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Abstract9

In this paper, we tackle the problem of state estimation for uncertain linear
systems when bounds are known for the disturbances, noise and initial state.
Practical systems often have parameters that cannot be measured precisely at
every iteration. The framework of Uncertain Linear Parameter-Varying sys-
tems (Uncertain LPVs) have attracted attention from the community and have
seen applications from the aerospace industry to mechatronic systems, among
many other examples. By formulating the problem as the solution of a fea-
sibility program, we show that the optimal convex solution can be computed
through an enumeration of the vertices of the estimates. Resorting to this re-
sult, three algorithms are proposed: an approximation algorithm using only
set operations; an exact convex hull method returning the optimal convex set
suitable for cases where estimates do not have a large number of vertices; and
an event-triggering algorithm suitable for fault/attack detection that combines
both the convex and nonconvex methods. Simulations are conducted using a
motor speed model where some of the parameters cannot be measured exactly
pointing out that the uncertainty matrices are responsible for the accuracy of
the approximation algorithm, and also that the point-based method is suitable
for online estimation.
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fault detection.11

1. Introduction12

In this paper, the problem of estimating the state of a dynamical system13

for a broad family of linear systems is tackled. The task has been addressed14

by two main approaches: i) stochastic — where some information regarding15

the probability distribution is assumed to be known, with examples such as the16

well-established Kalman Filter and its variants; ii) set-membership — where17

bounds are known for the values of the unknown signals with a large body of18



research considering different types of bounds and representation descriptions19

for the sets.20

Linear Parameter-Varying (LPV) models have been introduced by the work21

of Michael Athans (for example see [1]) to encompass a class of nonlinear dy-22

namics that can be treated as linear systems when designing controllers and23

observers. These models have a variety of applications in aerospace industry,24

mechatronic systems, automotive, robotic manipulators, vehicle motion, active25

magnetic bearings, among other academic examples as reported in the survey26

[2]. We remark that parameters in LPV are not known only at the design phase.27

However, when parameters cannot be measured during execution, the family is28

called Uncertain LPVs. These types of systems are radically different from stan-29

dard Linear Time-Varying (LTV), where the entries are known functions over30

time. The major advantage is that one can treat a subset of nonlinear dynamics31

whenever these nonlinear parameters can be measured (LPVs) or account for32

model inaccuracies and approximation residuals (Uncertain LPVs).33

The estimation task for LTVs is well established using interval arithmetic34

[3, 4], zonotopes [5], ellipsoids [6], constrained zonotopes (following a trivial35

extension from the work in [7]), polytopes [8] and even by combining different36

Convex Generators [9]. On the other hand, for nonlinear systems these strategies37

can be extended through the use of approximation functions to the nonlinear38

dynamics and using the same types of set description as for the LTVs as in39

[10], [11], [12], [13], [14], respectively. However, by explicitly considering an40

Uncertain LPVs it makes possible for tighter estimation sets than for general41

nonlinear dynamics, which represents a gap in the literature. The main challenge42

is that uncertainty parameters in the dynamics represent bilinear constraints43

that cannot be directly represented using any of the set representations.44

In the literature, the main approach to solving the estimation problem for45

Uncertain LPVs uses polytopes for each of the vertices of the uncertainty poly-46

tope, followed by a convex hull computation of all the produced sets [15] and47

can resort to a coprime factorization to decrease the impact of the initial uncer-48

tainty whenever using the approach in a model invalidation problem (such as49

the case of fault detection or model selection) [16] [17]. However, this approach50

has an exponential complexity in the worst-case by having to first generate all51

vertices for the polytopic uncertainty, compute all polytopes for each of the ver-52

tices (there can be an exponential number of them), followed by a convex hull of53

all the sets. In this paper, we first formalize the problem in order to assess some54

of its fundamental limitations and propose a technique based on constrained55

zonotopes (a similar one could be defined using the hyper-plane definition of56

polytopes given that they are equivalent formulations [7]) to perform the set-57

valued estimation. The optimal solution and its relationship to the proposed58

method are also discussed.59

Therefore, the main contributions of this paper can be summarized as:60

� The optimal solution to the set-valued estimation of Uncertain LPVs is61

formulated as a feasibility problem;62

� We show that performing the convex hull for all polytopes or constrained63



zonotopes obtained using all combinations of uncertainty vertices is the64

optimal convex solution to the problem;65

� A novel method based on constrained zonotopes is proposed to replace the66

bilinear constraints as an approximated solution, which is the optimal if67

one is restricted to set operations;68

� An efficient and exact convex hull method is proposed that has perfor-69

mance enabling it to be applied to online estimation of the state, i.e., such70

that its computation time is smaller than typical sampling times;71

� Lastly, we note that for fault detection/isolation or to detect attackers72

in the system, an event-triggering mechanism based on the elapsed time73

can be employed that resorts to the nonconvex solution for the detection74

between triggering times and resets the constraints at triggering times75

using the proposed convex hull method.76

The remainder of the paper is organized as follows. In Section 2, we formalize77

the problem as a feasibility program and point out a solution to find the convex78

hull of the generally nonconvex set. Three different algorithms are presented in79

Section 3 while pointing out their relationship with the optimal set. Simulations80

for a motor speed control model are presented in Section 4 and final conclusions81

and directions of future work as presented in Section 5.82

Notation: In this paper, we denote by v an anonymous variable in an83

optimization problem that corresponds to a possible value for the vector v. The84

Minkowski sum of two sets X and Y is defined as X ⊕ Y := {v+ u : v ∈ X,u ∈85

Y }. The convex hull function that outputs a hyper-plane representation of the86

smallest polytope enclosing all points in set A is given as convHull(A). Function87

vertex(X) returns a set of all vertices of the polytope X. The infinity norm of88

a vector is denoted by ∥v∥∞ and corresponds to maxi |vi| for the absolute value89

function |a| for the scalar a. We use rank(A) to denote the dimension of the90

column space of matrix A.91

2. Problem Formulation92

The problem of state estimation in Uncertain LPVs in the set-membership93

approach consists in finding a set of possible values given the dynamics and94

measurements obtained from the system. These models can be written as:95

x(k + 1) =
(
A(ρ(k)) +

n∆∑
ℓ=1

∆ℓ(k)Uℓ

)
x(k) +B(ρ(k))u(k) + L(ρ(k))d(k)

y(k) = C(ρ(k))x(k) +N(ρ(k))w(k)

(1)

where x(k) ∈ Rn, u(k) ∈ Rnu , d(k) ∈ Rnd , y(k) ∈ Rm and w(k) ∈ Rnw are96

the system state, input, disturbance signal, output and noise, respectively. The97

parameter ρ(k) is the part of the parameters that can be measured at time98



k, which do not pose any additional difficulties for the estimation using a set-99

membership approach. The main challenge appears from considering the n∆100

uncertainties denoted by ∆ℓ and the constant matrices Uℓ that account for how101

the uncertainties affect the nominal dynamics matrix given by A(ρ(k)). To102

lighten the notation, we will consider Ak := A(ρ(k)) and similarly for all the103

remaining matrices in (1). Moreover, in order to have a well-posed problem, we104

assume that all unknown signals are bounded within a compact convex polytope105

denoted by the correspondent capital letter, i.e., x(0) ∈ X(0), d(k) ∈ D(k) and106

w(k) ∈ W (k). Without loss of generality, the scalar uncertainty parameters ∆ℓ107

satisfy |∆ℓ| ≤ 1.108

The problem addressed in this paper is summarized as:109

Problem 1. Given compact polytopic sets X(0), D(k) and W (k) for all k ≥ 0110

and measurements y(k), how to compute a set X(k) such that it is guaranteed111

that x(k) ∈ X(k), ∀k ≥ 0.112

Notice that Problem 1 is called state estimation although a converse definition113

could be presented for the output of the system (this is of particular interest in114

sensitivity analysis [18] and system distinguishability [19]).115

The first step in formalizing the problem is through the description of pos-116

sible solutions. Verifying if a given point p ∈ Rn belongs to X(k) is equivalent117

to solving the following feasibility problem:118

find
x(0) · · ·x(k),

d(0) · · ·d(k − 1)

w(1) · · ·w(k)

∆1(0) · · ·∆1(k − 1)

...

∆n∆(0) · · ·∆n∆(k − 1)

s.t. x(0) ∈ X(0),

d(i) ∈ D(k) , 0 ≤ i ≤ k − 1,

w(i) ∈ W (k) , 1 ≤ i ≤ k,

|∆ℓ(i)| ≤ 1 , 0 ≤ i ≤ k − 1, 1 ≤ ℓ ≤ n∆,

x(k) = p,

x(i) satisfy (1), 0 ≤ i ≤ k

(2)

The feasibility problem in (2) is written with x variables accounting for the119

possible values of x for each of the time instants, and a similar notation for the120

remaining variables. The problem has a set of convex constraints and the last121

one is bilinear since it involves the product of ∆ℓ and x.122

In the next theorem, we show that, if the set of all points p that satisfy (2)123

is a convex set, the solution can be computed using a point-based method.124



Theorem 2. Let Θ(k) be the optimal set to the estimation problem defined as125

Θ(k) = {p : ∀p satisfies (2)} for any given time instant k. If Θ(k) is convex126

then:127

i) Θ(k) = convHull


⋃

vx ∈ vertex(X(k − 1))

v∆ℓ
∈ {−1, 1}

vd ∈ vertex(D(k − 1))

(
Ak−1 +

n∆∑
ℓ=1

v∆ℓ
Uℓ

)
vx +Bk−1u(k − 1) + Lk−1vd


⋂

Y (k),128

where Y (k) := {q : y(k) = Ckq +Nkw(k), w(k) ∈ W (k)}.129

Proof. We first notice that the solution to (2) can be given as:130

Θ(k) = Xp(k)⊕Bk−1u(k − 1)⊕ Lk−1D(k − 1)
⋂

Y (k) (3)

where Xp(k) corresponds to the set of all points propagated using all possible131

instances of the uncertain dynamics matrices, the ⊕ notation stands for the132

Minkowski sum of sets and Y (k) corresponds to the set of possible state vectors133

that would result in the obtained y(k). By assumption, all signals are assumed134

to take values in compact convex sets and, therefore, the sets Bk−1u(k − 1),135

Lk−1D(k − 1) and Y (k) are all convex since they are the result of applying136

a linear map to convex compact sets. If Θ(k) is convex, then Xp(k) must be137

convex since the Minkowski sum and intersection operations preserve convexity.138

If Xp(k) is convex, it forms a convex polytope of matrices and one can139

replace the bilinear constraint by the convex hull of the sets produced by a140

linear constraint for each vertex of the set X(k − 1) 1. Let us recall that:141

A⊕B = convHull

 ⋃
va∈vertex(A),vb∈vertex(B)

va + vb


for two polytopes A and B. Thus, using the format in (3) and the definition of142

Xp(k) after replacing the bilinear constraints by the union of linear constraints143

for all vertices of X(k − 1), the conclusion follows.144

Theorem 2 draws an important fact regarding the state estimation problem145

for Uncertain LPVs, namely that if the optimal set is convex it will be a polytope146

given the assumption that the initial state, disturbance and noise signals are147

contained within polytopes. The following corollary is also useful.148

Corollary 3. The optimal convex solution Θ(k) to the feasibility problem in (2)149

is a convex polytope.150

1Please see the implemented Yalmip example in https://yalmip.github.io/example/lpvstatefeedback/

https://yalmip.github.io/example/lpvstatefeedback/


Corollary 3 asserts that the Set-Valued Observers (SVOs) computation is opti-151

mal for Uncertain LPVs, which extends the result in [20] for LTV systems. This152

is one of the main contributions of this paper in showing that a point-based153

method using the vertices produces the optimal convex set enveloping the so-154

lution of (2). The SVO algorithm works by computing a polytopic set for each155

vertex of the uncertainty polytope and doing the convex hull of the union of all156

such sets. However, the algorithm proposed in [8] requires twice the number of157

constraints than is necessary, leading to a worse efficiency. A point-based algo-158

rithm corresponding to the result in Theorem 2 to compute the optimal convex159

solution set is presented in pseudo-code in Algorithm 1.160

Algorithm 1 State estimation for Uncertain LPVs using the vertices of the
polytopes.

Require: Set X(0) and, for all k ≥ 0, sets D(k), W (k) and measurement
polytope Y (k).

Ensure: Computation at each time instant k of X(k) as the convex hull of the
list of points stored in the variable plist.

1: for each k do
2: plist = ∅
3: /* Find the vertices of the necessary sets */
4: Vx = vertex(X(k − 1))
5: Vd = vertex(D(k − 1))
6: /* For each combination of vertices find the propagated point */
7: for each vx ∈ Vx do
8: for each vd ∈ Vd do
9: for each v∆ ∈ {−1, 1}n∆ do

10: plist = plist ∪
(
Ak +

∑n∆

ℓ=1 v∆ℓ
Uℓ

)
vx +Bku(k) + Lkvd

11: end for
12: end for
13: end for
14: /* Create propagated polytope */
15: Xp(k) = convHull (plist)
16: /* Update the propagated polytope */
17: X(k) = Xp(k) ∩ Y (k)
18: end for

The main disadvantage of Algorithm 1 is that it requires enumerating all161

vertices of the polytopes (be it saved in the hyper-plane representation as in [8]162

or its constrained zonotope format [7]), which in the worst-case can represent163

an exponential growth followed by a combinatorial computation done in line 10164

within the for cycles. However, there are very efficient algorithms to compute165

the convex hull in line 15, which makes the algorithm particularly suitable to166

cases where the sets D(k) are known a priori and preferably constant over time.167

In such cases, the vertices can be computed offline and stored for future uses.168

In order to illustrate to the reader the results presented in this section, we169
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Figure 1: The produced polytopes for the example in (4) with k = 1 using the approximation
algorithm in Section 3 both for the propagated set (up) and the updated set (bottom) are
given on the left. The same sets are given using the feasibility approach in (2) (middle) and
with Algorithm 1 (right).

have considered a simple model given by:170

x(k + 1) =
([

0.2 0.5
0.1 0.3

]
+∆1(k)

[
1 0
0 0

])
x(k) +

[
0.1
0.2

]
u(k) +

[
0.2 0
0 0.2

]
d(k)

y(k) =
[
1 0

]
x(k) + w(k)

(4)
with ∥x(0)∥∞ ≤ 1, and for all k ≥ 0 the disturbance and noise signals were171

considered to satisfy ∥d(k)∥∞ ≤ 1 and ∥w(k)∥∞ ≤ 1. Also, ∆1(k) ∈ [−1, 1]172

for all k ≥ 0. We implemented a solution based on the constrained zonotopes173

description to be found in Section 3 along with the optimal feasibility set in174

(2) and the algorithm described in Algorithm 1. The produced sets for X(1)175

are depicted in Figure 1 where the circles correspond to the grid points used to176

draw the boundary of the polytope and the asterisks on the convex hull approach177

corresponds to all points within plist of Algorithm 1. Given that the set X(0)178

possesses a symmetry to be discussed in Section 3.1, the sets computed by179

the approximation algorithm are the optimal sets produced both by the points180

approach or the feasibility method.181

In order to better illustrate the difference, we depict in Figure 2 the propa-182

gated and updated sets for the three algorithms at time k = 2 and similarly in183

Figure 3 for k = 3. Interestingly, for k = 2 the optimal solution of the noncon-184

vex approach is a convex set, and we obtain the same set using Algorithm 1.185

However, for k = 3, the optimal set is no longer convex but Algorithm 1 finds186

its convex hull. The approximation method (in the left), is more conservative187

but with a lower computational cost since it only applies set operations instead188

of requiring converting set representations to its vertices in each time step.189

Elaborating on the complexity, the feasibility problem in (2) has a number of190

variables equal to k(n+n∆+nd+nw), meaning that, at iteration 8, there exists191

36 variables and 37 constraints. Compiling the constraints in (2) took around 10192

ms in a Hewlett Packard (HP) personal computer running Windows 10, Matlab193
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Figure 2: The produced polytopes for the example in (4) with k = 2 using the approximation
algorithm in Section 3 both for the propagated set (up) and the updated set (bottom) are
given on the left. The same sets are given using the feasibility approach in (2) (middle) and
with Algorithm 1 (right).

R2018a with a processor Intel i7-8550U at 1.8GHz and with 12GB of RAM.194

However, checking if a point belongs to the set took on average 0.54 seconds195

at the k = 1 and at k = 10 was already taking 4.39 seconds using the solver196

BMIBNB available in Yalmip version 30-Sep-2016. Therefore, the non-convex197

approach is not viable unless the observer is applied in an off-line estimator.198

Later in this paper, we also propose the use of the non-convex approach for fault199

detection with a window mechanism to serve as a trade-off between accuracy200

and performance.201

3. Set-valued Estimator based on Constrained Zonotopes202

The previous section hinted at an important fact that either the state es-203

timation task is optimal through a nonconvex approach with a fast growing204

complexity or the optimal convex set requires propagating individual points205

for all combination of vertices of all polytopes containing the unknown signals.206

This method is optimal in computing the convex hull for the non-convex set207

membership problem at the expenses of an increase in computational complex-208

ity whenever the sets have a large number of vertices or when the number of209

uncertainty parameters is high. In both cases, the method has a combinatorial210

nature of propagating points using different values corresponding to all vertices.211

In the realm of LTV systems, the next set-valued estimate is equivalent to212

performing the propagate phase:213

Xprop(k + 1) = AkX(k)⊕Bku(k)⊕ LkD(k) (5)

where a matrix multiplying a set corresponds to applying that linear map to all214

vectors in the set. In a similar fashion, the update step could be carried out:215

X(k) = Xprop(k) ∩Ck
y(k)⊕NkW (k) (6)
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Figure 3: The produced polytopes for the example in (4) with k = 3 using the approximation
algorithm in Section 3 both for the propagated set (up) and the updated set (bottom) are
given on the left. The same sets are given using the feasibility approach in (2) (middle) and
with Algorithm 1 (right).

where the symbol ∩Ck
stands for the intersection through the map Ck such216

that both sets being intersected constrain the possible values of x(k). We opt217

by representing the polytopes through a constrained zonotope formulation and,218

for the sake of completeness, introduce how each of the operations is defined219

as described in [7]. We remark to the reader that other solutions based on220

intervals [4] would achieve better performance by sacrificing accuracy. This is221

due to the fact that the sets would be overbounded by hyper-rectangles adding222

conservatism that would then be propagated using the dynamics for future time223

steps.224

Definition 4 (Constrained Zonotope). A set Z is a constrained zonotope225

defined by the tuple (G, c,A, b) ∈ Rn×ng × Rn × Rnc×ng × Rnc such that:226

Z = {Gξ + c : ∥ξ∥∞ ≤ 1, Aξ = b}.

Definition 5 (Set operations). Consider three constrained zonotopes as in227

Definition 4:228

� Z = (Gz, cz, Az, bz) ⊂ Rn;229

� W = (Gw, cw, Aw, bw) ⊂ Rn;230

� Y = (Gy, cy, Ay, by) ⊂ Rm;231

and a matrix R ∈ Rm×n. The three set operations are defined as:232

RZ = (RGz, Rcz, Az, bz) (7)
233

Z ⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

])
(8)

234

Z ∩R Y =

[
Gz 0

]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 . (9)



Using the set operations in Definition 5, the propagate in (5) can be implemented235

resorting to linear maps applied to the sets as in (7) followed by Minkowski236

sums of the sets as in (8). The update in (6) starts by creating the set for the237

measurements using both linear maps and Minkowski sums and then intersecting238

using (9).239

We now detail three different methods, identifying the scenarios for which240

they are suitable. We point out to the interested reader that Constrained Zono-241

topes are a representation of polytopes as given in [7]. We conjecture that these242

sets are bounded in terms of hyper-volume following the discussion in [8] under243

mild stability conditions.244

3.1. Approximation method245

In order to deal with the uncertain component in (1), we first address the246

problem when n∆ = 1 and matrix U1 satisfies rank(U1) = 1 such that there247

exist vectors e1 and f1 satisfying:248

A1 = e1f
⊺
1 .

Moreover, by defining an auxiliary vector z1(k) = f⊺
1 x(k)∆1(k) we can rewrite249

(1) as:250

x(k + 1) = Akx(k) + e1z1(k) +Bku(k) + Lkd(k)

y(k) = Ckx(k) +Nkw(k)
(10)

where the signal z1(k) ∈ R is bounded by |z1(k)| ≤ max |f⊺
1 x(k)|. The right-251

hand side of the inequality can be approximated by solving two linear pro-252

grams:253

min
x

f⊺
1 x

s.t. x ∈ X(k)
(11)

and254

min
x

− f⊺
1 x

s.t. x ∈ X(k)
(12)

and taking the maximum of both absolute values. Thus, z1(k) ∈ Z1(k) which is255

defined as Z1(k) = (b, 0, 0, 0) where b is the maximum of the absolute value of256

the cost functions in programs (11) and (12). As a consequence, the system in257

(10) is in an LTV format with an extra unknown input z1(k) whose constrained258

zonotope can be computed at time k.259

Remark 6. We remark that the rank one decomposition results in the optimal260

set operation (i.e., without having any point-wise sum) procedure for the state261

estimation. By optimal, we mean that there exists at least one point for which262

the direction e1 or −e1 achieves the maximum bound and the other it is an263

outer approximation. Thus, to achieve a smaller estimation set, a point-wise264

operation would be required such that we could have different points in the set265

being affected by different values of the uncertainty set. In the example (4),266



when the previous set was symmetric with respect to the hyper-planes f⊺
1 x and267

e⊺1x (Figure 1) the produced set was the optimal one whereas when this failed we268

obtained an over-approximation (Figure 2 and Figure 3).269

The case when matrix U1 has a rank greater than the unity means that:270

A1 = e1,1f
⊺
1,1 + e1,2f

⊺
1,2 + · · ·+ e1,mf⊺

1,r

for some r > 0. By defining additional variables:271

z1,j(k) := f⊺
1,jx(k)∆1(k)

we can carry out the same procedure as for the case of a rank one matrix.272

Remark 7. We draw attention that the above separation of matrix U1 into in-273

dependent exogenous signals increases the size of the produced set as we are274

implicitly ignoring the relationship between the entries in Ak affected by uncer-275

tainty ∆1.276

If n∆ > 1, the same procedure can be applied for all the remaining uncertainties277

as done for ∆1 with the produced sets added by the Minkowski sum.278

3.2. Exact convex hull method279

The previous method explored a relaxation to the bilinear constraints im-280

posed by the product between state and uncertainty. Such an algorithm is the281

optimal one using only set operations. In this section, we detail how to improve282

it combining both the idea in Algorithm 1 and the commutativity of the convex283

hull operation and the Minkowski sum. This method is of interest for cases284

where the set-valued estimates do not have a very large number of vertices.285

Since the solution to the state estimation for Uncertain LPVs can be a286

nonconvex set, we opt to compute its convex hull:287

convHull (Θ(k)) = convHull

(
Xp(k)⊕Bk−1u(k − 1)⊕ Lk−1D(k − 1) ∩Ck

y(k)⊕NkW (k)

)
= convHull

(
Xp(k)⊕Bk−1u(k − 1)⊕ Lk−1D(k − 1)

)
∩Ck

y(k)⊕NkW (k)

= convHull

(
Xp(k)

)
⊕Bk−1u(k − 1)⊕ Lk−1D(k − 1) ∩Ck

y(k)⊕NkW (k)

(13)
The first step in (13) used the fact that the convex hull is defined as the intersec-288

tion of all convex sets enclosing the set. Since the measurement set is assumed to289

be convex, this intersection can be performed after the convex hull. The second290

step resorted to the commutativity of the convex hull and the Minkowski sum291

to first apply the convex hull to each set before taking the addition. Given that292

the actuation (a single point) and the disturbance sets are convex, its convex293

hull is equal to the set themselves. The formulation in (13) means that the294

proposed algorithm to compute the exact convex hull follows the steps:295



i) Compute vertex (X(k − 1));296

ii) Propagate all vertices from i) using the vertices -1 and 1 for each of the n∆297

uncertainties;298

iii) Compute the convex hull of ii);299

iv) Use the constrained zonotope set operations in Definition 5 to compute300

convHull (Θ(k)) following (13).301

In the proposed algorithm, step i) is the computationally expensive one, even302

though we have reduced the cost in comparison with Algorithm 1 by only com-303

puting the vertices of the previous estimate and using set operations for the304

remaining sets. Also notice that step iii) reduces the size (values nc and ng305

in Definition 4) of the representation of the constrained zonotope associated306

with the set-valued estimate. In the literature for LTVs using zonotopes or307

constrained zonotopes, this is typically included as an additional method to be308

performed after finding the estimate [5][7]. Therefore, step iii) precludes the309

need to any of those methods.310

3.3. Event-triggering between convex and nonconvex method311

One of the main uses of set-membership approaches is to perform fault de-312

tection and isolation. In such case, one can consider multiple LPV models as in313

(1) where one corresponds to the fault-free case and an additional one for each314

combination of considered faults. Then, detecting and isolating the fault re-315

quires to perform model invalidation whenever the produced set for a particular316

case produces the empty set, i.e., there are no possible values of all the exoge-317

nous signals and initial conditions that justify that particular model. Under318

such scenarios, the question is not to produce the set of all possible state values319

at time k but rather to check if the set is empty. If the faults can be caused by320

an intelligent opponent trying to attack the system, accuracy is a vital aspect321

since added conservatism means additional attacking signals going undetected.322

However, as seen in Section 2, finding any feasible point to the problem in (2)323

takes considerable time even for small values of k.324

The proposed method in this section is to have an event-triggered mecha-325

nism following the idea of incorporating these rules in the context of set-valued326

estimators [15]. Whenever the elapsed time to solve the feasibility (2) is greater327

than a given threshold (dependent on how much time the detector has to pro-328

duce an output regarding the existence of faults), a trigger is generated. Assume329

that the sequence of triggers is given at times τ0, τ1, · · · with τ0 = 0. At time330

τ1, the detector will do the following procedure:331

i) Compute the set-valued estimates for the current time τ1, X(τ1) using the332

exact convex hull method from the set X(τ0) = X(0);333

i) Replace in (2) the condition x(0) ∈ X(0) by x(0) ∈ X(τ1);334



i) The last constraint should use the measurements y(τ1 + 1), y(τ1 + 2), · · ·335

instead of y(τ0 + 1), y(τ0 + 2), · · · ;336

i) Repeat for all events τ2, τ3, · · · .337

The above procedure is solving the computationally hard feasibility problem338

in (2) since the last triggering time τj up to the current time instant k. The main339

advantage is that faults are checked based on the exact nonconvex set (more340

accurate) at time k from the convex hull set produced at time τj . Since triggers341

happen when the computing time is larger than some constant, the procedure342

can be run online. However, there is still added conservatism in every event343

τ1, τ2, · · · as the convex hull is computed to replace the known bound for a past344

state value and reset the number of constraints and optimization variables in345

(2).346

4. Simulations347

In this section, simulations are presented in order to illustrate the proposed348

algorithms (set-based labeled as “CZ approach” and point-based labeled as349

“ConvexHull of points” for the uncertainties) along with the nonconvex ap-350

proach for comparison. We consider a motor speed model with state space351

representation in continuous time given by:352

d

dt

[
θ̇
i

]
=

[
− b

J
K
J

−K
L −R

L

] [
θ̇
i

]
+

[
0
1
L

]
V

with source voltage V as input and rotational speed of the shaft θ̇ as output,353

where i is the armature current. We consider the following nominal system con-354

stants: moment of inertia of the rotor J = 0.01 kg m2, motor viscous friction355

constant b = 0.1 N m s, K to represent the equal electromotive force constant356

Ke = 0.01 V/rad/s and motor torque constant Kt = 0.01 N m/Amp, electric357

resistance R = 1 Ohm and electric inductance L = 0.5 H. In the first simu-358

lation, it is assumed that the value of b is uncertain and contained in a range359

[0.09, 0.011]. We proceeded to discretize the system using a sampling time of360

Ts = 0.1 s and resorting to the method of zero-order hold on the inputs. Dur-361

ing the simulation the system is responding to a unit step as a reference. Both362

disturbance and noise signals have infinity norm equal to unity and matrices363

L = 0.2I and N = 1.364

Figure 4 depicts the evolution of the involved sets for the two main ap-365

proaches presented in this paper: the approximation algorithm based on set366

operations and the exact convex method resorting to point-based propagation367

for the dynamics. For comparison, we present the solution to the nonconvex368

feasibility problem which stands for the optimal set. Throughout the whole369

simulation, the optimal set Θ(k) remained a convex polytope, which meant370

that the produced sets for the various values of k represented similar results.371

All three methods produce the same set, as given in Theorem 2 albeit with very372

distinct computational costs.373
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Figure 4: The produced polytopes for the motor speed example at time k = 5 using the
approximation algorithm (set-based method) for the propagated set (up) and the updated
set (bottom) are given on the left. The same sets are given using the nonconvex feasibility
approach (middle) and using the exact convex method resorting to point-based operations
(right).

In a more challenging simulation, we have considered the moment of inertia of374

the rotor to be uncertain. In this case, the optimal set is no longer convex given375

that the bilinear constraint cannot be represented by a rank one uncertainty. In376

Figure 5, it is depicted the produced sets for k = 1. An interesting remark is that377

the approximation algorithm produces a very conservative set in comparison378

with the other two approaches. Nevertheless, that difference is less noticeable in379

the updated sets given the considered bound for the noise. In systems with larger380

noise sets, the conservatism will be larger and integrated in the propagation step381

of the algorithm.382

At iteration k = 5, the propagated set becomes convex. Figure 6 depicts the383

sets at iteration k = 6 and we recover the typical behavior where the approxi-384

mation is conservative but the exact convex hull of the feasibility set can still be385

computed by the proposed algorithm with a point-based operation. An impor-386

tant remark is that the computation including the enumeration of the vertices387

and the final convex hull took at most 0.0439 seconds, meaning that the method388

can be run as an online state estimator even for smaller sampling times.389

An important aspect in set estimation is to determine whether the produced390

sets are bounded in terms of their hyper-volume. For that reason, we ran the391

previous simulation for 100 seconds and depict in the following plots the main392

characteristics regarding the various algorithms.393

The sets produced at the final iteration k = 1000 are depicted in Figure 7394

which shows the relative conservatism of an algorithm based on set operations395

as opposed to the true convex hull of the nonconvex set. As discussed previ-396

ously, checking a solution to the nonconvex feasibility problem is prohibitively397

expensive for the number of variables and constraints used at k = 1000.398

From Figure 8, we can check that the volume of the set remained bounded399

throughout the entire simulation. The volume for the non-convex is not pre-400
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Figure 5: The produced polytopes for the motor speed example at time k = 1 using the
approximation algorithm (set-based method) for the propagated set (up) and the updated
set (bottom) are given on the left. The same sets are given using the nonconvex feasibility
approach (middle) and using the exact convex method resorting to point-based operations
(right).
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Figure 6: The produced polytopes for the motor speed example at time k = 6 using the
approximation algorithm (set-based method) for the propagated set (up) and the updated
set (bottom) are given on the left. The same sets are given using the nonconvex feasibility
approach (middle) and using the exact convex method resorting to point-based operations
(right).
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Figure 7: Sets produced by the Constrained Zonotope and Convex Hull of Points algorithms
at k = 1000 iteration.

0 200 400 600 800 1000
0

1

2

3

4

5

6
CZ approach
ConvexHull of Points

Figure 8: Evolution of the volume of the produced sets every multiple of 50 iterations across
the 100 seconds of simulation.
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Figure 9: Number of constraints used by each algorithm across the 100 seconds simulation.

sented as, apart from being hard to compute, its description is in the form of401

the solution of a feasibility program that requires significant computing power402

even for k = 10, evaluating it for a time instant at the end of the simulation403

would be prohibitively expensive.404

Figure 9 depicts the evolution of the number of constraints used to define405

the sets/feasibility programs in all three approaches. As one might expect,406

the point-based solutions requires zero constraints while both the other have a407

linear growth. Another important aspect is the number of variables that are408

being stored within the set definitions. In Figure 10 is shown how this value409

evolves for each of the algorithms as time progresses. Interestingly, representing410

the set as a convex hull of points also means that we can easily check whether411

some of the points are irrelevant to the description and perform sort of an412

order reduction just as a byproduct of the algorithm itself. Since we have413

not implemented a specific order reduction for the Constrained Zonotopes, the414

number of auxiliary variables used in the definition keeps increasing linearly.415

Both the number of constraints and variables helps explaining the difference in416

terms of performance with the maximum computing time for the point-based417

solution being 0.0089 seconds. This is only achieved because the sets for the418

uncertainties, disturbances and noise are constant throughout the simulation419

and the vertex enumeration could be performed a single time off-line before the420

simulation started.421

5. Conclusions and Future Work422

In this paper, we have tackled the problem of state estimation for uncertain423

linear systems in scenarios where there is no information regarding the proba-424

bilistic nature of the unknown signals. This results in a worst-case view with425

the produced set-valued estimates representing all possible values for the state.426

By formalizing the problem as a feasibility program, the state estimation can427
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Figure 10: Number of variables/points used by each algorithm across the 100 seconds simu-
lation.

be conducted using a nonconvex solver. It is shown that whenever the solution428

is a convex set, an algorithm producing the exact set must rely on point-based429

operations since set-based approaches will be inherently conservative. Explor-430

ing this result, we have proposed three methods: i) an approximation algorithm431

that overbounds the bilinear constraint with a convex one (optimal set-based432

algorithm); a method to compute the convex hull (optimal convex set) that433

requires enumerating the vertices of the previous set-valued estimation but em-434

ploys set operations for the remaining signals; and, iii) an event-triggering al-435

gorithm especially useful in fault/attacker detection that uses the nonconvex436

approach in-between triggers and resets the size of the feasibility program using437

the method in ii).438

The current research opens the possibility to explore three main avenues439

of future work: i) tackle linear models with uncertain measurement equations;440

ii) study other practical models for which the estimators can run online; and,441

iii) investigate conditions under which the optimal solution to the feasibility442

program is a convex set. Uncertainty in matrix C is harder to incorporate in443

the approximation algorithm since the measurement set can also be nonconvex,444

resulting on a research challenge of its own. The topic in ii) would answer one of445

the harshest criticism of set-membership solutions that are either conservative446

or do not produce accurate convex sets when applied to uncertain systems with447

small sampling times. Lastly, understanding the conditions that result in a448

convex solution would characterize the types of problems for which the point-449

based method is optimal.450
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