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Abstract

In this article, we suggest a technique of set-based cooperative navigation
for a fleet of vehicles under communication constraints. In the suggested
approach, only the distances and bearings to other vehicles or known locations
can be measured. Each vehicle in the fleet must determine its location and
the positions of the other vehicles based on the measurements as well as
information shared among the vehicles. Since the measurement set may be
nonconvex, it must be approximated by a convex set. To address this issue,
we employ constrained convex generators, which is a generalization of the
definition for constrained zonotopes that allows ℓ2 unit norm balls and convex
cones. To keep the amount of exchanged information low the vehicles transmit
an ellipse containing the state estimate to the other vehicles. The obtained
estimates are worst-case bounds for the true position, which is important in
certain applications such as collision avoidance. The computed sets are then
applied to vehicle control algorithms, taking into account the positions of
all the agents. Through numerical simulations, we illustrate the application
of this method to the problem of cooperative navigation of autonomous
underwater vehicles and the problem of fire detection with multiple UAVs.
Keywords: Cooperative Navigation, Constrained Convex Generators,
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1. Introduction

The creation of sophisticated cooperative marine robotic systems that can
function entirely autonomously without being closely monitored by human
operators is of great interest. Applications range from scientific surveys (such
as seabed mapping) in remote locations to inspections of industrial underwater
infrastructures and the collection of underwater images at sites of public
interest (such as archaeological surveys). To achieve these goals efficiently,
autonomous underwater vehicles (AUVs) are an extremely important tool.
When conducting missions as a fleet, cooperative navigation is a crucial
method to be employed that also aids in providing vehicles with position
estimations as well as for geo-referencing the collected data.

Due to the strong attenuation of electromagnetic waves in the underwater
environment, medium- and long-range communications are typically carried
out using acoustic signals, whose range can vary from hundreds of meters to
hundreds of kilometres depending on the signal frequency (lower frequency
yields greater range) [1]. Additionally, the modulation technique and frequency
(higher frequencies result in greater bit rates) affect the bit rate [2]. Bit rates
for commercial modems range from 40 to 15000 bps.

It is sometimes necessary for a fleet of several vehicles surveying the
ocean floor to operate in a certain formation with respect to one another. To
achieve this goal, each vehicle must have access to the relative locations of
its neighbours in a particular formation to achieve this objective [3]. In the
underwater scenario, data from one vehicle may be broadcast to all vehicles
over the supporting acoustic communication network in applications where a
group of vehicles operate in proximity. As a result, we obtain a full graph.

In this paper, we propose a method of cooperative navigation for a fleet
of AUVs for formation control under bandwidth restrictions imposed by the
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acoustic communications medium. We picture a situation in which one vehicle
is equipped with a GNSS positioning device and each of the other vehicles
is outfitted with ultra-short baseline (USBL) devices that measure distance
and bearing to the other vehicles in the formation. This study proposes a
cooperative navigation method of computing, for each vehicle, a set containing
its position and of its neighbors using range and bearing measurements, as
well as information shared among the vehicles.

Since distributed state estimation has gained popularity in recent years,
there is a significant body of literature on the subject. Many versions of the
distributed Kalman filter have been suggested [4, 5]. In [6, 7, 8] distributed
Luenberger observers for linear systems are proposed, where similarly to
distributed Kalman filters, they rely on consensus dynamics [9] using the
estimates. In [10], it can be found a comprehensive study of distributed
estimate methods.

Algorithms that calculate sets that at any given time contain all potential
state values are called set-based observers of a dynamical system. The surveys
in [11, 12] show that there has been a lot of interest in the topic of designing set-
based observers. One important choice when designing set-valued observers
is how to represent the sets. One possibility is the use of intervals [13] or
ellipsoids as in [14, 15]. Another possible choice is to use zonotopes, which
have a reduced wrapping effect in comparison with the intervals and ellipsoids
[16, 17, 18]. Polytopes can both be represented in semi-explicit format [19],
Constrained Zonotopes (i.e., as the linear map of a generator set) [20] or based
on point operations using their vertices [21]. Constrained convex generators
are a more recent solution that unifies all these set representations [22].

The extension of set-based observers to the distributed setting has re-
ceived great attention lately [23]. The work in [24, 25] contains distributed
estimation algorithms that use zonotopes. In [26, 27], the authors extended
the approach in [17] to a distributed framework with network-based challenges
and provided a Kalman-based set-membership observer. The work in [28]
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contains an extension to the distributed setting of [29], which merges the
set membership and the stochastic paradigms. The work in [30] suggests a
distributed zonotope-based estimator that applies to a particular family of
systems with state interconnections. A distributed set-valued observer was
suggested in [31] which makes use of a coprime factorization to handle relative
measurements. A similar problem was addressed in [32] which uses set-valued
observers to address the problem of average consensus in a Byzantine environ-
ment. Recently [33] studied the application of distributed set-based observers
to vehicle formation control.

In this paper, we aim to refine set-based cooperative navigation methods
with communication limitations, which are critical for applications like collision
avoidance and fault detection. Therefore, we propose a method for cooperative
set-based navigation with limited communications. Only the distances and
bearings to other vehicles may be measured using the proposed method. Based
on the measurements and information communicated among the vehicles,
each vehicle in the fleet must determine its location as well as the positions
of the other vehicles. Since the measurement set must be approximated by a
convex set, constrained convex generators (CCGs), which are an extension of
the definition for constrained zonotopes, are used to handle this problem.

The paper introduces several key innovations.

• We propose a set-based cooperative navigation algorithm tailored for
underwater navigation and drone fire detection scenarios. Unlike tradi-
tional methods such as [34] and [35], our approach, similar to [33], is
set-based. This means we acquire information on all possible states of
the system.

• We employ constrained convex generators as set descriptors, providing
a more precise representation of the sets derived from measurements.
Unlike [33], this method allows for greater accuracy in describing the
sets compared to the traditional use of constrained zonotopes.
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1.1. Notation

Let In be the identity matrix of size n, and let 0n stand for the n-
dimensional array of zeros and 1n denote the n-dimensional array of ones.
The vector ei consists of zeros except in the ith position which contains a 1.
Whenever the index is omitted 0 denotes a matrix of zeros whose size can be
inferred from the context. The transpose of a vector v is written by v⊺, and
the Euclidean norm for a vector x is denoted by ∥x∥2 :=

√
x⊺x. Additionally,

∥x∥∞ := maxi |x(i)|, where x(i) is the ith element of x. The intersection after
applying a matrix R to the first set is represented by ∩R, the Minkowski sum
of two sets by ⊕, the Cartesian product by ×, the Kronecker product by ⊕,
and the modulus operator or remainder after division is denoted as mod(·).

2. Method

2.1. Mathematical Background

2.1.1. Constrained convex generators (CCGs)
We first introduce the definition and the main operations of CCGs. Defi-

nition 1 provide a formal description of CCGs.

Definition 1 (Constrained Convex Generators). Z ⊂ Rn is defined by
the tuple (G, c, A, b,C) with G ∈ Rnc×ng , c ∈ Rn, A ∈ Rnc×ng , b ∈ Rnc, and
C :=

{
C1, C2 . . . , Cnp

}
such that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × . . . × Cnp}. (1)

CCGs are a very general form of representing sets since ℓp norm balls,
norm cones, among others can be represented directly. This entails that
no approximation is required to represent ellipsoidal shapes, polytopes or
even unbounded sets, which would otherwise introduce conservatism in the
case of constrained zonotopes or polytopes. For instance, polytopes can be
represented as

X = (G, c, A, b, ∥ξ∥∞ ≤ 1) (2)
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and ellipsoids are defined as

X = (G, c, [ ], [ ], ∥ξ∥2 ≤ 1) (3)

Other types of sets can also be described as CCGs such as ellipsotopes,
intervals, or zonotopes. For more information on CCGs, the reader is referred
to [22]. The usual operations such as linear maps, Minkowsky sum, and
intersection are well-defined for CCGs and can be computed as in Definition
2.

Definition 2. Consider three Constrained Convex Generators (CCGs) as in
Definition 1:

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn

• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn

• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set operations are
defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz)

Z ⊕ W =
([

Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz

bw

]
, {Cz,Cw}

)

Z ∩R Y =

[Gz 0
]

, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz

by

cy − Rcz

 , {Cz,Cy}


2.1.2. Guaranteed state estimation

The problem of guaranteed state estimation in discrete-time LTI systems
can be formulated as the problem of finding a set of possible state values
given measurements, disturbance, noise, and initial state bounds. The model
is provided by:

xk+1 = Axk + Buk + wk, (4a)

yk = Cxk + vk, (4b)
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where xk ∈ Rn, uk ∈ Rnu , wk ∈ Rn, yk ∈ Rny , and vk ∈ Rny represent the
system state, input, disturbance signal, output, and noise, respectively. The
problem this article addresses can be summed up as follows:

Problem 1. How to calculate a set Xk that ensures that xk ∈ Xk, ∀k ≥ 0,
given compact convex sets X0, V , and W , such that x0 ∈ X0, vk ∈ V and
wk ∈ W for all k ≥ 0, and measurements yk.

Given Definition 2, one may solve Problem 1 recursively, since given a set
Xk ⊂ Rn such that xk ∈ Xk and a measurement yk, the set Xk+1 ⊂ Rn such
that xk+1 ∈ Xk+1 can be computed as

Xk+1 = (AXk ⊕ W + Buk) ∩C (yk − V ). (5)

In this implementation, we assume that the sets W and V are CCGs, resulting
in less conservatism than other representations. Specifically in this paper, we
consider a constant description for the disturbance and noise sets:

W := (Gw, cw, [ ], [ ],Cw) , (6a)

V := (Gv, cv, [ ], [ ],Cv) . (6b)

2.1.3. Range and Bearing measurements CCG
Central to this work is the representation of the set of admissible positions

when receiving range and bearing measurements with a certain error, which
as shown in [22], is done accurately with CCGs. Given a certain 2D position
p ∈ R2 and a measurement of that position

ybr :=
yr

yb

 , (7)
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where

yr := ∥p∥ + vr, (8)

yb := ang(p) + vb, (9)

the operator ang(p) returns the angle of vector p in polar coordinates, and the
measurement noise variables vr and vb satisfy rl ≤ vr ≤ ru and bl ≤ vb ≤ bu,
we would like to compute a CCG Y (ybr) such that p ∈ Y (ybr). The set of
possible positions can be represented as the blue area in Figure 1.

1

2

5

3

4

Figure 1: Set of possible positions given a measurement ybr

Following [22], first, we calculate the four points that are produced by the
minimum and maximum angles at the intersection of each circle, resulting in
two outer points in the outer circle (points 1 and 3 in Figure 1) and two inner
points (points 2 and 4 in Figure 1). The coordinates of each point can be
expressed as ρ

[
cos α sin α

]
, where ρ is selected from the set {yr − rl, yr + ru}

and α is chosen from the set {yb − bl, yb + bu}. Additionally, we require a fifth
point with α = (2yb − bl + bu)/2 and the largest possible range ρ = yr + ru.
The remaining line equations and the trapezoidal shape may then be written
as Mx ≤ m by finding the line equation that is parallel to the outer points
and passes through the fifth point. We derive the Constrained Zonotope
(G, c, A, b) by using the formula from Theorem 1 in [20], which is identical
to the CCG representation Ztrap = (G, c, A, b, {B∞}) where B∞ is the unit
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ℓ∞-ball. An illustration of Ztrap is given as the red area in Figure 2.
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5

3

4

Figure 2: CZ enclosure of the measurement set.

The CCG ((yr + ru)I2, 0, 0, 0, {B2}), where B2 is the unit 2-ball, gives the
outside circle. The measurement set Y (ybr) is therefore provided by:

Y (ybr) = Ztrap ∩I2 ((yr + ru)I2, 0, 0, 0, {B2}) , (10)

and is represented as the blue area of Figure 3.
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3

4

Figure 3: CCG enclosure of the measurement set.

2.2. Problem statement

In this paper, we aim to adapt the CCG representation in [22] to the
problem of cooperative navigation in the realistic scenarios of a group of

9



AUVs moving in formation following a surface vehicle and a group of drones
moving in formation to detect a fire source.

2.2.1. Cooperative Underwater Navigation Problem
We assume that each element of the group of AUVs has ultra-short baseline

(USBL) devices that measure the ranges and bearings of the other vehicles. In
addition, one of the AUVs, which we will refer to as vehicle 1, is at the surface
and has a GPS that measures its location. The problem we attempt to solve
in this study is estimating at each vehicle the set of possible locations of all
vehicles in order to avoid having to consider their control law as uncertain in
the formation control algorithm when using these estimates. The formation
control issue we address, in particular, corresponds to a scenario in which
vehicle 1 must follow a pre-defined trajectory and the other vehicles must
maintain pre-defined relative positions to the vehicle 1 and one another. The
vehicles are assumed to move on a 2D plane. However, this assumption may
be lifted by assuming the vehicles can measure their depth. Furthermore, for
the purposes of designing the observer, we assume that the vehicles can be
modelled as single integrators with the velocity as a control input as follows:

ṗi = ui + wi, (11)

where i ∈ {1, . . . , N} is a vehicle index that identifies the vehicle in the fleet,
N is the number of vehicles, pi ∈ R2 is the position of the vehicle, ui ∈ R2 is
the control input which is a velocity reference that the vehicle must follow
and wi ∈ R2 is the disturbance which is the velocity tracking error. The
velocity reference ui serves as a reference to a velocity tracking system that
issues thrust commands to the actuators.

We assume that for each ∆t unit of time, one of the vehicles transmits
information while the remaining vehicles receive that information and compute
the range and bearing to that vehicle. Moreover, we assume that the vehicles
have piecewise constant velocity reference signals which are sampled through
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a zero-order hold with an inter-sample interval of ∆t units of time. Therefore,
defining a time index k ∈ Z the discretized dynamics of vehicle i can be
expressed as

xi
k+1 = Alx

i
k + Blu

i
k + wi

k, (12)

where
xi

k := pi
k, Al := I2, Bl := I2∆t, (13)

where pi
k ∈ R2 is the position of vehicle i at time t = k∆t, ui

k ∈ R2 is the
control input of vehicle i, which serves as a velocity reference for vehicle i for
k∆t ≤ t < (k + 1)k∆t, and wi

k is the disturbance or tracking error.
Combining the states of all the vehicles, the dynamics of the fleet can be

expressed as
xk+1 = Axk + Buk + wk, (14)

where

xk :=


x1

k
...

xN
k

 , uk :=


u1

k
...

uN
k

 , wk :=


w1

k
...

wN
k

 , (15)

and A := IN ⊗ Al and B := IN ⊗ Bl.
The measurement vector of a vehicle i when receiving data from vehicle j

can be expressed as
yi,j

k = hi,j(xk) + νi,j
k , (16)

where νi,j
k is the measurement noise and is considered to be constrained as

rl

bl

 ≤ νi,j
k ≤

ru

bu

 (17)

where the inequality is elementwise. The measurement functions for vehicles
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i ∈ {1, . . . , N} are given by

hi,j(xk) :=
 ∥pi

k − pj
k∥

ang
(
pi

k − pj
k

) . (18)

Moreover, it is assumed that vehicle 1 measures its own position since it
is assumed to be at the surface with a GNSS positioning device. Therefore at
every sample time vehicle 1 measures

yp
k = p1

k + νp
k , (19)

where νp
k is the measurement noise and is considered to be constrained as

∥νp
k∥ ≤ pu.

2.2.2. Drone Fire Detection Problem
The problem of fire detection consists of several drones equipped with

cameras and GPS communicating among themselves to determine the position
of a fire source. In this case, the cameras determine the approximate distance
and bearing to the fire with a large margin of error, while the drones commu-
nicate their own position and other information to improve the accuracy of
the position estimate of the fire source.

Defining the position of the drone i relative to the fire source as pi
k and

given that the vehicle has access to its own GPS position, determining the
set of possible locations of the fire source amounts to computing the set of
admissible pi

k for each drone given the measurements and data received.
For fire detection, the measurement vector of a vehicle i when receiving

data from vehicle j can be expressed as

yi,j
k = pi

k − pj
k + νi,j

k , (20)

where νi,j
k is the measurement noise and is considered to be constrained as

∥νi,j
k ∥ ≤ pu.
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At every sample time each vehicle measures

yi
k =

 ∥pi
k∥

ang (pi
k)

+ νi
k, (21)

where νi
k is the measurement noise and is considered to be constrained as

rl

bl

 ≤ νi
k ≤

ru

bu

 . (22)

It is important to note that cooperation is employed to enhance each
drone’s estimate of the fire source position relative to its own location. While
GPS provides accurate positioning, the cameras used for detecting the fire
source have limited precision. Thus, the drones benefit from cooperation, as
demonstrated in the results section.

The assumption of 2D motion is common, as it presumes that an altitude
controller is active, ensuring the drones maintain a constant, known altitude.

2.3. Velocity Tracking

The navigation algorithms assume that velocity is directly controlled with
a certain disturbance, as described in (11).

In this work, we assume that this condition holds for aerial vehicles.
However, due to the slower dynamics of AUVs, we will simulate velocity
tracking using a velocity controller, which is explained next. Despite this, the
navigation algorithm maintains the assumption that (11) is true.

2.3.1. AUV velocity tracking
At each time sample, a velocity reference is issued that must be tracked

by each AUV. We assume that each AUV moves in a horizontal plane and
is equipped with an attitude and heading reference system (AHRS) which
provides yaw measurements in real-time.
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The kinematic equations for the simplified 3 DOF model of the vehicle in
the horizontal plane are:

ẋ = u cos θ − v sin θ, (23)

ẏ = u sin θ + v cos θ, (24)

θ̇ = r. (25)

The dynamics equations are the following:

muu̇ − mvvr = τu − duu − du|u|u|u|, (26a)

mvv̇ + muur = −dvv − dv|v|v|v|, (26b)

mrṙ − (mu − mv)uv = τr − drr − dr|r|r|r|, (26c)

where mx denotes the diagonal element of the mass-inertia matrix relevant
to the degree of freedom x and dx and dx|x| its linear and quadratic drag
coefficients. In this paper, we will use the parameters for the dynamics
obtained for the Medusa AUV in [36].

For velocity control, since it is assumed that there are no speed sensors
on board, the forward thrust is assigned as feedforward control as follows

τu = du∥ui
k∥ − du|u|∥ui

k∥2. (27)

Since we assume that the yaw is measured we can set the yaw moment as
a feedback control of the following form

τr = kr

(
ang

(
ui

k

)
− θ

)
. (28)

The velocity reference ui
k is provided by the formation controller described

in the next section.
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2.4. Formation Control
Regarding the formation control, to drive the relative locations pi

k − pj
k to

their assigned value dij, the formation controller sets the reference velocities.
In [3] an adaptation to the conventional continuous time consensus technique
for single integrators is suggested to accomplish this. The reference velocities
are determined using

ui
k = −Kp

N∑
j=1

(p̂i
k − p̂j

k − dij), (29)

where p̂i
k is the position estimate of vehicle i.

Position estimates are obtained using the cooperative navigation algorithm.
Because our cooperative navigation algorithm uses the control inputs applied
to the remaining vehicles, it is necessary to obtain those values as to avoid the
traditional assumption of uncertain control actions. Therefore, each vehicle
maintains a set-based observer to emulate the individual observers that are
running in each vehicle. As a consequence, since the center of the sets are
typically used as estimates of the true position, the values used for all nodes
can be retrieved by performing the same calculation. Thus, the cooperative
navigation is distributed but all the nodes perform the same updates at some
point in time once all the estimates and measurements have been sent.

2.5. Cooperative Navigation
In this section, we describe the set-based cooperative navigation algorithm

in the context of underwater formation control and drone fire detection.

2.5.1. Cooperative Navigation and Control Architecture
The configuration considered for the cooperative navigation and control

algorithm involves steering a vehicle using control inputs ui
k produced by a

cooperative controller that performs a formation control task and receives
state estimates Xk of every vehicle in the formation. The latter is calculated
by a cooperative observer who gets local measurements and information from
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the other vehicles. We assume a TDMA communication scheme where each
vehicle broadcasts information in its allocated time slot. In particular, we
consider that at time t = k∆t vehicle i = mod(k − 1, N) + 1 broadcasts
data to the other vehicles. The local measurement consists of the range
and bearing measurements of the vehicle that sent the information during
that time interval. We assume that there are no packet losses and that the
messages are transmitted to every vehicle on the network. Because of this, if
we compute another estimate

x̂k :=


p̂1

k
...

p̂N
k

 (30)

which only changes based on the data that is sent and received, we design
an observer that is synchronized with all the other vehicles, meaning that
the state estimates x̂k, and therefore p̂i

k for all i ∈ {1, . . . , N}, is the same on
all the vehicles. This synchronized observer is necessary for the cooperative
navigation algorithm because it requires the knowledge of the control inputs
ui

k used on the other vehicles as their state estimations are known.

2.5.2. Cooperative Underwater Navigation
The states of every vehicle in the formation Xk are estimated at each

vehicle using the cooperative navigation algorithm. The approach taken
into consideration in this study entails updating just the estimations of the
vehicle’s own state, xi

k given the predicted states of all the vehicles after
receiving the local measurements. Then, the vehicles transmit a reduced
version of the updated state to the other vehicles. This approach is illustrated
in Algorithm 1, where the method to obtain the CCG Y (yi,j

k ) is given in
Section 2.1.3, Ci := ei⊺ ⊗ I2 and Ci,j := (ei − ej)⊺ ⊗ I2.

On Algorithm 1 the operator order(X) gives the order of the CCG X,
that is supposing that X := (GX , cX , AX , bX ,CX), order(X) = ⌈ng

n
⌉ where
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Input: Previous state estimate Xk−1; control inputs of all vehicles
uk−1

Output: State estimate Xk, control input uk

Predict:
Xk = AXk−1 + Buk−1
x̂k = Ax̂k−1 + Buk−1
if Broadcast information (i = mod(k − 1, N) + 1) then

Broadcast Xsend
k = ord_red(CiXk, ntransmit)

p̂i
k = centre

(
Xsend

k

)
end
else if Receive information from j (j = mod(k − 1, N) + 1) then

Update:
Xk = Xk ∩Cj Xreceive

k ∩Ci,j Y (yi,j
k )

p̂j
k = centre (Xreceive

k )
end
if i = 1 then

Update with GPS position:
Xk = Xk ∩C1 (puI2, yp

k, 0, 0, {B2})
end
if order(Xk) ≥ 2nmax then

Xk = ord_red(Xk, nmax)
end
for j = {1, . . . , N} do

uj
k = −Kp

∑N
l=1(p̂

j
k − p̂l

k − djl)
end
return Xk

Algorithm 1: Cooperative navigation algorithm

ng is the number of columns in GX and n is the number of rows. The
operator Y (·) corresponds to the measurement set and is defined by (10). The
operator ord_red(X, nmax) represents an order reduction operator described
in [37], that is, it outputs a CCG with an order lower or equal to 2nmax

that overbounds the original set. It amounts to find an enclosing polygon
with 2nmax − 2 sides. Finally, the operator centre (X) gives the centre of the
CCG X. In order to account for limited communication bandwidth, at each
time a reduced order set is transmitted which corresponds to send matrices
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G ∈ R2×2ntransmit , c ∈ R2, A ∈ R2(ntransmit−1)×2, and b ∈ R2(ntransmit−1). This
results in communicating 6ntransmit − 4 numbers.

Remark 1. We assume that each AUV can estimate the positions of all
vehicles using both their own measurements and data communicated from
others. This distributed estimation approach ensures that the fleet’s overall
state can be reconstructed over time through shared information, thereby
achieving global observability. Thus, while local measurements alone are
insufficient for complete state estimation, the collective measurements from all
vehicles, facilitated by inter-vehicle communication, enable accurate estimation
of the positions of all AUVs in the fleet.

Remark 2. There are many estimation-based target tracking algorithms that
can be used for observing the state of a fleet of vehicles. For example, [38]
discusses distributed estimation scenarios in which computation and data
processing are spread across the sensor network, with estimation localized
under global observability assumptions. Another relevant work [39] addresses
delay-tolerant strategies to manage possible time delays in communication
networks. These scenarios involve distributed observability of a target ve-
hicle via a network of communicating sensors on vehicles, distributing both
communication and computation over a multi-agent sensor network.

Unlike traditional consensus-based estimators, our method assumes that
disturbances and measurement noise are within known sets, providing an
estimate of the possible locations of the state. This approach improves upon
existing methods by effectively handling bounded uncertainties, reducing com-
munication and computation load on agents, and relaxing the observability
assumptions.

Remark 3. The most computationally intensive operation of Algorithm 1 is
the order reduction algorithm. This operation has a polynomial complexity.

2.5.3. Drone Fire Detection Algorithm
The same principle of the distributed observer proposed here can also be

applied to the problem of fire detection. For fire detection, the cooperative
navigation algorithm is given by Algorithm 2.
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Input: Previous state estimate Xk−1; control inputs of all vehicles
uk−1

Output: State estimate Xk, control input uk

Predict:
Xk = AXk−1 + Buk−1
x̂k = Ax̂k−1 + Buk−1
if Broadcast information (i = mod(k − 1, N) + 1) then

Broadcast Xsend
k = ord_red(CiXk, ntransmit)

p̂i
k = centre

(
Xsend

k

)
end
else if Receive information from j (j = mod(k − 1, N) + 1) then

Update:
Xk = Xk ∩Cj Xreceive

k ∩Ci,j

(
puI2, yi,j

k , 0, 0, {B2}
)

∩C1 Y (yi
k)

p̂j
k = centre (Xreceive

k )
end
if order(Xk) ≥ 2nmax then

Xk = ord_red(Xk, nmax)
end
for j = {1, . . . , N} do

uj
k = −Kp

∑N
l=1(p̂

j
k − p̂l

k − djl)
end
return Xk

Algorithm 2: Cooperative fire detection algorithm

2.6. Overall System

The integration of all algorithms within the system is illustrated in Figure
5.

In the system, each vehicle i receives a control input ui
k from the formation

control law, which serves as a velocity reference for the velocity tracker. The
vehicle then provides sensor measurements, which can be either the relative
position yi,j

k or, in certain cases (such as surface vehicles in underwater
scenarios or all vehicles in the drone fire detection case), the absolute position
yi

k or yp
k.

The Cooperative Navigation algorithm operates by receiving a set Xreceive
k
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Figure 4: Overall system diagram.

from a vehicle in the network at each time step. When it is a vehicle’s turn, it
transmits a set Xsend

k to all other vehicles in the network. The primary output
of the Cooperative Navigation algorithm is a set Xk that encompasses all
possible positions of the vehicles in the fleet, along with a vector x̂k containing
position estimates of all vehicles, which are then utilized by the formation
controller.

3. Results

3.1. AUV Formation Control

We performed numerical simulations of a fleet of four vehicles to demon-
strate the viability of this approach. Vehicle 1 is equipped with a GPS and one
vehicle transmits data every ∆t = 0.5s, so the model has a discretization step
of 0.5s. In order to achieve the appropriate relative locations d1j := p1 − pj,
the follower vehicles must travel in a triangle shape with the leader vehicle as
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its centre, where the values d1j are given by

d12 =
5
0

 d13 =
−5
−5

 d14 =
−5

5

 . (31)

The desired order of the CCG is nmax = 100, the order of the transmitted
set is ntransmit = 4, the formation control gain is Kp = 0.1, the range and
bearing measurement parameters are ru = rl = 0.01 and bu = bl = 10◦, the
magnitude of the disturbance is given by ∥wk∥∞ ≤ 0.1 and the magnitude of
the GPS noise is given by ∥νp

k∥∞ ≤ 0.1. The results of the observer are given
in Figure 5, where the red sets correspond to the own position estimates of
the vehicles with the proposed method, while the blue sets are calculated
using constrained zonotopes (CZs), as shown in Figure 2. The black lines
correspond to the vehicle’s trajectories. It can be seen that the method using
CCGs is less conservative.

10 15 20 25
-5

0

5

10

15
CZ
CCG

Figure 5: Results of the observer at iteration k = 40.
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The evolution of the area of the state sets for vehicles 2 to 4 is illustrated
in Figures 6 through 8. For vehicle 1, the state estimate remains consistently
small due to its GPS capability and does not benefit significantly from the
cooperative navigation algorithm.

0 5 10 15 20
0

5

10

15

20
CCG
CZ

Figure 6: Evolution of the area of the state estimate set on agent 2.

From Figures 6 to 8 one can observe that there is an advantage to a CCG
representation in the cooperative navigation algorithm. Note that before 2.5
seconds, the vehicles had not yet received information from the surface vehicle
and therefore their state estimate set is very large.

3.2. Drone Formation Control

Similarly, we performed numerical simulations of a group of three drones
to demonstrate the viability of the drone formation control approach. The
drones must stay in a triangle shape with the fire source at its centre, where
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Figure 7: Evolution of the area of the state estimate set on agent 3.
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Figure 8: Evolution of the area of the state estimate set on agent 4.
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the values d1j are given by

d12 =
10

5

 d13 =
10
−5

 . (32)

As in the previous example the model has a discretization step of 0.5s. The
desired order of the CCG is nmax = 20, the order of the transmitted set is
ntransmit = 4, the formation control gain is Kp = 0.1, the range and bearing
measurement parameters are ru = rl = 0.01 and bu = bl = 30◦, and the
magnitude of the disturbance is given by ∥wk∥∞ ≤ 0.1. The results of the
observer are given in Figure 9, where it is observed that the method using
CCGs is less conservative. We can also observe the great benefit of the
cooperative navigation algorithm compared to a non-cooperative algorithm
where the vehicles do not communicate given by the sets in green. Note that
the cooperative navigation algorithm estimates the relative position of the
vehicles relative to the fire source, and therefore despite the high accuracy of
the GPS the large area of the set is due to the low precision of the camera
sensors.

The evolution of the area of the state sets for vehicles 1 to 3 is given in
Figures 10 to 12.

From Figures 10 to 11 one can observe that there is a clear advantage to
a CCG representation in the cooperative navigation algorithm.

4. Conclusions

In this paper, we provide a method for set-based cooperative vehicle fleet
navigation with low communication bandwidth. With the recommended
method, only the distances and bearings to other vehicles are measured.
Based on measurements and information transmitted among the vehicles,
each one of the vehicles must estimate its own position and the positions of
the other vehicles. The vehicles broadcast a reduced set to the other vehicles
that contain the state estimation in an effort to minimize the amount of
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Figure 9: Results of the observer for fire detection at iteration k = 10.

0 1 2 3 4 5
0

5

10

15

20

25

30

35 CCG
CZ
non-cooperative

Figure 10: Evolution of the area of the state estimate set on agent 1.
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Figure 11: Evolution of the area of the state estimate set on agent 2.
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Figure 12: Evolution of the area of the state estimate set on agent 3.
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information sent. The obtained estimates are worst-case bounds for the true
position, which is important in certain applications such as collision avoidance.
Taking into consideration the positions of all the agents, the calculated sets
are subsequently used in vehicle control algorithms. We demonstrate the use
of this strategy for the problems of fire detection with numerous UAVs and
cooperative underwater vehicle navigation using numerical simulations.

Funding

This work was partially supported by the Portuguese Fundação para a
Ciência e a Tecnologia (FCT) through Institute for Systems and Robotics
(ISR), under Laboratory for Robotics and Engineering Systems (LARSyS)
project UIDB/50009/2020, through project PCIF/MPG/0156/2019 FirePuma
and through COPELABS, University Lusófona project UIDB/04111/2020.

References

[1] J. González-García, A. Gómez-Espinosa, E. Cuan-Urquizo, L. G. García-
Valdovinos, T. Salgado-Jiménez, J. A. Escobedo Cabello, Autonomous
underwater vehicles: Localization, navigation, and communication for
collaborative missions, Applied sciences 10 (2020) 1256.

[2] B. Benson, Y. Li, R. Kastner, B. Faunce, K. Domond, D. Kimball,
C. Schurgers, Design of a low-cost, underwater acoustic modem for
short-range sensor networks, IEEE, 2010.

[3] W. Ren, R. W. Beard, Distributed consensus in multi-vehicle cooperative
control, volume 27, Springer, 2008.

[4] G. Battistelli, L. Chisci, Stability of consensus extended kalman filter
for distributed state estimation, Automatica 68 (2016) 169–178.

27



[5] R. Olfati-Saber, Distributed kalman filtering for sensor networks, in:
2007 46th IEEE Conference on Decision and Control, IEEE, 2007, pp.
5492–5498.

[6] A. Mitra, S. Sundaram, Distributed observers for lti systems, IEEE
Transactions on Automatic Control 63 (2018) 3689–3704.

[7] F. F. Rego, Distributed observers for ltv systems: A distributed con-
structibility gramian based approach, Automatica 155 (2023) 111117.

[8] H. Basu, S. Y. Yoon, Distributed state estimation by a network of
observers under communication and measurement delays, Systems &
Control Letters 133 (2019) 104554. doi:https://doi.org/10.1016/j.
sysconle.2019.104554.

[9] D. Silvestre, J. P. Hespanha, C. Silvestre, Broadcast and gossip stochastic
average consensus algorithms in directed topologies, IEEE Transactions
on Control of Network Systems 6 (2019) 474–486. doi:10.1109/TCNS.
2018.2839341.

[10] F. F. Rego, A. M. Pascoal, A. P. Aguiar, C. N. Jones, Distributed state
estimation for discrete-time linear time invariant systems: A survey,
Annual Reviews in Control 48 (2019) 36–56.

[11] M. Pourasghar, V. Puig, C. Ocampo-Martinez, Interval observer versus
set-membership approaches for fault detection in uncertain systems using
zonotopes, International Journal of Robust and Nonlinear Control 29
(2019) 2819–2843.

[12] M. Althoff, J. J. Rath, Comparison of guaranteed state estimators for
linear time-invariant systems, Automatica 130 (2021) 109662.

[13] L. Bako, S. Ndiaye, E. Blanco, An interval-valued recursive estimation
framework for linearly parameterized systems, Systems & Control Letters

28

http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2019.104554
http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2019.104554
http://dx.doi.org/10.1109/TCNS.2018.2839341
http://dx.doi.org/10.1109/TCNS.2018.2839341


168 (2022) 105345. doi:https://doi.org/10.1016/j.sysconle.2022.
105345.

[14] A. Kurzhanski, P. Varaiya, Ellipsoidal techniques for reachability analysis:
internal approximation, Systems & Control Letters 41 (2000) 201–211.
doi:10.1016/S0167-6911(00)00059-1.

[15] F. Chernousko, Ellipsoidal state estimation for dynamical systems,
Nonlinear Analysis: Theory, Methods & Applications 63 (2005) 872–879.
doi:10.1016/j.na.2005.01.009.

[16] T. Alamo, J. Bravo, E. Camacho, Guaranteed state estimation by zono-
topes, Automatica 41 (2005) 1035–1043. doi:10.1016/j.automatica.
2004.12.008.

[17] C. Combastel, Zonotopes and kalman observers: Gain optimality under
distinct uncertainty paradigms and robust convergence, Automatica 55
(2015) 265–273.

[18] S. Wang, W. Ren, On the Convergence Conditions of Distributed
Dynamic State Estimation Using Sensor Networks: A Unified Framework,
IEEE Transactions on Control Systems Technology 26 (2018) 1300–1316.
doi:10.1109/TCST.2017.2715849.

[19] D. Silvestre, P. Rosa, J. P. Hespanha, C. Silvestre, Stochastic and
deterministic fault detection for randomized gossip algorithms, Au-
tomatica 78 (2017) 46–60. URL: https://www.sciencedirect.com/
science/article/pii/S0005109816305192. doi:https://doi.org/10.
1016/j.automatica.2016.12.011.

[20] J. K. Scott, D. M. Raimondo, G. R. Marseglia, R. D. Braatz, Constrained
zonotopes: A new tool for set-based estimation and fault detection,
Automatica 69 (2016) 126–136.

29

http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2022.105345
http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2022.105345
http://dx.doi.org/10.1016/S0167-6911(00)00059-1
http://dx.doi.org/10.1016/j.na.2005.01.009
http://dx.doi.org/10.1016/j.automatica.2004.12.008
http://dx.doi.org/10.1016/j.automatica.2004.12.008
http://dx.doi.org/10.1109/TCST.2017.2715849
https://www.sciencedirect.com/science/article/pii/S0005109816305192
https://www.sciencedirect.com/science/article/pii/S0005109816305192
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2016.12.011
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2016.12.011


[21] D. Silvestre, Set-valued estimators for uncertain linear parameter-
varying systems, Systems & Control Letters 166 (2022)
105311. URL: https://www.sciencedirect.com/science/article/
pii/S0167691122001141. doi:https://doi.org/10.1016/j.sysconle.
2022.105311.

[22] D. Silvestre, Constrained Convex Generators: A Tool Suitable for Set-
Based Estimation With Range and Bearing Measurements, IEEE Control
Systems Letters 6 (2022) 1610–1615. doi:10.1109/LCSYS.2021.3129729.

[23] A. Alanwar, J. J. Rath, H. Said, K. H. Johansson, M. Althoff, Dis-
tributed set-based observers using diffusion strategy, arXiv preprint
arXiv:2003.10347 (2020).

[24] M. Kieffer, Distributed bounded-error state estimation, IFAC Proceed-
ings Volumes 42 (2009) 360–365.

[25] R. A. García, F. R. Rubio, L. Orihuela, P. Millán, M. G. Ortega, Obser-
vadores distribuidos garantistas para sistemas en red, Revista Iberoamer-
icana de Automática e Informática industrial 14 (2017) 256–267.

[26] L. Orihuela, S. Roshany-Yamchi, R. A. García, P. Millán, Distributed set-
membership observers for interconnected multi-rate systems, Automatica
85 (2017) 221–226.

[27] L. Orihuela, P. Millán, S. Roshany-Yamchi, R. A. García, Negotiated dis-
tributed estimation with guaranteed performance for bandwidth-limited
situations, Automatica 87 (2018) 94–102.

[28] C. Combastel, A. Zolghadri, Fdi in cyber physical systems: A distributed
zonotopic and gaussian kalman filter with bit-level reduction, IFAC-
PapersOnLine 51 (2018) 776–783.

[29] C. Combastel, An extended zonotopic and gaussian kalman filter (ezgkf)
merging set-membership and stochastic paradigms: Toward non-linear

30

https://www.sciencedirect.com/science/article/pii/S0167691122001141
https://www.sciencedirect.com/science/article/pii/S0167691122001141
http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2022.105311
http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2022.105311
http://dx.doi.org/10.1109/LCSYS.2021.3129729


filtering and fault detection, Annual Reviews in Control 42 (2016)
232–243.

[30] Y. Wang, T. Alamo, V. Puig, G. Cembrano, A distributed set-
membership approach based on zonotopes for interconnected systems,
in: 2018 ieee conference on decision and control (cdc), IEEE, 2018, pp.
668–673.

[31] D. Silvestre, P. Rosa, J. P. Hespanha, C. Silvestre, Distributed fault
detection using relative information in linear multi-agent networks, IFAC-
PapersOnLine 48 (2015) 446–451.

[32] D. Silvestre, P. Rosa, J. P. Hespanha, C. Silvestre, Finite-time average
consensus in a byzantine environment using set-valued observers, in:
2014 American Control Conference, IEEE, 2014, pp. 3023–3028.

[33] R. A. García, L. Orihuela, P. Millán, F. R. Rubio, M. G. Ortega, Guar-
anteed estimation and distributed control of vehicle formations, Interna-
tional Journal of Control 93 (2020) 2729–2742.

[34] X. Dong, B. Yu, Z. Shi, Y. Zhong, Time-varying formation control for
unmanned aerial vehicles: Theories and applications, IEEE Transactions
on Control Systems Technology 23 (2014) 340–348.

[35] H. Li, P. Xie, W. Yan, Receding horizon formation tracking control
of constrained underactuated autonomous underwater vehicles, IEEE
Transactions on Industrial Electronics 64 (2016) 5004–5013.

[36] J. G. S. B. Ferreira, Nonlinear System Identification of Autonomous
Marine Vehicles, Master’s thesis, Instituto Superior Técnico, 2015.

[37] D. Silvestre, Exact set-valued estimation using constrained con-
vex generators for uncertain linear systems, IFAC-PapersOnLine 56
(2023) 9461–9466. doi:https://doi.org/10.1016/j.ifacol.2023.10.
241, 22nd IFAC World Congress.

31

http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2023.10.241
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2023.10.241


[38] M. Doostmohammadian, A. Taghieh, H. Zarrabi, Distributed estimation
approach for tracking a mobile target via formation of uavs, IEEE
Transactions on Automation Science and Engineering 19 (2021) 3765–
3776.

[39] M. Doostmohammadian, U. A. Khan, M. Pirani, T. Charalambous,
Consensus-based distributed estimation in the presence of heterogeneous,
time-invariant delays, IEEE Control Systems Letters 6 (2021) 1598–1603.

32


	Introduction
	Notation

	Method
	Mathematical Background
	Constrained convex generators (CCGs)
	Guaranteed state estimation
	Range and Bearing measurements CCG

	Problem statement
	Cooperative Underwater Navigation Problem
	Drone Fire Detection Problem

	Velocity Tracking
	AUV velocity tracking

	Formation Control
	Cooperative Navigation
	Cooperative Navigation and Control Architecture
	Cooperative Underwater Navigation
	Drone Fire Detection Algorithm

	Overall System

	Results
	AUV Formation Control
	Drone Formation Control

	Conclusions

