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ABSTRACT
This paper addresses the problem of having a Multi-Agent System (MAS) search for
areas of higher relative importance as measured by an unknown utility function. In
the envisioned scenario, there are inexpensive agents without localization sensors and
limited communication capabilities. More expensive nodes serve as fixed towers and
forward noisy position and velocity measurements using directional antennae. There
is no assumptions on initial network connectivity. By proposing a set of flocking
rules and set-membership estimation, the formation drives to a vicinity of nearby
local maximum of the function while having theoretical guarantees of no collisions.
The performance of the method is evaluated both in Matlab simulations and using
the Crazyswarm package under the Robot Operating System (ROS) environment,
including cases of moving destinations, obstacles, undesirable zones, and different
number of nodes and sizes of the mission plane.
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1. Introduction

The problem of rendezvous consists in devising a distributed algorithm to make a set
of mobile agents converge to defined areas of the mission plane. This paper focuses
on proposing distributed control rules that can rendezvous agents with limited con-
nectivity. We assume a set of identical agents, i.e., having the same communication
capabilities, no localization mechanisms, and that must follow a similar control law.
Having such a method would mean reduced computational complexity in the system
and fewer points-of-failure by avoiding the need for hierarchical protocols or specialized
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message exchanges. Furthermore, the method is capable of coping with asynchronous
communications and dynamic networks with agents arbitrarily joining and leaving,
among other real-world problems.

The envisioned scenario corresponds to a mission to be carried out by low cost
autonomous agents in a formation where some of them have additional localization
capabilities. Examples range from defense where there is specialized equipment in es-
tablishing the communication and localization infrastructure to be used by lightweight
drones, to agricultural settings where the payload weight restriction comes from the
need to save space and have longer autonomy time to carry the mission (either planting
trees, inspecting bugs in crops, etc). All these scenarios can be cast in the framework
considered in this paper. There are fixed control towers responsible for measuring the
system state and sending it with the use of directional antennae to the mobile agents.
The agents movement is asynchronous and triggered upon receiving a tower commu-
nication (that can also be received by other nodes that are listening to the medium).
These messages contain position and velocity of the agents. Thus, each agent is only
equipped with the necessary sensors to guarantee its desired movement is achieved and
an antenna to receive the information broadcasts. Through the use of directional com-
munication and decentralized control laws, our proposed algorithm has an improved
use of the shared wireless medium and is suited for large networks.

The rendezvous problem in the area of control theory is typically addressed through
the use of consensus algorithms, in which each node computes the weighted average of
its neighbors’ positions and moves towards that position. However, a prevalent assump-
tion among these works is that of a connected network topology (or at least connected
over time). Such an assumption cannot be posed in our scenario and a pure-consensus
approach would result in multiple consensus sub-groups converging to their own val-
ues. Throughout the literature, this problem is solved with the use of linear iterative
algorithms that converge to a weighted average of the initial state. Several different
scenarios have been addressed for consensus problems: networks with switching topol-
ogy and time-delays Olfati-Saber and Murray (2004), networks with communication-
link failures Fagnani and Zampieri (2009); Patterson, Bamieh, and El Abbadi (2010),
networks with stochastic and asymmetric communication Antunes, Silvestre, and Sil-
vestre (2011); Silvestre, Hespanha, and Silvestre (2019), networks with quantized data
transmission Carli, Bullo, and Zampieri (2010), and event-triggered D. Dimarogonas
and Johansson (2009) and self-triggered D. V. Dimarogonas, Frazzoli, and Johansson
(2010) control. Our proposed solution combines traditional consensus techniques with
improved flocking behavior, Reynolds (1987), to account for disconnected network
topologies and mitigate the number of consensus sub-groups.

Considering imperfect measurements is also critical in rendezvous problems. In
Sadikhov, Haddad, Goebel, and Egerstedt (2014), the position of an agent is assumed
to be a ball of radius r that contains the real uncertain position. Contrarily to our
scenario, their agents know the network topology and the total number of agents in
the system. In Silvestre, Rosa, Hespanha, and Silvestre (2015), an agent uncertain po-
sition was generalized to be a convex polytope, and it was shown that estimates for the
true position of the neighbors can be accomplished resorting to the use of Set-Valued
Observers (SVOs). Moreover, building on the results in Silvestre, Rosa, Hespanha, and
Silvestre (2017) and Shamma and Tu (1999), if all sets are polytopes and the dynamics
has no uncertainties, polytopes are exact representations. However, we will be using a
generalization named Constrained Convex Generators (CCGs) Silvestre (2022a) that
extend the type of sets that can be used to have polytopes, ellipsoids, and any shape
that results from intersections of those types, which is often the case in the presence
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of range measurements. We also remark that a point-based method was a viable al-
ternative given the reduced state space Silvestre (2022b). Given that the agent will
employ a guaranteed state estimation, it is a straightforward feature that the system
is guaranteed no collisions as long as none of the sets intersect.

The main contributions of this paper are as follows:

• A exploration algorithm to find dynamic rendezvous targets which can handle
disconnected network topologies, asynchronous and directional communication,
imperfect position measurements, and a utility-defined mission plane, while guar-
anteeing no collisions between agents and convergence to a single area, provided
there exists sufficient node density and a single maximum;

• Extensive simulations illustrating the emergent behavior of the agents in various
scenarios corresponding to real-world missions;

• A result stating that our method drives the nodes to a number of clusters no
greater than the number of clusters in the initial configuration.

All these contributions are achieved while avoiding the assumptions present in the
literature of a known and connected network topology and a known number of total
agents in the system, as Sadikhov et al. (2014) and Silvestre et al. (2019). Therefore,
the main differentiating factor with other methods in the literature is that the proposed
method is able to cope with disconnected topologies, has a decentralized decision based
on the constructed estimates by each vehicle and will drive to local maximizers of the
utility function.A preliminary version of the proposed algorithm was given in Ribeiro,
Silvestre, and Silvestre (2020); Ribeiro, Silvestre, and Silvestre (2021) for the part of
achieving consensus in disconnected topologies.

An outline of this paper is as follows. Section 2 presents background material fol-
lowed by the problem statement. The proposed rendezvous algorithm for a multi-agent
system with various targets is described in Section 4. Section 5 presents theoretical
convergence results and guarantees of the method, while simulations are provided in
Section 6 for other cases of interest. Concluding remarks and directions for future work
are presented in Section 7.

2. Problem statement

This paper addresses the problem of a MAS composed of an unknown number n
of agents whose principal objective is to rendezvous on multiple dynamic targets in
order to accomplish a mission. To avoid the need for hierarchical protocols or special-
ized message exchanges, we consider the agents to be identical, and therefore, to be
constrained to follow the same control law. Additionally, to develop an inexpensive
solution, the agents are not equipped with localization sensors, only having odometry
sensors to verify the desired movement is executed and the limited communication
capabilities necessary to receive the towers broadcasts regarding their state.

2.1. Mission plane

Our proposed mission plane is defined by an utility function h that assigns a value
to the agents positions to reflect how desirable they are to the mission objectives.
Thus, the agents must drive towards the maximum of h by only having access to the
utility value and gradient at the current position. In this paper, it is assumed that the
(possibly nonconvex) function h is defined as a finite sum of paraboloids.
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2.2. Towers

In this paper, we are assuming that a small subset of expensive agents will act as
communication towers (i.e., will become stationary) in order to provide localization
for the larger subset of inexpensive nodes. For convenience, we will refer to these
agents as towers to clearly distinguish from the inexpensive nodes and assume that
they are stationary for the entirety of the mission. Since towers are equipped with
directional antennae, it composes a message comprising the utility value, position and
velocity estimates of each agent and transmits it to that node. Therefore, any node
in a communication cone can receive eavesdrop the message. We also assume that the
tower serves in a round robin fashion each node to update their estimates. In doing so,
power is saved in the communication and results in a better use of the shared medium.
Notice that for large networks the sent messages in each direction are reduced in size
since a full broadcast is avoided.

Due to the absence of localization sensors, the agents rely on the messages from the
towers to determine their location and calculate the proposed control law, described
in Section 4. These measurements are imperfect, corrupted by noise, meaning that
instead of accessing the true state, the towers determine a set-valued estimate Xi(k)
containing all possible positions for agent i at time k, whose centroid ci(k) will typically
not correspond to the true value xi(k). Similarly, the estimate also comprises in other
coordinates the possible values for the velocity vi(k).

The directional communication behavior is illustrated in Figure 1: any two agents i
and j are considered to be neighbors if they are bounded by the same communication
cone. The example represents a cone centered on agent i with all nodes contained in
its projection on the mission plane receiving the broadcast. The existence of agent l
is not acknowledged by agents i or j, as this agent is not in the communication strip,
resulting in its position not being transmitted.

The set of agents is grouped in V, and the undirected links of the form (i, j) translate
into a neighbor relation between i and j since both will receive the broadcast with
their position and velocity estimates. Consequently, the network topology is modeled
as an undirected graph, Gk = (V, E(k)), where E(k) is defined as a set of all undirected
links (i, j) at time instant k. In general, Gk will be disconnected and composed of a
finite number of clusters at any given time k. We do not assume knowledge of the
network topology nor can agents determine n. Agent i will only have access to its
neighbor set Ni(k) by listening to the communication channel.

This paper addresses three main issues that appear with the use of directional
antennae:

i) absence of a connected and known network topology;
ii) limited unidirectional communication;
iii) position and velocity estimates received at different time instants.

3. Constrained Convex Generators overview

In this section, we review for completeness the definition and main set operations when
using CCGs that are used in the set-valued estimation of position and velocity for each
agent.

Definition 3.1 (CCG Silvestre (2022a)). A Constrained Convex Generator (CCG)
Z ⊂ Rn is defined by the tuple (G, c,A, b,C) with G ∈ Rn×ng , c ∈ Rn, A ∈ Rnc×ng ,
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Figure 1. Illustration of a communication tower broadcasting state of the agents inside the projection of the
communication cone on the mission plane.

b ∈ Rnc , and C := {C1, C2, · · · , Cnp
} such that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp
}. (1)

Definition 3.2 (Set Operations for CCGsSilvestre (2022a)). Consider three CCGs as
in Definition 3.1:

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn;
• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn;
• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm;

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The set operations linear map,
Minkowski sum and generalized intersection are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz) (2)

Z ⊕W =

([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
(3)

Z ∩R Y =

[
Gz 0

]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 , {Cz,Cy}

 . (4)

With the aforementioned definition, it is possible to present how to build estimates
from a dynamical model of the form:

x(k + 1) = Fkx(k) +Bku(k) + d(k)y(k) = Ckx(k) + v(k) (5)

where x(k), u(k), d(k) and v(k) are respectively the state, actuation, disturbance and
noise signals at time k. Matrices Fk, Bk and Ck are of appropriate dimension and
represent the dynamics, how the actuation enters the system and the measurements
available. Following the typical two step akin to the Kalman filter, the propagation
phase equates to:

Xprop(k + 1) = FkX (k) +Bku(k)⊕D(k), (6)

and the update:

X (k + 1) = Xprop(k + 1) ∩Ck
(y(k + 1)⊕−V(k)) , (7)
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Figure 2. Strip centered at node i with i being neighbors with agents j and l (left). Strip centered at node

j with i’s only neighbor j (right).

such that x(k) ∈ X (k), v(k) ∈ V(k) and d(k) ∈ D(k).

Remark 1. Please notice that even though the set-valued estimation is presented
for linear systems, if we adopt a strategy similar to the Extended Kalman filter for
nonlinear systems, Fk corresponds to the derivative of the nonlinear dynamics with
respect to the state at the previous center of the set-valued estimate. In a similar light,
Bk would be the derivative with respect to the input and we would have to add a dis-
turbance term similar to D(k) to account for the linearization error which corresponds
to the set that contains the Lagrange remainder when we truncate the Taylor series
expansion after the linear term. The interested reader is pointed to Silvestre (2022a)
and the references therein for additional details and references to other possible set
representations.

4. Proposed Solution

The proposed algorithm in this paper aims at reducing the number of existing clusters
through the use of flocking such that the swarm is coordinated by a fully decentralized
algorithm. We improve upon the original flocking rules by adding three additional ones
that can be intuitively understood as:

(1) Attraction - a simulated attraction/repulsion force towards neighbor agents
based on the difference of utility in their corresponding positions;

(2) Utility - a simulated attraction force towards the direction that maximizes the
gradient of the utility function in case it is differentiable at the current location;

We consider the agent movement to be asynchronous since it is triggered by the
reception of a new message with the state of all nodes in the cone, i.e., position
polytope Xj(k), velocity vi(k) ∀j ∈ Ni(k) and utility value. Formally, the neighbor set
is constructed as:

Ni(k) = {j ∈ V :∡(
−→
ti ,

−→
tj ) ≤ α,Xj(k) ∩ −→

tα = ∅} (8)

where 2α is the broadcast cone angle,
−→
ti is the vector from the tower’s position to agent

i,
−→
tj is the analogous for each neighbor agent j, and ∡(

−→
ti ,

−→
tj ) is the angle between

them. Intuitively, for an agent to belong to Ni(k), its set-valued position estimate has
to be contained in the communication cone of angle 2α. Figures 2(a) and 2(b) illustrate
a worst-case scenario by having nodes i and l being neighbors in the former, but not
in the latter, despite the centroid of the polytope of agent l being inside the strip.
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4.1. Solution Architecture

The proposed strategy can be split into three main components as seen in Figure 3.
As the agents receive new data from the towers they start by computing a desired
heading vector using the control law defined in Section 4.2. Afterwards, the computed
heading is limited as explained in Section 4.3 so as to avoid collisions. Finally, the
limited vector is sent to the vehicle local controller.

Utility value, position
and velocity estimates

of each agent in a cone

Towers

Velocity vector generator
(main algorithm)

Local controller
(reference follower)

Collision avoidance
(limit the velocity vector to avoid collisions)

.

.

.

Reference
velocity
vector

Safe
reference
velocity
vector

Agent 1

Ag
en

t n

Agents in the communication cone

Figure 3. Architecture of the proposed solution.

4.2. Velocity Vector Generator

Upon receiving a message, an agent computes six movement components that consti-
tute the control law: Separation, Cohesion, Alignment - three original flocking rules
- and Attraction, Utility - introduced in this paper to address the issues of the mis-
sion definition. This control law is used only to generate the reference velocity vectors
which are then tracked by a low level controller (usually a Proportional, Integral and
Derivative (PID) controller onboard the vehicle).
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4.2.1. Separation component

Responsible for maintaining the agents at a minimum distance: to increase the occu-
pied area of the flock and as a simple collision avoidance method. This component,
Us
i (k), is calculated by:

Us
i (k) =

1

|Ni,d(k)|
∑

j∈Ni,d(k)

(ci(k)− cj(k)) (9)

where Ni,d(k) is the set of agent i’s neighbors within d distance units.

4.2.2. Cohesion component

Responsible for preventing fragmentation of a cluster by maintaining the agents within
a maximum distance, and is computed by:

Uc
i (k) =

1

|Ni(k)|
∑

j∈Ni(k)

(cj(k)− ci(k)) (10)

In Separation, only neighbors closer than d are considered. This is justified by sep-
arating from distant agents being counterproductive to the mission objective of ren-
dezvousing. As Cohesion aligns with this objective, all neighbors are considered.

4.2.3. Alignment component

The final original flocking rule, Alignment, minimizes the difference in all agents’ head-
ings, to maintain the agents moving in the same direction. Ua

i (k) is computed with:

Ua
i (k) =

1

|Ni(k)|
∑

j∈Ni(k)

(vj(k)− vi(k)) (11)

4.2.4. Attraction component

The agents’ objective is to rendezvous to the most desirable rendezvous target its clus-
ter has found. The Attraction movement component simulates an attraction/repulsion
force towards each neighbor, based on the relative difference of utility values in their
positions. These forces drive the agent closer to agents in higher-utility positions and
away from agents in less desirable areas. Uattr

i (k) is defined by:

Uattr
i (k) =

1

|Ni(k)|
∑

j∈Ni(k)

(h(cj(k))− h(ci(k)))(cj(k)− ci(k)) (12)

where hi and hj are the utility values at agent i and each of its neighbor centroid
positions, respectively.
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Figure 4. Rays being cast from both the moving agent’s polytope and an obstacle-agent’s polytope. The red

Xs represent the first intersection point between a ray and the opposite polytope.

Figure 5. Example of the allowed movement for an agent that would otherwise collide.

4.2.5. Utility component

The second additional component, Utility, is also motivated by the objective of max-
imizing the utility function, by following its gradient. For a non-differentiable h, it is
possible the use of subgradients or assign a zero value. Uu

i (k) is calculated with:

Uu
i (k) = ∇h(ci(k)) (13)

4.2.6. Final control law

The overall control law is given by:

ui(k) = θ · Us
i (k) + β · Uc

i (k) + γ · Ua
i (k) + δ · Uattr

i (k) + ϵ · Uu
i (k) (14)

where all the component vectors are normalized, and all weights θ, β, γ, δ, ϵ ∈ R+.
We remark that tuning these parameters must be based on the relative importance of
each of the tasks for the overall mission. However, (14) only defines a direction that
the agent must follow since its magnitude will be selected by the proposed collision
avoidance method.

4.3. Collision Avoidance Strategy and Local Controller

Given that the real position of an agent i, xi, is contained in its set-valued estimate
Xi updated by the Set-Valued Observers framework, a direct consequence is that a
safe maneuver of the nodes can be achieved by moving such that the polytopes do not
intersect. Intuitively, if we are moving the two convex polytopes, they will first intersect
with one of their vertices. Consequently, our proposed collision avoidance strategy
utilizes ray tracing and line intersection checks to detect collisions. The acceleration
vector can be appropriately set such that the magnitude of the velocity vector makes
the agent move the maximum allowed distance without colliding.

Elaborating on the technique, from each vertex of the moving agent polytope, Xi,
we cast rays in the direction of the desired velocity with the length of the maximum
distance an agent is allowed to move per discrete update. For each of the rays, we verify
if it intersects with the edges of the obstacle-agent polytope, Xj . Concurrently, rays
are cast from the obstacle-agent’s polytope, in the opposite direction of the desired
velocity, with intersection checks against the edges of Xi. An illustration of the collision
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detection method with two polytopes is provided in Figure 4. Notice that, only casting
from the moving agent polytope could result in undetected collisions. Our method
consists in executing this pair-wise operation for each neighbor agent j ∈ Ni, as to
obtain the most imminent collision point. Figure 5 illustrates the allowed movement
distance for agent i, with agent j being the cause of the first collision point.

Following the collision avoidance procedure the desired heading vector is sent to the
vehicle local controller which acts as a reference follower by using onboard sensors to
correct for disturbances when trying to follow the provided reference.

5. Convergence Analysis

In this section, we give a convergence result regarding the proposed flocking algorithm
by reformulating it as a consensus system with a virtual leader given by the utility
values of the players. Given the proposed collision avoidance mechanism, the value
θ accounting for the weight of the Separation velocity vector can be negligible as
the nodes will not collide. Moreover, given that positions are corrupted by noise, the
theoretical results have to be derived for the centroids of the polytopes. This means
that not considering collisions in our analysis and proving convergence translates to
convergence to a ball around the target that is determined by the noise magnitude
and the number of nodes (since when agents cannot collide they will prevent others
from entering within their set-valued estimate for the position).

Given the above considerations, we now present the main theorem of this paper
where convergence is proved when disregarding the Separation component and the
collision avoidance method and where the symbol ⊗ will be used to denote the Kro-
necker product.

Theorem 5.1. Consider n nodes with the centroids of Xi(k) given by ci(k), ∀i ≤ n
following the algorithm in (14) with a sufficiently small ϵ gradient step, in a mission
characterized by a concave utility function h. Then, the velocity iteration is equivalent
to a consensus algorithm perturbed by a virtual leader, i.e.,

v(k + 1) = Wv(k) + zvirtual(k) (15)

where W corresponds to a consensus matrix and zvirtual to an input of the system.
Moreover, the position of the nodes evolves as a perturbed gradient ascent algorithm
and therefore lim

k→∞
∥x(k) − 12n ⊗ x⋆∥2 ≤ φ(η) where x⋆ := argmaxh(x) and φ(η) is

some constant dependent on the noise level of the measurements η.

Proof. We first write the velocity iteration equation as:

vi(k + 1) = vi(k) + β · Uc
i (k) + γ · Ua

i (k) + δ · Uattr
i (k) + ϵ · Uu

i (k) (16)

= (1− γ)vi(k) + γ
1

Ni(k)

∑
j∈Ni(k)

vj(k) + zvirtuali (k) (17)

where zvirtuali (k) = 1
Ni(k)

∑
j∈Ni(k)

(β+δ(h(cj(k))−h(ci(k))))(cj(k)−ci(k))+ϵ∇h(ci(k)).
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The iteration can be expressed in matrix form as:

v(k + 1) = Wγv(k)︸ ︷︷ ︸
consensus

+ zvirtual(k)︸ ︷︷ ︸
virtual leader

. (18)

Notice that the input zvirtual(k) can only be zero if all nodes are located at the max-
imum of function h. Moreover, this vector has bounded norm and converges to zero
since function h is concave. The dynamics in (18) make the velocity vector of each
agent track the average of the virtual input since γ is selected small enough and pro-
vided that the support graph of Wγ is connected. Since the connectivity does not hold
in general, let us consider each cluster such that Wγ satisfies the connectivity condition
within the cluster.

The position iteration is given by:

xi(k + 1) = xi(k) + v(k) (19)

where v(k) is tracking the average of the gradient for each agent. This is a gradient
ascent iteration that converges to the maximum of a concave function provided an
appropriately sufficiently small step size is selected. Due to the existence of noise, the
conclusion

lim
k→∞

∥x(k)− 12n ⊗ x⋆∥2 ≤ φ(ζ, η) (20)

follows since each cluster can be viewed as independent gradient ascents, where φ(η)
is the maximum norm of the noise.

6. Simulation Results

In this section, we present simulation results for various scenarios bearing resemblance
with real-world applications and missions. Two methods were used to obtain the sim-
ulation results: Matlab simulations with a simple double integrator dynamic (using a
proportional controller as a local controller, see Figure 3) and no noise were used to
validate the algorithm in ideal conditions and to run longer simulations given its lower
computational requirements; More realistic simulations provided by the Crazyswarm
package using Crazyflie 2.0 vehicles under the ROS environment were used as this
package uses more realistic dynamics for the drones and aims at validating the algo-
rithm in a more realistic setting. Moreover, the Crazyswarm package makes use of the
Crazyflie firmware bindings which uses a Cascaded PID controller as a local controller
(Figure 3).

In the Matlab simulations the following setups were used: n = 10 in a 100×100 field,
and 30 agents in a 200×200 mission plane. Simulations with the latter will be referred
to be in a large-network environment for brevity. In the Crazyswarm simulations the
following setups were used: n = 10 in a 20m×20m field, and 30 agents in a 100m×100m
mission plane, along with a simulation time of 180s. Also in the Crazyswarm simula-
tions the vehicles are depicted with the set-valued estimate of their position as a red
circle around it and the implementation of all the collision avoidance techniques was
made using circles instead of polytopes as a representation of the agents. The radius
of these circles is based on the size of the vehicle itself as well as on the variance of
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the noise in the positioning system. Finally, the following control values were used:
θ = 0.07, β = .01, γ = 0.6, δ = 0.08, ϵ = 1.0, ζ = 1.0, η = 0.01 and in all scenarios, the
communication towers angle was 16 degrees. For brevity only the Crazyswarm simu-
lations are shown for the scenarios in the smaller map and only the Matlab results are
shown the larger map. However, the simulation figures and videos of all the simulations
are available on the GitHub link https://github.com/hardtekpt/pdfc fr videos.
The scenarios presented are:

(1) Single maximum utility function to account for rendezvous missions:
(a) Static rendezvous point;
(b) Moving rendezvous point;

(2) Single minimum utility function to illustrate escape missions:
(a) Static minimum point;
(b) Moving minimum point;

(3) Multiple maxima and minima to depict the case of conflicting objectives:
(a) Static rendezvous areas;
(b) Static rendezvous areas with a large network;
(c) Static rendezvous areas and illegal zones;
(d) Static rendezvous areas and illegal zones with a large network;
(e) Rendezvous areas with dynamic utility values;
(f) Rendezvous areas with dynamic utility values in a mission plane with illegal

zones;
(g) Random creation and destruction of rendezvous and minimum points.

Figures 6(a) and 6(b) illustrate the initial and final configurations of the agents in
the simulation type 1a - single static rendezvous point - which is at the center of the
mission plane, represented in yellow. This first example shows that convergence can
be achieved in a simple mission plane with a single communications tower, even if the
initial configuration does not translate to a connected topology. The final configuration
figure also represents the effectiveness of our proposed collision avoidance method, as
the agents have converged surrounding the rendezvous point.

Figure 6. Initial MAS with n = 10 agents in a 20m × 20m mission plane with a single static maximum at

the center (left) and their final configuration (right). Only one communications tower was used - marked by

the blue square.

Figures 7(a) and 7(b) depict a mission plane with a single moving rendezvous target,
type 1b, moving randomly from its initial position at the center of the mission plane.
This simulation type is shown to represent that agents achieve their primary goal of
rendezvousing, and their secondary of doing so in the highest-quality area, tracking it
dynamically while it moves over the simulation.

The scenarios with single minimums - 2a and 2b - are represented in Figures 8(a)
to 9(b). A direct consequence of having a single point with the lowest utility value
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Figure 7. Initial MAS with n = 10 agents in a 20m× 20m mission plane with a single moving maximum at

the center (left) and their final configuration (right). Only one communications tower was used - marked by
the blue square.

is the existence of multiple equally-desirable areas that span across most of the area
of the mission plane. These simulations show that agents move away from the low-
desirability area, despite it moving for Figures 9(a) and 9(b). In both cases, the final
configuration is not constituted by a single cluster, as there is no single most-desirable
area.

Figure 8. Initial MAS with n = 10 agents in a 20m × 20m mission plane with a single static minimum at

the center (left) and their final configuration (right). Only one communications tower was used - marked by

the blue square.

Figure 9. Initial MAS with n = 10 agents in a 20m× 20m mission plane with a single moving minimum at

the center (left) and their final configuration (right). Only one communications tower was used - marked by

the blue square.

More advanced scenarios are depicted in Figures 10(a) to 15(b), which contain
multiple rendezvous areas (utility function maxima) and areas to be avoided (minima
of the function) such as dynamic environmental obstacles.

The simplest of these scenarios is illustrated in Figures 10(a) and 10(b), in which
neither the rendezvous areas nor the minima move with time, which demonstrates
the agents rendezvous to the multiple targets while avoiding the low-utility areas
without colliding. Figures 11(a) and 11(b) represent an analogous scenario, with the
addition of forbidden zones for the agents. Identically to the previous scenario, the
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agents achieve their objectives, avoiding both the low-utility areas and the illegal zones.
Moreover, these two scenarios are exemplified in environments with large networks (due
to computational requirements the Crazyswarm simulations were capped at 180s and
while the video shows the agents converging on the objective, the end of the simulation
does not represent the final configuration. Hence we show the results for the Matlab
simulations.) - 30 agents, 200 × 200 mission plane, and 10 towers - in Figures 16(a),
16(b), and 17(a), 17(b), respectively.

Simulations of type 3e and 3f, shown in Figures 12(a) to 14(b), have the additional
characteristic of time-varying utility values for the rendezvous areas to emulate surveil-
lance missions where the utility decreases when there is an agent in its proximity and
increases otherwise. If the value decreases below a constant threshold, the rendezvous
target is removed from the mission plane and a new one is created at an arbitrary
position. Figures 14(a) and 14(b), and 12(a) and 12(b) represent the cases with and
without illegal zones in the mission plane, respectively. In both simulation examples
the agents converge to the multiple rendezvous areas, while avoiding the low-utility
zones and the illegal zones. In these specific cases, the agents are capable of exploring
an area to the point its utility value is below the threshold, causing it to disappear,
and proceed to a new one as a group. Figures 13(a) and 13(b) show scenario 3e -
dynamic-value rendezvous points (without illegal zones) - with multiple communica-
tion towers. Due to the presence of an additional tower, compared to the simulation
in Figures 12(a) and 12(b), the agents were able to converge to a single cluster.

In Figures 12(a) to 15(b), the agents final configurations appear to be in clusters
outside of the rendezvous areas. We attribute this to the dynamism of their utility
values: the final configurations represent the agents in an intermediary state between
having explored a rendezvous area to the point it was removed and having reached a
new one. This can be observed in the simulation videos.

A more stochastic environment, type 3g, is presented in Figures 15(a) and 15(b),
where the utility values of the rendezvous areas are dynamic and at each discrete time
step, there is a probability that a rendezvous target (maximum point) or minimum
point is created or removed. This simulation demonstrates that agents minimize the
distance traveled to reach a new rendezvous area after the current one is removed.

Figure 10. Initial MAS with n = 10 agents in a 20m × 20m mission plane with multiple static rendezvous

areas and multiple static minimums (of the utility function) (left) and their final configuration (right). Only
one communications tower was used - marked by the blue square.

7. Conclusions and Future Work

This paper focused on the rendezvous problem for a group of mobile agents attempt-
ing to converge to multiple dynamic targets in a decentralized system. The agents
were only assumed to be equipped with odometry sensors and antennae to receive the
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Figure 11. Initial MAS with n = 10 agents in a 20m× 20m mission plane with illegal zones (black squares)
and an utility function with multiple static maximums (rendezvous areas) and multiple static minimums (left)

and their final configuration (right). Only one communications tower was used - marked by the blue square.

Figure 12. Initial MAS with n = 10 agents in a 20m × 20m mission plane with multiple static rendezvous

areas whose utility value decreases when an agent explores it, and multiple static minimums (of the utility

function) (left) and their configuration at t=170s (right). Only one communications tower was used - marked
by the blue square.

towers directional broadcasts containing state estimates. The proposed solution does
not require synchronous communication nor the network topology to be connected.
Instead of a consensus-based approach, we investigate the use of flocking-based move-
ment rules, with added components tailored to our scenario. We also introduced a
mechanism to avoid collisions between agents and proved convergence to a single clus-
ter, whenever only one rendezvous target is available and the agent density allows it.
The system considers imperfect measurements by working with set-valued estimates
of the real positions, defined to be convex polytopes. It is shown through multiple
simulations, which represent a multitude of scenarios with real-world applications, the
effectiveness of our algorithm, and its limitations.

For future work directions, we consider:

• given that the SVOs are used for updating the set-valued estimates, one could
propagate these sets using the same techniques and apply Model Predictive Con-
trol (MPC) strategies to better decide on the actuation;

• adding a scheduling to the communication towers to improve the convergence
rate, opposed to round robin;

• implementing a formation component to be able to have structured formations
and maximize the exploration area.

The first topic can use the propagations of the set-valued estimates for the neighbors
and add a prediction horizon since the decision action is shared amoung the nodes.
Moreover, the cost function for the MPC could take into account the average utility
within the estimates. In doing so, each node would computed an optimized control
action that drives towards maximizing the perceived utility within the possible future
location and removing some of the oscillatory behavior of the trajectories.
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Figure 13. Initial MAS with n = 10 agents in a 20m × 20m mission plane with multiple static rendezvous
areas whose utility value decreases when an agent explores it, and multiple static minimums (of the utility

function) (left) and their final configuration (right). Two communications towers were used - marked by the

blue squares.

Figure 14. Initial MAS with n = 10 agents in a 20m× 20m mission plane with illegal zones (black squares)

and an utility function with multiple static maximums (rendezvous areas, whose utility value decreases when

an agent explores it) and multiple static minimums (left) and their final configuration (right). Only one com-
munications tower was used - marked by the blue square.

The current proposal uses round robin but this could be replaced by a method that
finds a compromise between the estimation errors that each node will have for all its
neighbors and also prioritize the vehicles with fewer neighbors in a given clique. The
formations could also be achieved by having a common decision rule on how each node
should compute its position within the formation and then add a flocking rule to move
the vehicle towards the location.

These future research directions could contribute to have a MAS that is capable
of self-deploying in a region and take optimized actions to improve the future utility
values regardless of the estimation errors associated with the noisy measurements.
This future method would also be better at efficiently utilizing the communication
protocol to update the estimates and drive nearby vehicles in a formation to improve
the quality of readings of the utility function.
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