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• The proposed distributed MPC deals with lane-changing and ego vehicle breaking.
• Infeasibility is avoided by using a soft constraint with an exponential weight.
• The method is validated in Gazebo and shown to accomplish various manoeuvres.
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A B S T R A C T
The advent of autonomous driving technologies has paved the way for notable advancements in the
realm of transportation systems. This paper explores the dynamic field of truck platooning, focusing
on the development of a Nonlinear Model Predictive Control (NMPC) approach within a Cooperative
Adaptive Cruise Control (CACC) framework. The research tackles the critical challenges in obstacle
avoidance and lane-changing manoeuvres. The core contribution of this work lies in the development
and implementation of a novel NMPC algorithm tailored to platoon control. This framework integrates
a penalty soft constraint to guarantee obstacle avoidance and maintain platoon coherence while
optimising control inputs in real-time. Several experiments, including static and dynamic obstacle
avoidance scenarios, validate the efficacy of the proposed approach. In all experiments, the vehicles
closely follow one another, resulting in smooth trajectories for all system states and control input
signals. Even in the event of abrupt braking by the ego vehicle, the platoon remains cohesive.
Moreover, the proposed NMPC proves to be computationally efficient when compared to the state-of-
the-art.

1. Introduction
Autonomous driving is revolutionising how we inter-

act with vehicles, with potentially far-reaching impacts on
transportation. While much attention is on automation, there
is a broader impact on transportation systems, particularly
in the realm of road-based freight transport. Truck pla-
tooning, where a coordinated convoy of vehicles travels
closely, emerges as a promising solution Porfiri, Roberson
and Stilwell (2006). It offers reduced aerodynamic drag, im-
proved fuel efficiency, lower emissions, enhanced safety, and
reduced traffic congestion. Moreover, these advancements
in truck platooning hold significant relevance in the context
of the freight and distribution sector, which is increasingly
grappling with the critical issue of a shortage of qualified
professional drivers Ji-Hyland and Allen (2020).

The European Truck Platooning Challenge in 2017 re-
vealed a potential 15% reduction in fuel consumption, dis-
pelling safety concerns and envisioning multi-brand pla-
tooning technology by 2025 Challenge. Studies have delved
into platoon dynamics and communication protocols. One
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critical challenge is navigating platoons during dynamic sce-
narios like obstacle avoidance and lane-changing. Effective
control strategies are needed for real-world deployment.

The literature regarding safety in platooning has consid-
ered several aspects that are relevant for a full implementa-
tion, including platoon coordination and communication re-
liability. In the pursuit of refining existing strategies, studies
have delved into the intricacies of platoon shape, rearrange-
ment, and formation dynamics, as exemplified by the work
of Maiti, Winter, Kulik and Sarkar (2020). Furthermore, a
parallel line of research has studied communication proto-
cols, striving to engineer seamless and reliable mechanisms
capable of addressing the challenges posed by the variable
range between vehicles, as demonstrated in the investigation
by Won (2022). These studies collectively highlight some
of the intricate factors that must be managed to successfully
deploy truck platooning.

Another alternative for the coordination of platoons can
be to employ Model Predictive Control (MPC) given its
ability to handle constraints that can translate safety during
dynamics maneuvers of overtaking and lane changing Her-
nandez, Desideri, Ionescu, De Keyser, Lemort and Quoilin
(2016). Using a model of the dynamics, MPC generates
solutions that minimize a cost function using both the future
control actions and states. In a similar direction, the MPC
techniques to achieve navigation of autonomous vehicles in
cluttered environments are related to this study. In particular,
the work in Silvestre and Ramos (2023) replaces the non-
convex constraints associated with the obstacles by a set of
linear inequalities added to keep the vehicle position from
reaching the obstacle.
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In Thormann, Schirrer and Jakubek (2022) a distributed
model predictive control (MPC) concept was proposed, en-
abling safe dense spacing with minimal communication re-
quirements and robustness against communication loss. This
approach introduces a safety extension that separates safety
constraints from tracking control goals, allowing for agreed-
upon behavior during limited decelerations. Utilizing driv-
ing corridors based on position errors, the system selects
appropriate control modes or triggers prediction updates for
following vehicles. The authors tested using realistic vehicle
dynamics simulations for a platoon in scenarios such as
emergency braking and maneuver tracking amid traffic dis-
turbances, demonstrating effectiveness despite model errors,
implicit collision safety, and string stability with low com-
munication demands. The main difference with the proposed
technique in this paper is that hard constraints can render
the problem unfeasible and generate aggressive maneuvers,
which we aim to mitigate.

Other works have considered different maneuvers. The
work in Chen, Tang, Johansson and Mårtensson (2024)
introduces a formation control design for safe platooning and
merging of vehicle groups in multi-lane road scenarios. With
the leader vehicle independently controlled, the aim is to
manage the follower vehicles to maintain a desired lane and
constant distance behind the preceding vehicle while avoid-
ing collisions with neighboring vehicles and road edges. The
proposed method uses Control Barrier Functions (CBFs),
which is equivalent to the method that we use for comparison
as the representative of the state-of-the-art. The idea in
Chen et al. (2024) is to have each follower vehicle have two
control components: a nominal controller for tracking the
neighboring vehicle, and a collision avoidance mechanism
using divergent flow as a dissipative term to reduce relative
velocity towards the neighboring vehicle and road edges
without compromising nominal control performance.

In a different field but a similar application, the work in
Taborda, Matias, Silvestre and Lourenço (2024) has shown
that the binary decision variables can be incorporated into
the MPC to define a mixed integer program but then solved
following a heuristic that governs instantiation of these vari-
ables to achieve very fast implementations with performance
close to the actual solution of the mixed integer program.
Such a technique can also be leveraged for the truck platoon-
ing problem to decide when to start the maneuver.

The paper Zhou, Tian, Sheng, Duan, Qu, Zhao, Cao
and Shen (2022) uses a more traditional technique to in-
corporate the collision avoidance into the MPC. Namely, by
formulating the problem as a minimization-maximization,
the disturances and other vehicles are treated as an opponent
that is attempting to collide whereas the control actuation
is competing with those adversarial signals. The main draw-
back of such a solution is the high computational complexity
given that min-max optimization problems are harder to
solve in the general case. Along those lines, Johansson,
Nekouei, Johansson and Mårtensson (2023) formulates the
platooning problem as a game and shows how algorithms to
compute best strategies in games can be used for platooning

maneuvers. Nonetheless, these controllers typically result in
control laws that are not optimized with respect to the cost
function like in an MPC framework. Similarly, Sidorenko,
Thunberg, Sjöberg, Fedorov and Vinel (2022) have studied
the automatic breaking whereas in this paper we are in-
terested in allowing the solver for the controller to decide
whether to break or shift lanes depending on which action
has a better cost. The interested reader is referred to the
recent survey in Lesch, Breitbach, Segata, Becker, Kounev
and Krupitzer (2022) for a more complete picture regarding
platoon control and different aspects of automatic controllers
for trucks.

Building upon this landscape of autonomous driving and
platooning challenges, this paper addresses the problem of
truck platooning navigation involving obstacle avoidance
and lane-changing maneuvers when only the ego vehicle is
equipped with a LiDAR. Through the lens of an Nonlinear
Model Predictive Control (NMPC) approach within a Co-
operative Adaptive Cruise Control (CACC) framework on a
leader-follower topology, this work seeks to achieve safe and
efficient platoon navigation.

One particularity of our proposed solution is the process-
ing of LiDAR data using a set representation and the incor-
poration of a soft constraint within the MPC that translates
that representation of the obstacle. Thus, the current solution
is also related to the computation of safe sets like in Alam,
Gattami, Johansson and Tomlin (2014) where the authors
are capable of showing that 1.2 m is a safe distance given the
typical disturbances and dynamics equations for commercial
trucks. Moreover, this estimation can encompass other in-
stances like the use of range and bearing measurements like
in Silvestre (2022a) or uncertain parameters as in Silvestre
(2022b). Therefore, the soft constraint proposed in this paper
can be tunned to match this distance value or be larger if the
engineer wants to account for more extreme conditions.

Given the above discussion, the main contributions of
this paper can be summarized as follows:

• The paper proposes a distributed Model Predictive
Controller that is able to perform lane-changing ma-
noeuvres or breaking in response to the actions of the
ego vehicle. The behavior is not explicitly coded in
the solution but rather what the solver can compute to
minimize the cost function.

• In order to avoid feasibility issues of the MPC algo-
rithm, it is proposed a soft constraint with an expo-
nential weight. This is a major difference with the
state-of-the-art techniques employing solely Control
Barrier Functions (CBFs) for safety as the problem
can become infeasible either due to conflicting con-
straints (namely maximum velocity and acceleration,
turning rate, etc.) or due to the incorrect selection of
the desired rate.
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2. Background Overview
This section provides the essential background and

benchmarks needed to understand and evaluate the research
at hand.
2.1. Vehicle Modelling

The effectiveness of model-based control is greatly in-
fluenced by the accuracy of the models employed. In the
context of modelling trucks and heavy-duty vehicles, a kine-
matic model known as the general 𝑛-trailer model is com-
monly employed Moradi (2022) and Ljungqvist (2020).
This model provides a comprehensive representation of the
motion and dynamics of these vehicles, taking into account
the complex interactions between the tractor and multiple
trailers. The system consists of 𝑛+1 vehicle segments, which
include a leading car-like tractor connected to 𝑛 passive
trailers by passive rotary joints as depicted in Figure 1.
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Figure 1: A schematic description of the general 𝑛-trailer with
a car-like tractor. Inspired and adapted from Lukassek et al.
(2021).

The kinematic model of the general 𝑛-trailer system
results in the nonholonomic model, i.e. the wheels of the
vehicle are assumed to be rolling without slipping, given by
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where 𝒙 =
[
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]
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(
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∈ ℝ2

the control input with acceleration �̇�0 = 𝑢0 and steering rate
�̇�0 = 𝑢1.

The global position [

𝑥0, 𝑦0
]⊤ represents the Cartesian

coordinates of the vehicle’s rear axle midpoint in the fixed
world frame. The longitudinal vehicle velocity is denoted
as 𝑣0 and the steering angle as 𝛿0. The states of the trailers
are provided by the heading angles 𝜃𝑖, 𝑖 = 1,… , 𝑛 and each
segment position can be calculated by
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with respect to the vehicle-tractor position [
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]⊤. Given

the dynamics of the trailer heading angles 𝜃𝑖, 𝑖 = 1,… , 𝑛, the
difference angles between each segment, i.e., hitching angles
can be depicted as
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2.2. Nonlinear Model Predictive Control
NMPC is generally formulated as an online optimisation

problem for a system with nonlinear dynamics while satisfy-
ing a set of both linear and nonlinear constraints Allgöwer,
Findeisen and Nagy (2004). Given that a controller is for-
mally implemented through a digital computer that samples
the variables of the system and transmits the control action
back at discrete time steps, it is advantageous to consider the
system specified in discrete time as:

𝒙𝑘+1 = 𝒇 (𝒙𝑘, 𝒖𝑘), (6)
where 𝒙𝑘 and 𝒖𝑘 denote the state and the control input
vector at instant 𝑘, respectively. The discrete-time model
is, however, only an approximation of the continuous-time
model.

The objective function in this case is often composed of
the sum of a staged cost 𝒒 and a final cost 𝒑 such that

𝐽 (𝒙, 𝒖) = 𝒑(𝒙𝑁 ) +
𝑁−1
∑

𝑘=0
𝒒
(

𝒙𝑘, 𝒖𝑘
) (7)
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where𝑁 denote the discrete-time horizon. Thus, the discrete
NMPC optimisation problem can be posed as

min
𝒖(⋅)

𝒑(𝒙𝑁 ) +
𝑁−1
∑

𝑘=0
𝒒
(

𝒙𝑘, 𝒖𝑘
)

s.t. 𝒙𝑘+1 = 𝒇 (𝒙𝑘, 𝒖𝑘), 𝑘 = 0,… , 𝑁 − 1,
𝒙 (0) = 𝒙0,
𝒙𝑁 ∈ 𝑓 ,

𝒖𝑘 ∈  , 𝑘 = 0,… , 𝑁 − 1,
𝒙𝑘 ∈  , 𝑘 = 0,… , 𝑁 − 1

(8)

here 𝒙0 is the starting measured state and 𝑓 ⊆ ℝ𝑛 is a
terminal region that we require the system states to reach at
the end of the horizon.
2.2.1. Control Barrier Functions

A Control Barrier Function (CBF) is a function em-
ployed to enforce safety constraints on the states of a dy-
namical system Zeng, Li and Sreenath (2021). Consider the
discrete-time control system intruduced in (6), For safety-
critical control, considering a set  defined as the superlevel
set of a continuously differentiable function ℎ ∶  ⊂ ℝ𝑛 →
ℝ,

 = {𝒙 ∈ ℝ𝑛 ∶ ℎ(𝒙) ≥ 0} ,
𝜕 = {𝒙 ∈ ℝ𝑛 ∶ ℎ(𝒙) = 0} ,

Int() = {𝒙 ∈ ℝ𝑛 ∶ ℎ(𝒙) > 0} ,
(9)

 can be referred to as the safe set and can be regarded as
the ensemble of states satisfying distance constraints

ℎ(𝒙) ≥ 0. (10)
In a stricter manner, the function ℎ becomes a CBF in the
discrete-time domain if it satisfies the following relation,

Δℎ
(
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)

≥ −𝛾𝑘ℎ
(

𝒙𝑘
)

, 0 < 𝛾𝑘 ≤ 1, (11)
where Δℎ

(
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)

∶= ℎ
(

𝒙𝑘+1
)

− ℎ
(

𝒙𝑘
). Satisfying such

constraint implies ℎ
(

𝒙𝑘+1
)

≥
(

1 − 𝛾𝑘
)

ℎ
(

𝒙𝑘
), i.e, the

lower bound of control barrier function ℎ(𝒙) decreases ex-
ponentially at time 𝑘 with the rate 1− 𝛾𝑘. The CBFs are thus
designed to guarantee the forward invariance of the safe set
.

If 𝛾(𝑥) is close to 1, the system converges to 𝜕 slowly
but can easily become infeasible. On the other hand, if 𝛾(𝑥) is
close to 0, the constraint is feasible in a larger domain but can
approach 𝜕 quickly and become unsafe. In this context, we
draw insights from the research conducted by Thirugnanam,
Zeng and Sreenath in Thirugnanam et al. (2022). Their
proposed formulation rewrites the CBF constraint in (11)
such that

ℎ(𝒙𝑘+1) ≥ 𝝎𝑘𝜸𝑘ℎ(𝒙𝑘), 0 ≤ 𝛾(𝒙) < 1 , (12)
where the relaxing variable 𝜔 resolves the trade-off between
feasibility and safety and is optimised with other variables

inside an optimisation formulation. A NMPC formulation
with the CBF integration can be posed as follows,

min𝒖,𝝎

𝑁−1
∑

𝑘=0

[

𝒒
(

𝒙𝑘, 𝒖𝑘
)

+ 𝝍
(

𝝎𝑘
)]

s.t. 𝒙𝑘+1 = 𝒇 (𝒙𝑘, 𝒖𝑘),
𝒖𝑘 ∈  , 𝑘 = 0,… , 𝑁 − 1,
𝒙𝑘 ∈  , 𝑘 = 0,… , 𝑁 − 1,

ℎ(𝒙𝑘+1) ≥ 𝝎𝑘𝜸𝑘ℎ(𝒙𝑘) 𝝎𝑘 ≥ 0 𝑘 = 0,… , 𝑁 − 1
(13)

The proposed construction of CBFs involves formulating a
non-convex optimisation problem to ensure safety guaran-
tees and constraint satisfaction. Non-convexity introduces
the challenge of multiple local minima, making the efficient
discovery of the global solution arduous.
2.3. Distributive Predictive Control

In a platooning scenario, the communication and com-
putational cost of implementing a centralised MPC grows
with the number of vehicles. Thus, it is attractive to produce
a distributed scheme of MPC that both enables autonomy
of the individual vehicles and improves tractability Mishra,
Wang, Gazzola and Chowdhary (2020).

This segment introduces the fundamental concepts of
algebraic graph theory, which are pivotal for comprehending
the upcoming problem statement. Additionally, it sets the
stage for discussing control strategies within a multi-agent
framework and provides an overview of the leader-follower
multi-agent topology.
2.3.1. Graph Theory

Graph theory provides a structured framework for repre-
senting and analysing the interactions between the individual
vehicles within the platoon.

Consider a connected undirected graph  = ( , )
comprising a set of 𝑛 vertices  ∶= {1, 2,⋯ , 𝑛} and a
set of edges  =

{

(𝑖, 𝑗) ∈  ×  ∣ 𝑗 ∈ 𝑖
} Bullo (2022).

Each edge (𝑖, 𝑗) ∈  signifies a communicative link between
vertices 𝑖 and 𝑗. Here, 𝑚 = || is the number of edges and
𝑖 denotes the agents in the neighbourhood of agent 𝑖 that
can communicate with 𝑖.

The adjacency matrix 𝔸 of  is the 𝑛 × 𝑛 matrix whose
elements 𝑎𝑖𝑗 are given by 𝑎𝑖𝑗 = 1, if (𝑖, 𝑗) ∈  , and 𝑎𝑖𝑗 = 0,
otherwise. 𝔸 is symmetric for undirected graphs. The degree
of vertex 𝑖 is defined as 𝑑𝑖 =

∑

𝑗∈𝑖
𝑎𝑖𝑗 . Then the degree

matrix is Δ = diag
(

𝑑1, 𝑑2,… , 𝑑𝑛
). The graph Laplacian

of  is 𝐿 = Δ − 𝔸, this holds particular importance for
continuous time systems.

In truck platooning, distributed control proves advanta-
geous over both centralised and decentralised approaches
due to its real-time adjustments based on local information.
This strategy balances computational complexity from cen-
tralised control and potential synchronisation issues from
decentralised control, leading to improved efficiency, safety,
and adaptability in platoons. Within the distributed scheme,

Beatriz Lourenço, Daniel Silvestre: Preprint submitted to Elsevier Page 4 of 11



Enhancing Truck Platooning Efficiency and Safety

the control inputs may be contingent on the states of individ-
ual agents, such as

𝒖𝑖 = 𝒌
(

𝒙𝑖, {𝒙𝑗 , 𝑗 ∈ 𝑖}
) . (14)

Here, the index 𝑖 represents the specific agent, 𝑖 de-
notes its set of respective neighbouring agents and 𝒌 is the
controller function.

Within the scope of cooperative network communica-
tion, a critical consideration arises concerning choosing an
appropriate topology. While inter-vehicle communication
has long been explored and utilised in various vehicular
applications, the concept of a leader-follower communica-
tion topology has emerged as a preferred and promising
approach in the context of platooning Boulu-Reshef, Holt,
Rodgers and Thomas-Hunt (2020). The rationale behind
this preference lies in the inherently less computationally
demanding and simpler hierarchical structure it offers, while
still achieving consensus within the network. When rely-
ing solely on inter-vehicle communication this introduces
significant complexities associated with establishing and
maintaining direct communication links among all vehicles
within a platoon. This requirement leads to a continuous
exchange of information between multiple nodes, resulting
in heightened network traffic and the potential for latency
issues.
2.3.2. CACC

The core of the CACC system is rooted in its control
structure, which governs the coordination and interaction
between the ego vehicle and the followers within a network,
or a platoon. The platoon comprises a leader vehicle and
𝑛𝑓 follower vehicles, and communication between adjacent
vehicles is facilitated through V2V techniques. When an
obstacle appears in front of the ego vehicle within the same
lane, maintaining an appropriate distance and a slower speed
than the platoon, the CACC system orchestrates the speed
reduction of all platoon members and assigns new cruising
speeds. This control strategy, outlined in more detail in Ma,
Chu, Guo, Wang and Guo (2020), ensures seamless platoon
integration while epitomising traffic flow.

3. Method
3.1. Problem Statement

Platooning refers to a group of vehicles that move in
close proximity, coordinated by an ego vehicle. The single
ego vehicle serves as the leader of the formation while the
followers align closely behind it. A highway-like environ-
ment is to be considered, defined by a set of 𝐿 constitutional
lanes denoted as

 =
{

𝑙0, 𝑙1,… , 𝑙𝐿−1
} , (15)

assuming a left-hand driving configuration. The primary
constraints in this environment are the driving direction
and lane-specific speed limits, which apply to all vehicles
within the platoon. All vehicles considered are modelled as

trucks using the general 𝑛-trailer model described in (1). The
dynamics of the ego agent are then given by

�̇�ego = 𝒇 ego(𝒙ego, 𝒖ego) , (16)
while the dynamics of the follower by

�̇�follower = 𝒇 follower(𝒙follower, 𝒖follower) . (17)
In this setup, only the ego vehicle is equipped with a sensor,
specifically a LiDAR. To achieve a simulation that closely
mirrors reality, we must not assume that the entire environ-
ment is constantly known. Instead, we should account for the
limited range of perception for the sensor. This necessitates
the introduction of the following concept:
Definition 1 (Field of View (FoV)). FoV𝑘 ⊂ ℝ2 is defined
as the set of points at time step 𝑘 which are within direct
line of sight from the sensor resolution, restricted to the ego
vehicle’s current lane 𝑙𝑖. The index 𝑖 auxiliaries the lane
designation present in the road segment considered, ranging
from the leftmost to the rightmost lane.
This research is centred on the development of a NMPC
strategy integrated within a CACC framework capable of
effectively controlling all the agents in the network, and the
platoon while ensuring a safe and feasible trajectory at all
time steps. An emphasis also lies on real-time computa-
tion and decision-making capabilities, with a specific aim
to render the strategy computationally manageable when
compared to state-of-the-art solutions.
3.2. Ego Vehicle

To enable the transition from an Optimal Control Prob-
lem to a Non-Linear Programming formulation, a discrete
model is required, thus, the continuous-time dynamics are
discretised through the explicit Runge-Kutta 4th Order
method, yielding:

𝒙𝑘+1 = 𝒇 (𝒙𝑘, 𝒖𝑘) . (18)
Note that here the ego subscripts were omitted to simplify
notation. Hence, 𝒙 ∈  ⊂ ℝ𝑛, denoting the ego state, and
𝒖 ∈  ⊂ ℝ𝑚 the control inputs. Set  bounds the state
according to the vehicle limitations,  is a compact set and
𝒇 encapsulates the system behaviour.
3.2.1. Environment Interpretation

Recall the highway environment described in (15), thus
its associated constraints, here denoted as , can be formally
defined as follows

 =
{

𝑣0 ≤ 𝑣limit ∣ 𝑙𝑖 ∈  , constraint on lane 𝑙𝑖
} . (19)

Note that 𝑣0 represents the longitudinal velocity of the
vehicle. Thus, the basic NMPC controller for the ego vehicle
can be formulated as

min
𝒖(⋅)

𝑁−1
∑

𝑘=0
𝒒
(

𝒙𝑘, 𝒖𝑘
)

s.t. 𝒙𝑘+1 = 𝒇 (𝒙𝑘, 𝒖𝑘),
𝒖𝑘 ∈  , 𝑘 = 0,… , 𝑁 − 1,
𝒙𝑘 ∈  ∩ , 𝑘 = 0,… , 𝑁 − 1,

(20)
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where 𝒒 depicts the reference tracking penalty. i.e the stage
cost such that

𝒒
(

𝒙𝑘, 𝒖𝑘
)

= (𝒙𝑘 − 𝒓𝑘)⊤𝐐(𝒙𝑘 − 𝒓𝑘)

+ (𝒖𝑘 − 𝒖ref
𝑘 )⊤𝐑(𝒖𝑘 − 𝒖ref

𝑘 ) . (21)

That is when assuming a highway-like environment, the
constraints are the driving direction, 𝑣 ≥ 0, and the speed
limit in the lane, 𝑣limit. Taking into account the onboard used,
that is the LiDAR, the FoV can be redefined as a subset of
points within a certain range and angular span Yin, Yang
and He (2016) Yuan, Liu, Hong and Zhang (2021). Let the
sensor’s position be denoted by (𝑥LiDAR, 𝑦LiDAR) in the 2D
plane, and let 𝜃min and 𝜃max represent the minimum and max-
imum angles of the FoV relative to the LiDAR’s orientation.
Thus, the FoV at a time instant 𝑘 can be mathematically
defined as the set of points (𝑥, 𝑦) such that:

FoV𝑘 = {(𝑥, 𝑦) ∈ ℝ2
|

√

(𝑥 − 𝑥LiDAR)2 + (𝑦 − 𝑦LiDAR)2 ≤ 𝑅max,
𝜃min ≤ 𝜃 ≤ 𝜃max}.

(22)
It is assumed that the sensor is perfectly coupled and aligned
within the ego vehicle. Note that the FoV does not neces-
sarily coincide with the predefined horizon of the NMPC.
Meaning, that information outside the NMPC’s horizon may
not be used immediately for control decisions, even if the
sensor can perceive it, which can affect system performance
and safety.
3.2.2. Obstacle Detection and Geometric Modelling

Due to their convex nature, bounded ellipsoids are well-
suited for representing obstacle geometry, ensuring efficient
and reliable trajectory planning. These ellipsoids are deter-
mined by reference points obtained from the sensor and are
created using Khachiyan’s algorithm for Minimum Volume
Enclosing Ellipsoids (MVEE), be an ellipse obtained from
the algorithm with centre 𝒄 and shape matrix𝐀. The leftmost
boundary of the ellipsoidal obstacles is used as a reference
point for these manoeuvres, especially for predicting a left-
ward overtaking strategy during obstacle avoidance. The
determination of the leftmost boundary point, denoted as 𝒃,
is made concerning a reference frame aligned and centred on
the orientation of the ego vehicle, as illustrated in Figure 2.
This process of retrieving 𝒃 is explained in the Algorithm 1.

3.2.3. Integration with Motion Planning
Here we propose a dynamic obstacle avoidance penalty

method based on an NMPC problem, drawing inspiration
from Artificial Potential Fields Sheng and Wang (2022). The
integration involves incorporating an additional optimisation
problem that is activated only when an obstacle is detected
within the FoV of the ego vehicle, i.e.

FoV𝑘 ∩  ≠ ∅ , (23)

Algorithm 1 Retrieve Leftmost Boundary Point of an El-
lipse

1: Initialise 𝒃0 ← [−∞, 0]
2: Initialise angle range [𝜃min, 𝜃max] ← [0, 𝜋2 ]3: while 𝜃max − 𝜃min > 𝛿 do

4: Compute midpoint angle 𝜃𝑚 ←
𝜃min + 𝜃max

2
5: Construct line  with equation 𝑦 = tan(𝜃𝑚)𝑥
6: Compute intersection points between  and ellipse


7: if there is exactly one boundary intersection point 𝒑

then
8: Update 𝒃𝑖 ← 𝒑
9: break

10: else
11: if 𝒑 has 2 solutions then 𝜃min = 𝜃𝑚
12: if 𝒑 has 0 solutions then 𝜃max = 𝜃𝑚
13: Update angle range [𝜃min, 𝜃max]
14: Output final leftmost boundary point 𝒃 ← 𝒃final

𝑣

𝜃

Figure 2: Scheme depicting the modelling of an obstacle in a
simulated highway setting. The ego vehicle is on the left, the
obstacle is on the right bounded by an ellipsoid. The red dot
indicates the leftmost boundary.

where  represents the set of detected obstacles. Therefore,
the NMPC framework is combined with the previously pro-
posed optimisation problem in (16), allowing for adaptive
obstacle avoidance during motion planning. This is sum-
marised in Algorithm 2.

Algorithm 2 Dynamic Obstacle Avoidance with NMPC
Input: Environment 
Output: Optimized trajectory for motion planning

1: Run NMPC problem stated on Equation (16)
2: if FoV𝑘 ∩  ≠ ∅ then
3: Incorporate obstacle avoidance penalty terms into

the NMPC objective ⊳ According to Equation (25)
4: Optimise the NMPC problem to obtain the trajectory for

motion planning
5: Return Optimised trajectory for motion planning
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Accordingly, to enforce the obstacle constraints to an ac-
ceptable predefined tolerance, we employ a penalty method,
as shown in Algorithm 3.

Algorithm 3 Dynamic Obstacle Penalty
Input: Current time step 𝑘, ego vehicle state 𝒙ego

𝑘 , FoV𝑘,
detected obstacle 𝑖

Output: Cost function with an adequate penalty
1: initiate cost function 𝐉 = 0
2: for 𝑖 = 0 to 𝑁 do
3: Predict obstacle position via KF
4: Compute its leftmost boundary 𝒃𝑖 ⊳ According to

Algorithm 3
5: if available left lane for overtake in  then
6: Define inner product ⟨(𝒙0 − 𝒙𝑘

)

, (𝒃𝑖 − 𝒙𝑘)
⟩

7: Sum the exponential weight to cost function

The proposed reformulated NMPC problem is thus
posed as follows

min
𝒖(⋅)

𝑁−1
∑

𝑘=0

[

𝒒
(

𝒙𝑘, 𝒖𝑘
)

+ 𝒓
(

𝒙𝑘,𝑖
)]

s.t. 𝒙𝑘+1 = 𝒇 (𝒙𝑘, 𝒖𝑘),
𝒖𝑘 ∈  , 𝑘 = 0,… , 𝑁 − 1,
𝒙𝑘 ∈  ∩ , 𝑘 = 0,… , 𝑁 − 1

(24)

where 𝒒 depicts the aforementioned reference tracking penalty
and the term 𝒓 conveys the exponential weight penalty

𝒓
(

𝒙𝑘,𝑖
)

= 𝛽𝑘
⟨(

𝒙0 − 𝒙𝑘
)

, (𝒃𝑖 − 𝒙𝑘)
⟩ (25)

This exponential penalty forces the trajectory to change
locally where the obstacle is predicted to be with rate 𝛽
accounting for the growth of the penalty.
3.3. Follower Vehicles

The primary objective for each follower vehicle is to
execute reference tracking in line with the platoon’s trajec-
tory, resembling the formulation present initially in (16).
However, an additional safety constraint comes into play:
ensuring a safe distance is maintained from the preceding
vehicle. To incorporate this safety consideration, the opti-
misation problem can be formulated as follows:

min
𝒖(⋅)

𝑁−1
∑

𝑘=0
𝒒
(

𝒙𝑘, 𝒖𝑘
)

s.t. 𝒙𝑘+1 = 𝒇 (𝒙𝑘, 𝒖𝑘),
𝒖𝑘 ∈  , 𝑘 = 0,… , 𝑁 − 1,
𝒙𝑘 ∈  ∩ , 𝑘 = 0,… , 𝑁 − 1,

(𝑥0 − 𝑥preceder)2 + (𝑦0 − 𝑦preceder)2 ≥ 𝑑2,

𝑘 = 0,… , 𝑁 − 1.

(26)

The cost function is formulated as in (21). The reference
trajectory 𝒓 for each follower vehicle should be derived from

the ego vehicle’s current position to maintain a cohesive and
synchronised platoon trajectory. Additionally, the control
inputs 𝒖ref are derived from the ego’s optimised steering and
throttle signals.
3.4. CACC for the Proposed Distributed

Controller
In our proposal, the CACC constitutes the cornerstone of

the platooning system, orchestrating the interaction between
the ego vehicle and follower vehicles. We model the network
interactions through the adjacency matrix, denoted as 𝔸,
which captures the connectivity between vehicles:

𝔸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 1 ⋯ 1
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (27)

Let the number of followers in the platoon be 𝑛𝑓 , the degree
matrix quantifies the number of connections each vehicle has

Δ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛𝑓 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (28)

Thus the Laplacian matrix is such that

𝐿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛𝑓 −1 −1 −1 ⋯ −1
0 1 −1 0 ⋯ 0
0 0 1 −1 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋮ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (29)

We remark to the reader that the definitions presented
in this subsection are given just for clarity of the commu-
nication topology. Since we are not proposing a centralized
controller, in the implementation, each vehicle is computing
the control law based solely on their state and the sensor
readings and received data from the ego vehicle and these
matrices are not used as they represent the entire network.
3.5. Implementation

This section delves into the practical implementation of
the proposed algorithm, achieved through the integration of
ROS with Gazebo Sharifi, Chen, Pretty, Clucas and Cabon-
Lunel (2018). An overview of the ego vehicle’s system
architecture is presented in Figure 3.

Here, the perception module supplies the control system
with a precise description of the environment, covering
moving and static objects. This module is primarily based
on a LiDAR sensor, such as the Hokuyo UTM-30LX 2D
laser scanner Hokuyo Automatic. The sensor fusion module
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Control System Actuation
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PerceptionSe
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or
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si
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Obstacle Detection

steering,
breaking

throttle

odometry

Lidar

Figure 3: Holistic view of system architecture for the ego
vehicle. Illustrating the interplay between control system,
actuation, localisation, perception, sensor fusion, and obstacle
detection components.

combines data from multiple sources, such as odometry and
LiDAR, to estimate obstacle positions accurately. Moreover,
it employs a Kalman Filter to estimate the obstacle’s velocity
with the NMPC horizon. The control module is built upon
the NMPC formulation introduced earlier, in (20) for the ego
and (26) for the follower vehicles. To find a locally optimal
solution to the OCP, the state-of-the-art numerical opti-
mal control software CasADi with ipopt solver Andersson,
Gillis, Horn, Rawlings and Diehl (2019) is employed. The
software package allows for reformulating the continuous-
time optimal control problem into an NLP problem.

The distributed control scheme implemented in this re-
search is facilitated through ROS. One key component is
the set of topics, denoted as  , which serves as the com-
munication channels for vehicles within the network. These
topics encompass the main entities involved, including  ego
for the ego vehicle and  follower 1,… , follower 𝑛𝑓 for the
followers. The system is structured around specific object
classes, captured in the set , which includes 𝐶odom for
odometry messages, 𝐶control for control-related data, and
𝐶sensor for sensor information. To manage the roles and in-
teractions within the network, the system employs labels as-
signed to each vertex, which can be collectively represented
as  . These labels correspond to distinct vehicle roles,
with 𝑋0 designating the ego vehicle, and 𝑋1, 𝑋2,… , 𝑋𝑛𝑓representing the labels for the follower vehicles, sequen-
tially. This structured approach allows us to envision the
communication and coordination in a ROS-based system as
a directed graph , where nodes and edges represent vehicles
and their interactions, respectively.

Figure 3 visually captures the essence of this communi-
cation scheme, drawing inspiration from the CACC frame-
work, and highlighting the labels and topics integral to the
platoon’s coordinated operation.

follower 2 follower 1 ego

. . .
𝑋0𝑋1𝑋2

egoego

Figure 4: A visual representation of the information flow in the
platoon dynamics within ROS. The ego vehicle is represented
in blue and the different followers in light grey.

4. Validation
The proposed method is thoroughly assessed to validate

its performance across a range of scenarios, such as lane-
changing manoeuvres, obstacle avoidance and overtaking,
and abrupt braking of the ego vehicle.1

Prior, a minimal parameter tuning to optimise the per-
formance of the proposed algorithm was conducted. The
NMPC weight matrices were such that

𝐐 = diag(100, 150, 10, 5, 10, 5, 5,… , 5
⏟⏞⏞⏟⏞⏞⏟

𝑛-times

) (30)

where 𝑛 represents the number of trailers in the controlled
vehicle model, both for the ego and followers. Additionally,
the control input penalty matrix was defined as a fixed-size
matrix 𝐑 = diag(5, 5). The distance among consecutive
followers or the ego vehicle was defined based on time by
setting a distance reference such that a second is elapsed
between the two vehicles crossing the same position. On the
other hand, velocity reference is not specified and the MPC
solver can select an appropriate value provided is below the
legal limit of 90 km/h and the vehicle is moving towards
the reference point along the lane and the inter-distance is
maintained. We assumed a maximum of 1.6 ft/s2 or 0.4877
m/s2 as acceleration as provided in Yang, Xu, Wang and
Tian (2016). For the maximum turning rate, there are quite
a variety of values depending on the manufacturer and we
selected 100◦/s or 1.7453 rad/s based on values often found
in models for Gazebo. Furthermore, the exponential weight
penalty for the soft constraint in (25) was set to 𝛽 = 3.7. The
prediction horizon was fixed at 𝑁 = 10, and the controller
operates at a frequency of 10 Hz. Additionally, all topics
and services in the ROS system are broadcasted at uniform
time intervals to ensure standardisation. All the forthcoming
experiments were conducted using trucks of comparable
shapes, each featuring a single trailer in a simple tractor-
trailer configuration. The tractor segment has a length of
𝑙0 = 3.5 m, with a hitching offset denoted as of 𝑚0 = 0.5
m. The trailer’s length is 𝑙1 = 6 m. The LiDAR’s operating
range was empirically set to match the road width. Similarly,
the KF parameters were tuned empirically.

1The codebase and resources associated with the
work presented are available in the following repository:
https://github.com/blourenco217/Master-Thesis-Simulation.
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In this study, the computational resources utilised in-
clude a MacBook Pro powered by an Apple M1 Pro chip
with 16GB of RAM. All experiments and simulations were
conducted within a virtual machine environment, facilitated
by Parallels Desktop, using Ubuntu 20.04 and ROS Noetic.

Foremost, basic lane-changing manoeuvres were exe-
cuted with different platoon configurations. In Figure 5 we
present the results for a 4-truck platoon and present the
evolution of the 𝑥 and 𝑦 coordinate for the ego vehicle and
the 3 followers respectively in Figure 5a and Figure 5b.
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(a) Evolution of the longitudinal
distance of the platoon.
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(b) Evolution of the lateral dis-
placement in the road.

Figure 5: Evolution of the position for a 4-truck platoon when
changing lanes.

The 𝑥 position demonstrates a synchronised behaviour,
indicating that the vehicles maintain a constant inter-vehicle
distance throughout the manoeuvre. Meanwhile, the 𝑦 posi-
tion reveals a small ripple effect originating when the ego
vehicle initiates the maneuver, which is then propagated to
the other vehicles as they receive the information.

Shifting the focus to the overtaking scenarios, Figure 6
presents the evolution of the 𝑥 and 𝑦 coordinates over time
for an overtake maneuver of another vehicle that is stationary
in the road. Here, the algorithm’s effectiveness in manoeu-
vring around the obstacle corresponds to the noticeable jump
in the trajectory at the start of the maneuver (that was clocked
to be at 𝑡 = 0) corresponds to the activation of the obstacle
avoidance component of the MPC.

In both scenarios depicted in Figure 7 and Figure 8, the
ego vehicle, equipped with a LiDAR, leads a platoon of
two following vehicles, while an obstacle in the form of a
light-grey cube is on the rightmost lane of the road. In both
instances, the obstacle is successfully avoided.

The obstacle avoidance performance of the system was
compared with a baseline model, as introduced in (13). This
comparison enables a robust evaluation of the system’s ca-
pabilities. Both approaches successfully execute overtaking
without colliding with the obstacle.

Figure 9 and Figure 10 provide a side-by-side compari-
son of the input signals acceleration and turning rate for the
proposed method in comparison with the direct application
of hard constraints in MPC. In the novel method, accelera-
tion exhibits a linear behaviour at the beginning of the ego
vehicle’s movement. Conversely, in the baseline approach,
acceleration shows two steep valleys. These valleys are a
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(a) Longitudinal position for an
overtake maneuver of a static
obstacle.
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Figure 6: Position tracking during static obstacle avoidance.

Figure 7: Snapshots from a 13-second video clip showcasing a
platoon of vehicles navigating past a static obstacle.

Figure 8: Snapshot from a 16-second video clip showcasing a
platoon of vehicles navigating past a dynamic obstacle.

direct result of the CBF method that initially breaks before
attempting to overtake. We remark from the results that the
selected cost function for the MPC resulted in the vehicle
attempting to speed up to decrease the positioning error and
saturating given the bound for the acceleration. On the other
hand, when assessing the steering rate, both experiments
showcase similarities although the proposed method has a
smoother profile. This similarity suggests that the steering
rate profiles in both methods are relatively consistent albeit
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Figure 9: Comparative analysis of the acceleration for the
baseline vs. the novel proposed method.
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Figure 10: Comparative analysis of the turning rate for the
baseline vs. the novel proposed method.

the peaks associated with the maneuvers are less pronounced
in the proposed method due to the proposed soft constraint
with an exponential weight. Other choices for the cost func-
tion can be employed since one might want to smooth the
turning rate by adding a state that tracks the difference
of actuation for two consecutive time steps and adding a
quadratic term to penalize large deviations of the turning
rate.

5. Conclusion
Platoon-based transportation systems offer a promising

solution to revolutionise road transport, with potential ben-
efits in fuel efficiency, reduced emissions, and improved
traffic management. However, the successful implementa-
tion of platoons hinges on their ability to navigate com-
plex environments safely and efficiently. In this paper, we
addressed these challenges by introducing a novel approach
to real-time obstacle avoidance in platoon control systems.
Our approach leverages NMPC to enable platoons to respond
dynamically to obstacles. It integrates seamlessly with exist-
ing platoon control systems and adapts to rapidly changing
road conditions. Safety is a top priority, with penalty soft
constraints ensuring vehicles maintain safe distances from

obstacles while preserving platoon coherence. We demon-
strated the effectiveness of our approach in preventing col-
lisions through real-time simulations, optimising trajectory
planning, and ensuring minimal disruption to traffic flow.

In extensive experiments replicating real-world scenar-
ios, our approach outperformed one established baseline
model in terms of safety, efficiency, and real-time decision-
making. We found that it enhances safety, improves effi-
ciency, and offers real-time adaptability, making platooning
a viable solution for modern transportation needs. Addi-
tionally, our approach excels in providing smoother velocity
profiles in overtaking scenarios.

Despite our significant progress, future research should
focus on scalability, integration with autonomous vehicles,
and real-world testing. This includes exploring cost-coupled
optimisation problems, 3D LiDAR integration, advanced
communication protocols, fine-tuning MPC parameters, and
GPU integration for real-time control.
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