of 𝜎

is crucial in the detection of attacked agents. We explore the
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Figure 3: State evolution of agents from network 3 with
initial states 𝑥(0), with attacked nodes .
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Figure 4: State evolution of agents from network 1 with
initial states 𝑥(0), with attacked nodes  = {1} and 𝑥1(𝑡) =
0.05 sin (40𝑡)

𝑡+0.1 + 0.1.

example of network 1, with attacked nodes  = {1}, and
initial state 𝑥(0) =

[

0.4 0.35 0.3 0.1
]⊺. In Figure 1 (e),

this scenario was explored when 𝜎(𝑡) = ⌈100𝑡⌉. Hence,
we illustrate two extreme scenarios, where 𝜎(𝑡) = ⌈5𝑡⌉
(depicted in Figure 6) and 𝜎(𝑡) = ⌈500𝑡⌉, presented in
Figure 7 (a) and (b), respectively.

We observe that in the three cases, the attack was suc-
cessfully deterred. Notwithstanding, when the dwell-time
function 𝜎 has a smaller number of discontinuities, the
convergence is slower and the state evolution of the agents
presents, consequently, more evident jumps.
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(a) Network 4
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(b)  = {4, 8}

Figure 5: State evolution of agents from network 4 with ini-
tial states 𝑥(0), with attacked nodes , 𝑥4(𝑡) =

0.05 sin (40𝑡)
𝑡+0.1 +

0.1, and 𝑥8(𝑡) =
0.08 sin (100𝑡)

𝑡+0.2 + 1.
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Figure 6: Plot of the function 𝜎(𝑡) = ⌈5𝑡⌉.

3.5. Switching network topology
Finally, we explore how the presented method behaves if

the consensus network has a switching topology (same num-
ber of agents but the edges may switch with time). Therefore,
the agents’ evolution is governed by the following:

𝑥̇𝑖(𝑡) = −
∑

𝑗∈𝑖

𝑤(𝑡)𝑖𝑗(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)), (3)

where 𝑤(𝑡)𝑖𝑗 is a piece-wise constant function such that
𝑤(𝑡)𝑖𝑗 is 0 if agent 𝑗 does not communicate with agent 𝑗 at
time 𝑡, and 𝑤(𝑡)𝑖𝑗 > 0 otherwise, and 𝑥𝑖(0) = 𝑥0𝑖 .

We consider the network with switching topology given as

(𝑡) =

{

𝑡≤0.4 if 𝑡 ≤ 0.4
𝑡>0.4 if 𝑡 > 0.4

, depicted in Figure 8 (a) and (b),

and initial state

𝑥(0) = [ 0.4 0.35 0.3 0.1 −0.2 −1.4 2.3 1 0.8 0.5 ]⊺ .
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(a) 𝜎(𝑡) = ⌈5𝑡⌉.
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Figure 7: Influence of function 𝜎 in the example of network
1, with attacked nodes  = {1}.

Also in this setup, as envisioned, the proposed method is
able to mitigate the attack, see Figure 8 (c).

3.6. Finding the best attacking strategy
We explore the best strategy that an attacker can follow to

maximize the change of the consensus value without being
detected. This scenario helps to understand the limits of both
the proposed method and the limits of an attacking strategy.
That said, we assume that an attacker has full knowledge of
the system at any time.

3.6.1. Best attacking strategy for our approach
Using the full knowledge of the system that evolves ac-

cording to (3), with 𝑐𝑖𝑗 updated according to Algorithm 1,
with aimed final consensus value 𝑥̄, an attacker can select its
state 𝑥𝑎(𝑡𝑘) = 𝑧∗(𝑡𝑘), to share in each mode of the 𝜎 function,
by solving the following optimization

𝑧∗(𝑡𝑘) = argmax
𝑧∈ℝ

(𝑧 − 𝑥̄)2

s.t. for some 𝑖, with 𝑎 ∈ 𝑖,

𝑐𝑖𝑎(𝜎(𝑡𝑘)) ≥ 𝑐𝑖𝑗(𝜎(𝑡𝑘)), ∀𝑗 ∈ 𝑖 ⧵ {𝑎}.

Intuitively, the attacker wants to maximize its influence on
the final consensus value while remaining undetected by
at least one of the agents to which it communicates. This
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(c)  = {4}

Figure 8: State evolution of agents from network switching
topology networks (𝑡), with initial states 𝑥(0), and attacked
nodes .

strategy implies that the attacker must have a reputation as
good as the best reputation of that agent’s neighbors. Also,
intuitively, we must select a 𝜎 function that initially changes
with a large frequency, and that changes a few times after
that. This selection reflects the fact that as the agents’ states
are evolving to consensus, the maximum influence on the
consensus outcome that the attacker can do without being
detected is going to zero.

3.6.2. Best attacking strategy for approaches that
eliminate extreme values

Now, we explore the best attacking scenario for the pre-
vious typically used approaches. In the literature, whenever
designing a resilient consensus system, the concept of mean
subsequence reduce (MSR) is often used to remove the
extreme points from the ones received by all the neigh-
bors [34, 35, 36]. Specifically, for each mode of the system,
an agents sorts the values received by its neighbors and
discard the 𝑓 highest and the 𝑓 smallest values (where 𝑓 is
a robustness parameter). Therefore, we consider each node
to apply the aforementioned filtering in each discrete-time
transition of the system.
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It is easy to see that if 𝑓 = 1 then an attacking strategy
where the attacked node chooses its value to be 𝜀 > 0
smaller than the maximum value of all the nodes or 𝜀 > 0
greater than the minimum value of all the nodes will make
the attacker undetectable for some agent, yielding the best
attacking strategy with the goal of being undetectable for at
least one agent.

3.6.3. Example of a best attacking strategy for the two
previous scenarios

We start by fixing a network of agents  (Figure 9) and a
set of initial values

𝑥(0) = [ 1 4 9 16 25 36 49 64 81 100 ]⊺

and deploy the best above mentioned attacking strategies
considering two 𝜎 functions. The first is 𝜎1 = ⌈25𝑡⌉, and
the second is 𝜎2 = ⌈40𝑡⌉.

1
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10

Figure 9: Network .

We can see, from Figures 10 and 11 that the best unde-
tectable attack is able to change the final consensus value
more when using MSR than with our proposed method.
In other words, the strategy that we propose further limits
the attacking strategy when the attacked agent wants to be
undetected to some other agent.

3.6.4. A comparison between the approaches
Finally, we fix the initial states of the agents as

𝑥(0) = [ 1 2.297 3.737 5.278 6.899 8.586 10.33 12.126 13.967 15.849 ]⊺ ,

we generate 30 networks of 10 agents, apply the best attack-
ing strategy for the MSR and compute the absolute error be-
tween the final true consensus value and the final consensus
obtained with the proposed approach (ours) and the MSR,
with 𝑓 = 1. In Figure 12, we present a box-whisker chart of
the absolute error distribution when using both approaches
that illustrates the advantage of the proposed method.

4. Conclusion

In this paper, we addressed the problem of a set of agents
achieving resilient continuous-time consensus. To this end,
we developed a method that consists of a switching system,
which switches between network topologies (in discrete-
time), and, in each mode of the system, the agents follow a
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(a) Best attacking strategy for our approach, with  = {4} and 𝜎 ≡ 𝜎1.
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(b) Best attacking strategy for the MSR, with  = {4} and 𝜎 ≡ 𝜎1.

Figure 10: Consensus evolution using the best (undetectable)
attacking strategy using the proposed approach vs. the MSR,
with 𝜎 ≡ 𝜎1.

typical continuous-time consensus using the network topol-
ogy of that mode. Moreover, the discrete-time part consists
of each agent computing a reputation score that it assigns to
each neighbor. This reputation score reflects the mean error
of that neighbor’s state regarding other neighbors’ states.
Then, the score is used to exclude a subset of suspicious
neighbors, changing the network topology. Lastly, we ex-
plore the proposed method with illustrative examples, and
compare with the MSR method, illustrating the advantages
of our approach.
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(a) Best attacking strategy for our approach, with  = {4} and 𝜎 ≡ 𝜎2.
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(b) Best attacking strategy for the MSR, with  = {4} and 𝜎 ≡ 𝜎2.

Figure 11: Consensus evolution using the best (undetectable)
attacking strategy using the proposed approach vs. the MSR,
with 𝜎 ≡ 𝜎2.
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Figure 12: Box-whisker chart of the absolute error distri-
bution when using both approaches with the best attacking
strategy for the MSR.
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