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Constrained Convex Generators and

Constrained Zonotopes
Francisco Rego, and Daniel Silvestre

Abstract— A central challenge with any reachability tech-
nique is the growth over time of the data structures that
store the set-valued estimates. There are various tech-
niques established for Constrained Zonotopes (CZ), al-
though their computational complexity represents a limit-
ing factor on the size of the set descriptions when running
the methods in real-time. Thus, when running a guaranteed
state observer to estimate the state of a dynamical system
using CZs, the number of generators and constraints has
to be maintained small such that the order reduction pro-
cedures can be run within the sampling time. This paper
resorts to using ellipsoids for portions of the set descrip-
tion, which results in a computationally efficient method
for a particular class of constrained Convex Generators
(CCGs) that can also be used for ellipsotopes and CZs. Our
approach is shown to have comparable performance and in
some cases outperforms existing methods for Constrained
Zonotopes. We provide numerical examples to illustrate the
advantages of our proposed approach, particularly in the
context of guaranteed state estimation.

Index Terms— Order Reduction; Constrained Convex
Generators; Reachability analysis.

I. INTRODUCTION

The problem of efficiently approximating convex sets has a
wide range of applications, including state estimation, collision
avoidance for autonomous vehicles, safe optimal control with
Control Barrier Functions (CBFs), and certification of neural
network-based controllers [1]–[6]. One of the main challenges
with convex set representations is obtaining methods that are
both computationally efficient and do not excessively over-
approximate the set of admissible states, while also avoiding
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the wrapping effect caused by over-approximations. To address
this challenge, it is necessary to undertake order reduction
procedures that will find an over-approximation of the set-
valued estimate that can be represented by a smaller data
structure.

Several approaches can be found in the literature for an
approximate representation of convex sets. One possible ap-
proach for convex set representation is using ellipsoids, as in
[7], [8] and [9]. Another possibility is using zonotopes, as in
[10], [11], and [12], which are shown to have reduced wrap-
ping effect [13]. More recently, constrained zonotopes (CZs)
have been gaining attention [14]. Ellipsotopes [15] provide a
unified representation of these two set representations. An even
more general representation is constrained convex generators
(CCGs), proposed in [16], which we consider in this paper.

For any type of representation, in order to represent more
complex shapes larger data structures are required. However,
for practical applications with limited computational resources,
there is a limit on the amount of data one can use to represent a
set. Therefore, in practice, it is often necessary to reduce the
complexity of the sets by computing an overapproximation.
This process is named order reduction and in the literature,
one can find multiple examples associated with specific set
representations, such as zonotopes [11], [17], CZs [14], or
ellipsotopes [15].

The need for an efficient order reduction is paramount in
case the dynamical equation has uncertain parameters. Alterna-
tive formulations which mitigate the increase in set complexity
include pointwise operations (like in [18]) or defining over-
approximations for the product between an interval matrix
and the desired set representation as it was done to handle
nonlinear dynamics in [19] for CZs. However, the former
type will not be able to handle large state space and the
latter method is going to be very conservative. The most
accurate approach will resort to the computation of the convex
hull for propagation using the dynamics for each vertex of
the uncertain space. However, the convex hull operation in
guaranteed state estimation adds an exponential growth in the
generators and constraints for CZs and CCGs alike (see [20]
for CZs and [21] for CCGs). Even the recent introduction of
the optimal representation of convex hulls for CCGs in [22]
still reports the need for an efficient order reduction. Thus, the
current proposal is instrumental for an accurate and efficient
method for state estimation of uncertain Linear Parameter-
Varying (LPV) systems.
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In this work, we propose a computationally efficient method
for order reduction of CCGs using ellipsoids. In certain
cases, our approach outperforms existing methods, including
classical methods of constrained zonotope order reduction. We
provide numerical examples to illustrate the advantages of
our proposed approach and demonstrate its effectiveness in
the context of guaranteed state estimation. In particular, the
contributions of the paper are the following:

• Based on the methods proposed in [14] and [15], we
propose an order and constraint reduction method for
a class of CCGs, that is similar but more general than
ellipsotopes.

• We propose an event-triggered guaranteed state estima-
tion mechanism for real-time applications.

• We illustrate the performance of the proposed methods
with numerical results.

This paper is organized as follows. Section II introduces
the mathematical background required for the rest of the
paper. Section III describes the proposed methods of order
reduction, constraint reduction and event-triggered guaranteed
state estimation. Section IV contains the numerical results
comparing the performance of the proposed method with
classical order reduction methods of CZs. Finally, Section V
contains the main conclusions from this paper.

A. Notation
Let In be the identity matrix of size n, and let 0n stand

for the n-dimensional array of zeros and 1n denote the n-
dimensional array of ones. Whenever the index is omitted 0
denotes a matrix of zeros whose size can be inferred from
the context. The transpose of a vector v is written by v⊺, and
the Euclidean norm for a vector x is denoted by ∥x∥2 :=√
x⊺x. Additionally, ∥x∥∞ := maxi |x(i)|, where x(i) is the

ith element of x. The generalised intersection is represented
by ∩R, the Minkowski sum of two sets by ⊕, and the cartesian
product by ×. Given a matrix X , the operator null(X) gives
an orthonormal basis of the null-space of X , X† is the pseudo-
inverse of X and det(X) is the determinant of X . Given a
set of matrices Xi, i ∈ {1, . . . , n} diag(Xi) yields a block
diagonal matrix whose diagonal blocks are Xi.

II. MATHEMATICAL BACKGROUND

We first introduce the definition and the main operations of
CCGs. Definition 1 provide a formal description of CCGs.

Definition 1 (Constrained Convex Generators): Z ⊂ Rn is
defined by the tuple (G, c,A, b,C) with G ∈ Rnc×ng , c ∈ Rn,
A ∈ Rnc×ng , b ∈ Rnc , and C :=

{
C1, C2 . . . , Cnp

}
, where

Ci ∈ Rmi are convex sets and
∑np

i=1 mi = ng , such that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × . . .× Cnp}. (1)
CCGs are a very general form of representing sets since

ℓp norm balls, norm cones, among others can be represented
directly. This entails that no approximation is required to
represent ellipsoidal shapes, polytopes or even unbounded sets,
which would otherwise introduce conservatism in the case of
constrained zonotopes or polytopes. For instance, polytopes
can be represented as

X = (G, c,A, b, ∥ξ∥∞ ≤ 1) , (2)

and ellipsoids are defined as

X = (G, c, [ ], [ ], ∥ξ∥2 ≤ 1) . (3)

Other types of sets can also be described as CCGs such as
ellipsotopes, intervals, or zonotopes. For more information on
CCGs, the reader is referred to [21]. The usual operations such
as linear maps, Minkowski sum, and intersection are well-
defined for CCGs and can be computed as in Definition 2.

Definition 2 ([21]): Consider three Constrained Convex
Generators (CCGs) as in Definition 1:

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn,
• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn,
• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm,

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set
operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz),

Z ⊕W =([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
,

Z ∩R Y =[
Gz 0

]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 , {Cz,Cy}

 .

In this paper, we will only consider CCGs with generator
sets defined by norm bounds. That is, we consider sets given
by (1) where each generator set is

Ci := {ξ : ∥ξ∥pi ≤ 1} ⊂ Rmi ,∀i ∈ 1, · · · , np, (4)

where
np∑
i=1

mi = ng. (5)

Note that when performing operations with two sets, the
number of generators of the resulting set equals the sum of the
generators of the original sets. Over numerous iterations, such
as when computing the maximal invariant set, this leads to a
significant increase in the number of generators, underscoring
the necessity for an order reduction procedure.

III. ORDER REDUCTION METHOD OF CCGS WITH
ELLIPSOIDS

The order of a CCG can be defined as ng

n . It represents
the computational burden required to describe the set. As
mentioned earlier, in real applications, there will be limited
computational power and a specified sampling time that must
be respected. For instance, if we are computing whether the
set will intersect with some obstacle, the solution to the
optimization problem (irrespective of how it is formulated)
must be found before the current iteration is over. Therefore,
the maximum size of the data structures must be kept within
a range such that the problem of interest can be tackled in
the allotted time slot. As a result, it is sometimes essential to
compute an overestimation to lower the complexity of the sets.
This section describes this procedure for CCGs by proposing
a method to eliminate generators, a method to eliminate
constraints, and a guaranteed state estimation algorithm that
uses the proposed methods.
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A. Order Reduction
Before proceeding to the order reduction algorithm we need

the following results. First, an ellipsoid can overapproximate a
CCG with the following procedure, which amounts to enclose
the overall generator set C1 × . . .× Cnp within an ellipsoid.

Lemma 1: Consider Z =
(
G, c,A, b, {C1, · · · Cnp

}
)
, where

G and A have the following structure

A :=
[
A1 A2 . . . Anp

]
, (6a)

G :=
[
G1 G2 . . . Gnp

]
, (6b)

with Ai ∈ Rnc×mi and Gi ∈ Rn×mi , and the ellipsoid Z̄
given by

Z̄ := {Ḡξ + c : Āξ = b, ∥ξ∥2 ≤ 1}, (7)

with

Ā :=
[

a1√
d1
A1

a2√
d2
A2 . . .

anp√
dnp

Anp

]
, (8a)

Ḡ :=
[

a1√
d1
G1

a2√
d2
G2 . . .

anp√
dnp

Gnp

]
, (8b)

ai := max

1,

√
mi

m
1
pi
i

 . (8c)

If constants di, i ∈ {1, . . . , np} satisfy di > 0 and
∑np

i=1 di =
1, then, Z ⊂ Z̄ .

Proof: Note first that, as shown in [23], ai is the lowest
constant such that for all ξi ∈ Rmi ,

∥ξi∥2 ≤ ai∥ξi∥pi
. (9)

Choose any z ∈ Z , which is given by (1). Then, consider the
following generator transformation

ξ̃ :=



√
d1

a1
ξ1√

d2

a2
ξ2

...√
dnp

anp
ξnp

 . (10)

From the definition of the 2-norm and (9) we obtain

∥ξ̃∥22 =

np∑
i=1

di
a2i
∥ξi∥22 ≤

np∑
i=1

di∥ξi∥2pi
. (11)

Since the generator elements ξi ∈ Rmi satisfy ∥ξi∥pi
≤ 1 and

given that
∑np

i=1 di = 1 we have that
np∑
i=1

di∥ξi∥2pi
≤

np∑
i=1

di = 1, (12)

and therefore ∥ξ̃∥2 ≤ 1. If we consider ξ̃ as the new vector of
generators, we have to rewrite the matrices as:

Gξ =

np∑
i=1

Giξi =

np∑
i=1

Ḡi

√
di
ai

ξi = Ḡξ̃, (13a)

Aξ =

np∑
i=1

Aiξi =

np∑
i=1

Āi

√
di
ai

ξi = Āξ̃, (13b)

and we can conclude that z ∈ Z̄ , given by (7) as we wanted
to show.

To determine the weights di one can set di = 1
np

or, in
the unconstrained case if more precision is required, solve the
following convex optimization problem.

Lemma 2: Given the ellipsoidal overapproximation (7), for
an unconstrained CCG choosing the weights di for i ∈
{1, . . . , np} that minimize the volume of Z̄ amounts to solving
the following convex optimization problem.

min
di

− log

(
det

(
G†⊺ diag

(
di
a2i

Imi

)
G†

))
s.t.

np∑
i=1

di = 1.

(14)

Proof: Given x ∈ Rn the vector ξ with minimum 2-norm
such that

x = Ḡξ (15)

is given by
ξ = Ḡ†x. (16)

Note that since

Ḡ = Gdiag

(
ai√
di
Imi

)
, (17)

where in diag
(

ai√
di
Imi

)
, i ∈ {1, . . . , np}, we have that

Ḡ† = diag

(√
di
ai

Imi

)
G†. (18)

Therefore ∥ξ∥2 ≤ 1 is equivalent to

x⊺G†⊺ diag

(
di
a2i

Imi

)
G†x ≤ 1. (19)

The result ensues by noting that minimizing the volume of an
ellipsoid given by (19) is equivalent to maximizing

det

(
G†⊺ diag

(
di
a2i

Imi

)
G†

)
, (20)

that log(·) is a monotonically increasing function and that
− log(det(·)) is a convex function.

Based on Lemmas 11 and 12 in [15], a constrained ellipsoid
can always be expressed without constraints as in the following
Lemma, which corresponds to Lemma 13 in [15], making
explicit the expressions for matrices T and t.

Lemma 3: Given a constrained ellipsoid of the form

X = (G, c,A, b, ∥ξ∥2 ≤ 1) , (21)

it can be expressed with ng − nc generators as

X ≡ X̃ := (GT, c+Gt, [ ], [ ], ∥ξ∥2 ≤ 1) , (22)

where

t := A†b, (23a)

T :=
√

1− ∥t∥2 null(A), (23b)

A† is the pseudo-inverse of A and null(A) is an orthonormal
basis of the null-space of A.

Proof: To prove the lemma we must show that these sets
are equivalent

{ξ : Aξ = b, ∥ξ∥2 ≤ 1} ≡
{
T ξ̃ + t : ∥ξ̃∥2 ≤ 1

}
. (24)
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This can be shown as follows. In the first set, we can perform
the transformation ξ = ξ̄ + t, and noting that, from (23a),
At = b we obtain that

{ξ : Aξ = b, ∥ξ∥2 ≤ 1} (25)

is equivalent to{
ξ̄ + t : Aξ̄ = 0, ∥ξ̄ + t∥2 ≤ 1

}
. (26)

Given that Aξ̄ = 0, ξ̄ is in the nullspace of A, and therefore
without loss of generality we can make the transformation
ξ̄ = T ξ̃. Given that, from (23), A†⊺ null(A) = 0 and t⊺T = 0,
we have,

∥T ξ̃ + t∥2 =

√
∥T ξ̃∥22 + ∥t∥22. (27)

Then, from the fact that ∥T ξ̃∥2 =
√
1− ∥t∥22∥ξ̃∥2 we have

that (26) is equivalent to{
T ξ̃ + t : ∥ξ̃∥2 ≤ 1

}
, (28)

as we wanted to show.
Finally, an ellipsoid can always be expressed with a vector

of generators of size rank(G) with the following method
Lemma 4: An ellipsoid of the form

X = (G, c, [ ], [ ], ∥ξ∥2 ≤ 1) , (29)

can always be expressed with rank(G) generators by taking
the singular value decomposition of G

USV ⊺ = G (30)

and computing

X ≡ X̃ := (US, c, [ ], [ ], ∥ξ∥2 ≤ 1) . (31)
Proof: Performing the generator transformation ξ̃ =

V ⊺ξ, since V is orthonormal we have that

∥ξ̃∥2 ≤ ∥ξ∥2 ≤ 1, (32)

thus concluding the proof.
A similar exact order reduction method for ellipsoids was
presented in [15]. However, since the order reduction method
of Lemma 4 consists of performing a singular value decom-
position on G ∈ Rn×ng its complexity is O(nn2

g), whereas
the complexity of the method in [15] is O(n3 + n3

g).
Since we are interested in reducing the number of generators

without changing the effect of some or most of the generators,
we adopt a method based on the lift-then-reduce strategy for
CZs [14] to partially reduce the order of a CCG.

Lemma 5: Consider a CCG of the form (1) partition G and
A as

A :=
[
Ā1 Ā2

]
, (33a)

G :=
[
Ḡ1 Ḡ2

]
, (33b)

where

Ā1 :=
[
A1 . . . An̄p

]
, (34a)

Ā2 :=
[
An̄p+1 . . . Anp

]
, (34b)

Ḡ1 :=
[
G1 . . . Gn̄p

]
, (34c)

Ḡ2 :=
[
Gn̄p+1 . . . Gnp

]
, (34d)

for some integer n̄p such that 1 ≤ n̄p ≤ np Given matrices
G̃2 ∈ Rn×(n+nc) and Ã2 ∈ Rnc×(n+nc) that yield the
following ellipsoidal overbound([

Ḡ2

Ā2

]
,0, [ ], [ ], Cn̄p+1 × . . .× Cnp

)
⊂

⊂
([

G̃2

Ã2

]
,0, [ ], [ ], ∥ξ∥2 ≤ 1

)
, (35)

the CCG (1) can be overapproximated by([
Ḡ1 G̃2

]
, c,

[
Ā1 Ã2

]
, b, C1 × . . .× Cn̄p × C̃

)
, (36)

where
C̃ := {ξ : ∥ξ∥2 ≤ 1} ⊂ Rn+nc . (37)

Proof: Choose any z ∈ Z . First note that for (1) stating
that z ∈ Z is the same as stating that[

z
0

]
∈ Z̄ :=

([
G
A

]
,

[
c
−b

]
, [ ], [ ], C1 × . . .× Cnp

)
. (38)

Notice that Z̄ can be expressed as Z̄ = Z1 ⊕Z2 where

Z1 :=

([
Ḡ1

Ā1

]
,

[
c
−b

]
, [ ], [ ], C1 × . . .× Cn̄p

)
, (39a)

Z2 :=

([
Ḡ2

Ā2

]
,0, [ ], [ ], Cn̄p+1 × . . .× Cnp

)
. (39b)

From (35) we have that Z2 ⊂ Z̄2 where

Z̄2 :=

([
G̃2

Ã2

]
,0, [ ], [ ], ∥ξ∥2 ≤ 1

)
. (40)

Using the expression for the Minkowski sum in Definition 2
we have that

[
z⊺ 0⊺

]⊺
is in the set([

Ḡ1 G̃2

Ā1 Ã2

]
,

[
c
−b

]
, [ ], [ ], C1 × . . .× Cn̄p

× C̃
)
, (41)

and we can conclude that z is in the set given by (36) as we
wanted to show.

Since we aim to eliminate only some of the generators we
require a heuristic to select which generators to eliminate.
Given Lemmas 1 and 3, one possible heuristic to estimate
the size of the contribution of each generator to the final set
is the following

Definition 3: Partition the matrix T from (23) as

T :=


T1

T2

...
Tnp

 , (42)

where Ti ∈ Rmi×(ng−nc),∀i ∈ {1, · · · , np}. Then, the weight
of each generator is defined as

wi := ai∥GiTi∥2,∀i ∈ {1, · · · , np}, (43)

where ai is defined in (8c).
The transformation Ti maps the new generators, constrained
only by the two-norm, back to the original generator space,
while Gi transforms from the space of the original generators
to the space of the set. Consequently, wi is an upper bound
on the radius of a spheroid enclosing the generator set Ci,
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which serves as an approximation of the volume contribution
attributed to individual generator sets. This approximation can
be applied to any type of p-norm.

Given these methods, the order reduction algorithm to
achieve a desired order r is given by Algorithm 1. We
note that in practice, as will be seen in Section IV, it is
often preferable to set di = 1

np
than to solve (14) due to

the increase in computational time that it involves. In this
situation, the computational complexity of the algorithm is
O(ncn

2
g + n(ng − rn)2).

Algorithm 1 Order reduction algorithm Z̃ = ord red(Z, r).
Require: Z , r

1: Reorder the generators such that wi+1 ≤ wi.
2: Set n̄p as the lowest number with rn ≤

∑n̄p

i=1 mi.
3: Partition A and G as in (33a) and (33b)
4: Compute the overapproximation (35) using Lemma 1

either by setting di =
1
np

or by solving (14), and Lemma
4.

5: Compute (36)

Remark 1: The adoption of the 2-norm is motivated by its
compatibility with Lemma 3 and Definition 3, enabling the
derivation of a heuristic for estimating the size of the reduced
generator set. It is worth noting that our approach is flexible,
as demonstrated by the potential adaptation of Lemma 1 to
accommodate a variety of p-norms, thereby extending the
applicability of the method to different norm settings.

B. Constraint Reduction
As in [14] to remove the constraint i and the generator j

from the CCG we consider the following overapproximation,
which adapts Proposition 5 in [14] to CCGs:

Lemma 6: A CCG of the form (1) satisfies

(G, c,A, b,C) ⊂
⊂ (G− ΛGA, c+ ΛGb, A− ΛAA, b− ΛAb,C) (44)

for every ΛG ∈ Rn×nc and ΛA ∈ Rnc×nc .
Proof: z ∈ (G, c,A, b,C) if there exists ξ ∈ C such that[

z
0

]
=

[
G
A

]
ξ +

[
c
−b

]
. (45)

For any such ξ[
z
0

]
=

[
G
A

]
ξ +

[
c
−b

]
+

[
ΛG

ΛA

]
(b−Aξ). (46)

Therefore, z ∈ (G − ΛGA, c + ΛGb, A − ΛAA, b − ΛAb,C).

In this paper, instead of considering the Hausdorff distance to
select which generator to remove as in [14], for each constraint
i we consider removing the generator j = argmaxk |aik|.
To remove one constraint we select the one which yields the
smaller 2-norm of the overapproximation when removed. To
remove the constraint i and the generator j we select, from
[14],

ΛG := GEjia
−1
ij , (47)

ΛA := AEjia
−1
ij , (48)

where aij is the element of A in the ith row and jth column
and Eji ∈ Rng×nc is zero except for a one in the (j, i)
position. Note that the ith row and jth column of A− ΛAA,
the jth row of G− ΛGA and the ith element of b− ΛAb are
zero. Therefore, constraint i and generator element j may be
removed from the set by removing these rows and columns
and considering a generator set C̃ which is the projection of
C in the hyperplane given by fixing the dimension j. That is,
suppose that the generator j corresponds to the generator set
l, that is,

l−1∑
i=1

mi < j ≤
l∑

i=1

mi, (49)

then, if ml = 1, computing C̃ amounts to remove Cl from C,
that is

C̃ := C1 × . . .× Cl−1 × Cl+1 × . . .× Cnp . (50)

If ml > 1 then we must replace Cl by C̃l where

C̃l := {ξ : ∥ξ∥pl
≤ 1} ⊂ Rml−1 (51)

that is,

C̃ := C1 × . . .× C̃l × . . .× Cnp
. (52)

In summary, the constraint reduction algorithm is given by
Algorithm 2, which has a complexity of O((nc − ñc)n

2
cn

2
g).

Algorithm 2 Constraint reduction algorithm Z̃ =
con red(Z, n̄c).
Require: Z , n̄c

1: for k ← 1 to nc − n̄c do
2: Set Zprev = Z ≡ (G, c,A, b,C)
3: Set weight =∞
4: for i← 1 to nc − k + 1 do
5: Set j = argmaxl |ail|
6: Compute Zprev ⊂

(
G̃, c̃, Ã, b̃, C̃

)
as follows:

7: Compute ΛG := GEjia
−1
ij .

8: Compute ΛA := AEjia
−1
ij .

9: G̃ is G− ΛGA removing column j.
10: c̃ = c− ΛGb
11: Ã is A− ΛAA removing column j and row i.
12: b̃ is b− ΛAb removing row i.
13: C̃ is (50) or (52).
14: Using Lemmas 1 and 3 compute:
15:

(
G̃, c̃, Ã, b̃, C̃

)
⊂

(
Ḡ, c̄, [ ], [ ], ∥ξ∥2 ≤ 1

)
16: Compute new weight = ∥Ḡ∥2
17: if new weight < weight then
18: Set Z =

(
G̃, c̃, Ã, b̃, C̃

)
19: Set weight = new weight
20: end if
21: end for
22: end for
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C. Guaranteed State Estimation
The problem of guaranteed state estimation in discrete-time

LTI systems can be formulated as the problem of finding a
set of possible state values given measurements, disturbance,
noise, and initial state bounds. The model is provided by:

xk+1 = Axk +Buk + wk, (53a)
yk = Cxk + vk, (53b)

where xk ∈ Rn, uk ∈ Rnu , wk ∈ W ⊂ Rn, yk ∈ Rny , and
vk ∈ V ⊂ Rny represent the system state, input, disturbance
signal, output, and noise, respectively. Given the operations
defined in Definition 2, one may estimate the state recursively,
since given a set Xk ⊂ Rn such that xk ∈ Xk and a
measurement yk, the set Xk+1 ⊂ Rn such that xk+1 ∈ Xk+1

can be computed as

Xk+1 = (AXk ⊕W +Buk) ∩C (yk − V). (54)

In this implementation, we assume that the sets W and V are
represented as CCGs. In particular, we consider that

W := (Gw, cw, [ ], [ ],Cw) , (55a)
V := (Gv, cv, [ ], [ ],Cv) , (55b)

with Gw ∈ Rn×nw and Gv ∈ Rny×nv .
In order to maintain the complexity of the set description

manageable and to keep the computational burden low we
adopt the following event-triggering order reduction mecha-
nism, where 0 < β < 1 must be small enough.

Algorithm 3 Set-valued CCG observer with event triggered
order reduction
Require: X0, V , W , Tc, β

1: Set X r
0 = X0

2: for k ≥ 0 do
3: Xk+1 = (AXk ⊕W +Buk) ∩C (yk − V)
4: X r

k+1 = (AX r
k ⊕W +Buk) ∩C (yk − V)

5: Try to compute under a time of Tc:
6: X or

k+1 = con red (Xk+1, βnc).
7: X or

k+1 = ord red
(
X or

k+1, β
ng

n

)
.

8: if Computation was successful then
9: X r

k+1 = X or
k+1

10: else
11: Xk+1 = X r

k+1

12: end if
13: end for

The approach in Algorithm 3 guarantees that the compu-
tation time at each step does not exceed Tc but may be
too conservative. A less conservative solution that does not
guarantee a fixed upper bound on the computation time but
ensures that the computation time is approximately Td is given
by Algorithm 4

IV. NUMERICAL RESULTS

In order to assess the performance of the proposed methods,
we start by considering the order reduction applied to random
constrained zonotopes in R10 on an Intel Core i7-12700H

Algorithm 4 Set-valued CCG observer with event triggered
order reduction
Require: X0, V , W , Td

1: Set X r
0 = X0

2: for k ≥ 0 do
3: start the clock.
4: Xk+1 = (AXk ⊕W +Buk) ∩C (yk − V)
5: X or

k+1 = con red (Xk+1, nc − 2ny).

6: X or
k+1 = ord red

(
X or

k+1,
ng−2(nw+nv)−(nc−2ny)

n

)
.

7: if Elapsed time is greater than Td then
8: Xk+1 = X or

k+1

9: end if
10: end for

processor at 2.70 GHz. We consider that each element of G is
drawn from a normal distribution centred at zero with a stan-
dard deviation of 1

ng
, where ng is the number of generators,

each element of A is drawn from a normal distribution centred
at zero with a standard deviation of one, and each element of
b is drawn from a uniform distribution from −0.5 to 0.5. The
order of a set representation is given by ng

n . We consider an
order reduction of the form

Z̃ = ord red(Z, ñg

n
). (56)

Finally, we overbound the result with a CZ by changing the
generator vector noting that

{ξ : ∥ξ∥2 ≤ 1} ⊂ {ξ : ∥ξ∥∞ ≤ 1} (57)

and compare the results obtained with the order reduction
method proposed in this paper with that of [14] for CZs and
that of [15]. We represent a CZ as a CCG with np = ng . We
note that, in practice, the required time to solve (14) is much
larger than the remaining of the algorithm and yields only
marginal improvements. Therefore, we will consider di = 1

np
.

To have a more systematic assessment of the performance of
the proposed method in Figures 1 and 2 we present the results
of the difference of the obtained volume overapproximation of
the enclosing hyperrectangles with both methods, V

Voriginal
where

V is the volume of the enclosing hyperrectangle of the reduced
set and Voriginal is the volume of the enclosing hyperrectangle
of the original set, and the computational time, respectively
for different randomly generated CZs with different number
of generators ng while setting the number of constraints to
nc = 0.4ng .

We can observe from Figure 1 that in this case, for low
order proportions, [14] and [15] fare worse than the method
of Algorithm 1 in terms of volume of the resulting set, while
for higher order proportions, the volume of the resulting set
with Algorithm 1 is higher, which may be partly due to the
near-ellipsoidal shape of the described set. This trend shows
that Algorithm 1 is competitive in situations that require sets
expressed with a small order. From Figure 2 we observe that
in terms of computational time, there is no clear advantage to
either method.

To assess the performance of the constraint reduction
method, we consider randomly generated CZs as before. We
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Fig. 1. Average of the obtained volume overapproximation V
Voriginal

with the proposed order reduction method (Alg. 1), the order reduction
method in [14] (CORA), and the order reduction method in [15] for
ellipsotopes (Ellipsotope), for different randomly generated CZs with
different numbers of generators ng . This would correspond to a uniform
expansion on each side of

(
V/Voriginal

) 1
10 times.
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Fig. 2. Average of the computational times with the proposed order
reduction method (Alg. 1), the order reduction method in [14] (CORA),
and the order reduction method in [15] for ellipsotopes (Ellipsotope), for
different randomly generated CZs with different numbers of generators
ng .

consider a constraint reduction of the form

Z̃ = con red(Z, ñc). (58)

Again, for a systematic assessment of the performance of the
proposed constraint reduction method in Figures 3 and 4 we
present the results of the difference of the obtained volume
overapproximation and the computational times, respectively
for different randomly generated CZs with different number
of generators ng , while setting the number of constraints to
nc = 0.4ng .

We can observe from Figures 3 and 4 that in this case there
is no clear advantage of either method regarding the volume
of the overapproximation. Still, there are significant savings
regarding computational time for Algorithm 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Fig. 3. Average of the obtained volume overapproximation V
Voriginal

with the proposed constraint reduction method (Alg. 2), the constraint
reduction method in [14] (CORA), and the constraint reduction method
in [15] for ellipsotopes (Ellipsotope), for different randomly generated
CZs with different numbers of generators ng .
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Fig. 4. Average of the computational times with the proposed constraint
reduction method (Alg.2) and the constraint reduction method in [14]
(CORA), and the constraint reduction method in [15] for ellipsotopes (El-
lipsotope), for different randomly generated CZs with different numbers
of generators ng .

Regarding guaranteed state estimation, we test Algorithm 3
on system (53) with no input and A ∈ R3×3 and C ∈ R3×3

are random orthonormal matrices. The initial state, the process
disturbance and the measurement noise satisfy ∥x0∥∞ ≤ 100,
∥wk∥∞ ≤ 1 and ∥vk∥∞ ≤ 1 for all k.

Figure 5 shows the mean over time of the volume of the
state estimate for the method for CCGs proposed here with
event-triggered order reduction (Algorithm 3), with Tc = 0.5
and β = 0.6 and the same algorithm using a CZ approximation
with the order reduction method in [14] for CZs, with β = 0.1.
Figure 6 shows the time to compute the description of the set
at runtime. We can observe that with the methods proposed
here, we obtain better overapproximations because the number
of generators used to describe the set is larger.
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Fig. 5. Volume mean
∑k

j=1
V olj

k
, where V olk is the volume at

time k, of the state estimate at various iterations for the two set-valued
observers (SVO).
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Fig. 6. Computation times for the two set-valued observers (SVO). The
dashed horizontal lines correspond to the mean value for each method.

V. CONCLUSIONS

We proposed an ellipsoid-based method for order reduction
of CCGs, which is shown to perform similarly to, and in some
cases better than existing approaches such as conventional CZ
order reduction methods. Through numerical examples, we
also demonstrated its benefits in the context of guaranteed state
estimation. Overall, our proposed ellipsoid-based technique for
CCG order reduction provides a promising approach for effi-
ciently and accurately approximating convex sets, which has
important implications for various applications in control and
robotics. Future developments may include the development
of order reduction methods for more general generator sets
than (4) and the application of these methods to nonlinear
reachability analysis.
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