
Enhancing Security through the use of Load-Balancing
Stochastic Algorithms

Rodrigo Fonseca Pires

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Daniel de Matos Silvestre
Profa. Rita Maria Mendes de Almeida Correia da Cunha

Examination Committee

Chairperson: Nuno João Neves Mamede
Supervisor: Prof. Daniel de Matos Silvestre

Member of the Committee: João Pedro Castilho Pereira Santos Gomes

October 2022

Acknowledgments

I have finally made it to end of my academic journey (at least for now). I have spent the last 5 years

studying at Instituto Superior Técnico and, although it was not an easy task, I really enjoyed my time

here. Throughout the course of both my Bachelor’s and Master’s degree I was able to acquire not only

a lot of technical knowledge in the computer science field but also friendships and connections that I will

cherish for life. For allowing me to achieve all of this, I would like to thank the following people.

I would like to thank my family for the support they gave me my whole life and especially the past

5 years. A special thanks to my parents who made it possible for me to move to Lisbon and attend

university, although it being a massive financial and mental burden, they never made me worry about

those problems and allowed me to focus on my studies.

Thank you to all my friends who accompanied me in this journey, we joined IST in the same year and

remained close until the end. I would also like to thank all the teachers that helped me grow in all this

years and gave me the knowledge for me to be where I am at today.

To each and every one of you – Thank you.

This work was partially supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT)

through Institute for Systems and Robotics (ISR), under Laboratory for Robotics and Engineering Sys-

tems (LARSyS) project UIDB/50009/2020, through project PCIF/MPG/0156/2019 FirePuma and through

COPELABS, University Lusófona project UIDB/04111/2020.

i

Abstract

Computer networks are growing everyday, as are the demands on performance and reliability. People

use wireless ad hoc networks everywhere and perform tasks that deal with sensitive data and require

fast responses. The wide spread use of wireless networks makes for an increase in the concern of

attacks like the Man-In-The-Middle attack or Denial of Service (DoS). These attacks are very successful

when routing protocols aim to increase performance, by prioritizing the use of optimal paths with minimal

latency, making the interception of packets easier for an attacker by being trivial to predict. Many security

solutions revolve around authentication methods and cryptography to protect intercepted data. What we

propose here is the use of stochastic algorithms with reinforcement learning that reduces the chances

of interception in the first place.

We approached this topic with a game theory perspective, defining the problem as a game and a

learning algorithm that computes the equilibrium for the current scenarios. In order to assess the different

algorithms, we built a framework to run simulations of our game to prove the results experimentally.

Finally, we compared our results to deterministic approaches used in state-of-the-art network protocols

to show increases in security and minimal impact on the performance. With these results we were

able to conclude that learning algorithms are effective at protecting routers from targeted attacks, while

keeping the network average performance similar to deterministic routing algorithms or even improving

performance thought indirect load balancing.

Keywords

Network protocols; Network routing; Stochastic algorithms; Security; Game theory.

iii

Resumo

As redes de computadores estão em constante crescimento, assim como a necessidade de terem alta

performance e confiabilidade. As pessoas utilizam redes ”wireless” em todo o lado e realizam tare-

fas que lidam com dados sensı́veis e precisam de respostas rápidas. O uso abundante destas redes

leva a um aumento da preocupação com ataques do tipo ”Man-In-The-Middle” e ”Denial of Service”

(DoS). Estes ataques têm grande sucesso quando os protocolos de roteamento dão prioridade à per-

formance da rede, utilizando caminhos ótimos com o mı́nimo de latência, facilitando a interceção de

pacotes por serem triviais de prever. Muitas soluções de segurança revolvem à volta de métodos de

autenticação e encriptação para proteger os dados intercetados. Nós propomos a utilização de al-

goritmos estocásticos com aprendizagem para reduzir as chances de interceção de pacotes na rede.

Atacamos o problema com uma perspetiva de teoria dos jogos, definindo o problema como um jogo e

um algoritmo de aprendizagem para calcular o equilı́brio em vários cenários. Para avaliar diferentes

algoritmos, desenvolvemos uma ”framework” para correr as simulações do nosso jogo para provar os

resultados experimentalmente. Finalmente, comparamos os resultados com soluções determinı́sticas

usadas em protocolos de redes do estado da arte para mostrar melhorias na segurança e impactos

mı́nimos na performance. Com estes resultados conseguimos concluir que algoritmos de aprendiza-

gem são eficazes a proteger routers de ataques direcionados, enquanto mantém a performance média

da rede semelhante à de algoritmos de roteamento determinı́sticos e até, em alguns casos, melhorar a

performance através de ”load balancing” indireto.

Palavras Chave

Protocolos de Rede; Roteamento em redes; Algoritmos estocásticos; Segurança; Teoria de jogos

v

Contents

1 Introduction 1

1.1 Main Objectives . 4

1.2 Terms and definitions . 4

1.2.1 Networks and Routing . 4

1.2.2 Stochastic Learning . 6

1.3 Related Work . 7

1.3.1 Network Routing Protocols . 8

1.3.2 Reinforcement Learning . 9

1.3.2.A Learning algorithms . 9

1.3.2.B Artificial Barriers . 11

1.3.2.C Ant optimization . 11

2 Resilient Learning in Routing Games 13

2.1 Problem Statement . 15

2.1.1 Scenario Overview . 15

2.1.2 Environment . 16

2.1.2.A Network Node . 16

2.1.2.B Network Link . 16

2.1.2.C Network Packet . 17

2.1.3 Agents . 17

2.1.3.A Defender . 17

2.1.3.B Attacker . 17

2.1.3.C Normal user . 18

2.1.4 Game . 18

2.1.4.A Round . 18

2.1.4.B Preparation phase . 18

2.1.4.C Attack phase . 19

2.1.5 Scoring . 19

vii

2.1.6 Formal solution . 19

2.1.6.A Defender . 20

2.1.6.B Attacker . 20

2.1.6.C Game example . 21

2.2 Stochastic routing game development . 22

2.2.1 Software solution overview . 22

2.2.1.A Used Technologies . 22

2.2.1.B Architecture Design . 23

2.2.2 User interface . 24

2.2.2.A MainWindow . 24

2.2.2.B PlotViewer . 28

2.2.3 Backend services . 29

2.2.3.A NetworkGenerator . 29

2.2.3.B NetworkGameBackend . 30

2.2.3.C NetworkGameDataCollector . 31

2.2.4 Libraries . 31

2.2.4.A Network project . 31

2.2.4.B NetworkUtils . 34

2.2.4.C PythonIntegration . 34

2.2.5 Algorithm Implementations . 35

2.2.5.A Routing Strategies . 35

2.2.5.B Packet Creation Strategies . 38

2.2.5.C Packet Picking Strategies . 39

2.2.5.D Route Discovery . 39

3 Simulations and Results 45

3.1 Random routing strategy . 53

3.1.1 No route discovery . 54

3.1.2 Best path only . 55

3.2 Linear reward penalty routing strategy . 56

3.2.1 No route discovery & low probability of creation . 56

3.2.2 No route discovery & medium probability of creation 57

3.2.3 No route discovery & medium probability of creation & high penalty rate 59

3.2.4 No route discovery & high probability of creation 60

viii

4 Conclusion 63

4.1 Summary . 65

4.2 Overview . 65

4.3 Future work . 67

4.3.1 Improving the application . 67

4.3.2 Further investigation . 68

Bibliography 69

A Network images 73

ix

x

List of Figures

2.1 Scenario example . 15

2.2 Game example . 22

2.3 Visual Studio Solution . 23

2.4 Architectural design . 24

2.5 Main window UI . 25

2.6 NetworkViewer controls . 26

2.7 MainWindow Topbar . 26

2.8 MainWindow controls . 27

2.9 PlotViewer . 28

2.10 Network file example . 30

2.11 User configurable properties example . 34

2.12 Generate network properties example . 35

2.13 Update value example with minimum barrier probability = 0.1 37

2.14 Update value example with minimum barrier probability = 0.1 37

2.15 Link probabilities to send packets with destination router 0 using no route discovery . . . 40

2.16 Link probabilities to send packets with destination router 0 using best route only discovery 41

2.17 Link probabilities to send packets with destination router 0 using breadth first route discovery 42

2.18 Link probabilities to send packets with destination router 0 using dijkstra route discovery . 43

3.1 Average variance line chart example . 48

3.2 Average packet queue time line chart example . 49

3.3 Average packet delivery time normalized example . 50

3.4 Router created packets line chart example . 51

3.5 Router created packets percentage line chart example . 52

3.6 Defender created packets percentage line chart example 53

xi

A.1 Network with 20 nodes and probability of each pair of nodes having a link equal to 0.1;

Longest path = 39, Average Path Length ∼ 19, 78, TTL = 59 75

A.2 Network A.1; random routing; no discovery; packet creation probability 0.1 76

A.3 Network A.1; random routing; no discovery; packet creation probability 0.3 77

A.4 Network A.1; random routing; no discovery; packet creation probability 0.5 78

A.5 Network A.1; random routing; best path only; packet creation probability 0.1 79

A.6 Network A.1; random routing; best path only; packet creation probability 0.3 80

A.7 Network A.1; random routing; best path only; packet creation probability 0.5 81

A.8 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.1;

low learning rate . 82

A.9 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.1;

medium learning rate . 83

A.10 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.1;

high learning rate . 84

A.11 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3;

low learning rate . 85

A.12 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3;

medium learning rate . 86

A.13 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3;

high learning rate . 87

A.14 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3;

low reward rate and high penalty rate . 88

A.15 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3;

medium reward rate and high penalty rate . 89

A.16 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3;

high reward rate and high penalty rate . 90

A.17 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.5;

random packet picking . 91

A.18 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.5;

FIFO packet picking . 92

A.19 Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.5;

random remove unreachable packet picking . 93

xii

List of Tables

2.1 Routing table for node V1 . 22

2.2 Routing table for node X . 36

2.3 Routing table for node X . 37

3.1 Comparison for different packet creation probabilities on network shown in Figure A.1 with

random routing and no route discovery . 54

3.2 Comparison for different packet creation probabilities on network shown in Figure A.1 with

random routing and best path only discovery . 56

3.3 Comparison for different learning rates on network shown in Figure A.1 with linear reward

penalty routing, no route discovery and Pc = 0.1 . 57

3.4 Comparison for different learning rates on network shown in Figure A.1 with linear reward

penalty routing, no route discovery and Pc = 0.3 . 59

3.5 Comparison for different reward rates on network shown in Figure A.1 with linear reward

penalty routing, no route discovery, Pc = 0.3, high penalty rate and artificial barriers

(MinP = 0.02) . 60

3.6 Comparison for different packet picking strategies (see Section 2.2.5.C) on network shown

in Figure A.1 with linear reward penalty routing, no route discovery, Pc = 0.5, Rr = 1,

Rp = 1 and artificial barriers (MinP = 0.05) . 62

xiii

xiv

Listings

2.1 .network file example . 29

xv

xvi

Acronyms

AODV Ad-hoc On-demand Distance Vector

A-SAODV Adaptive Secure Ad-hoc On-demand Distance Vector

DSR Dynamic Source Routing

DoS Denial of Service

DSDV Destination Sequenced Distance Vector

MANET Mobile Ad-Hoc NETworks

MAODV Multicast Ad-hoc On-demand Distance Vector

OS Operating System

SAODV Security-aware Ad-hoc On-demand Distance Vector

TTL Time to Live

UI User Interface

WPF Windows Presentation Foundation

xvii

xviii

1
Introduction

Contents

1.1 Main Objectives . 4

1.2 Terms and definitions . 4

1.3 Related Work . 7

1

2

Throughout the years computer networks have been growing exponentially [31,32] in size and com-

plexity while, at the same time, the demands in performance and reliability increase as well. This con-

stant growth puts pressure on researchers to continually work on network routing to allow the networks

to keep expanding without losing their qualities. As of late, computer networks also have the necessity

to be mobile and adaptable, as mobile devices become increasingly more popular [33]. This mobility is

assured by wireless networks, which allow and are prepared for constant changes in their topology, with

nodes connecting/disconnecting and moving around.

Traditional wired networks have a constant topology, that only occasionally changes when new nodes

are added or some are removed/fail. This persistence allows routing protocols to compute optimal paths

between nodes and store them as, they either never change, or do so at such slow rate that recalcula-

tions are scarce. However, when talking about wireless networks, adaptability is key because optimal

paths computed at the present moment may become sub-optimal or even broken due to the volatility of

this type of networks. Thus, wireless networks rely on cooperation between nodes to constantly keep

every node up to date, but this cooperation with unknown participants brings major security concerns,

as they open the doors to attacks such as packet interception, which can be used to either stop packets

from reaching their destination or to ”snoop” information from them. These attacks can even be more ef-

fective if the malicious node is strategically positioned in a optimal path between nodes, as the majority,

if not all of the packets transmitted will pass through them.

Nowadays networks have a lot of built-in security measures to prevent malicious activity, like eaves-

dropping attacks. These measures are usually related with authentication and authorization methods,

using techniques like cryptography to encrypt messages. Although this does not prevent the packets

from being compromised, it secures the information in them. What we propose here is a way to enhance

security by routing means, complementing existing security measures in place, to prevent the packets

from being intercepted in the first place.

The approach we propose here is to use stochastic routing techniques to make use of multiple paths

between source and destination, in order to spread the packets unpredictably through the network. By

using a probability distribution to choose the next hop for a packet instead of precomputed optimal paths,

we make it impossible for an attacker to accurately predict which nodes the packets will pass through. On

top of this, we also introduce reinforcement learning into the routing algorithm, to constantly update the

probabilities and adapt to the current state of the network and possible attackers. By making the nodes

constantly update their routing tables we can quickly adjust to changes in the network and guarantee

close to optimal performance when the network is being compromised as well as when everything is fine

and there are no malicious nodes.

3

To work on the proposed routing algorithm, we took a game theory approach to the problem. We

defined a game that emulates a scenario where there is a network being used my multiple players and

an attacker is introduced. This malicious player will target one of the users in the network, the defender,

and try its best to intercept packets while the network learns to adjust to the malicious activity. By

defining the problem as a stochastic game we will be able to compute its Nash Equilibrium, which allows

us to compare multiple algorithms in different conditions. When the game converges we are able to see

the worst case scenario for that specific situation and consequently analyse which approaches better

respond to an attacker intervention.

1.1 Main Objectives

The main goal of our work is to propose a way to enhance security in computer networks through making

use of multiple routes between source and destination, without negatively impacting the performance of

the network. We have set some objectives we want to work on in order to achieve this goal:

• Develop a framework where it is possible to generate different network graphs with customizable

topology

• Develop the simulation for the game (described in Section 2.1)

• Gather data from the simulations for statistical analysis

• Analyse and compare various strategies and algorithms through simulations to find the best suit-

able to increase security in computer networks (presented in Chapter 3)

• Understand the benefits and limitations of using stochastic routing algorithms

• Present possible ways of continuing further development for future researchers on the topic

1.2 Terms and definitions

In this subsection we define most of the technical terms used throughout the proposal with the aim of

being as objective as possible. How they are connected and used in our game is explained further in

Section 2.1.

1.2.1 Networks and Routing

Computer network: A computer network is a set of computers that are connected either directly

(neighbors) or indirectly (through hopping between neighbors) and can exchange information or share

4

resources with each other. This structure is composed mainly by network nodes, network links and

network packets. It will be represented as a graph G = (V,E).

Network node: In the context of computer networks, a node is either a redistribution point (like modems,

switches, routers, etc.) and/or a communication endpoint (like servers, personal computers, phones,

etc.). A network node is capable of emitting or redirecting network packets through the network. The

nodes in our game will be represented as the vertices V of graph G and will work both as redistribution

points and communication endpoints.

Network packet: Network packets are the unit of data that are transmitted through the network. They

are composed of two types of data: control information and the payload. Control information refers to

the data that the network needs to successfully deliver the packet to its destination. The payload is the

user data to be transmitted from the source node to the destination node. We will ignore the payload in

our simulations because the user data does not influence the routing.

Network link: Links are the medium that connects the various nodes to form a computer network.

Network links can be physical (like electric cables or optical fiber) or wireless (using electromagnetic

waves to communicate). Links will be represented as the edges E of graph G and will represent the

wireless connections between the nodes.

Routing: Routing is the process of selecting a route for a network packet to follow across a computer

network with the objective of reaching its destination node in the network. In our case, we will only be

doing next hop routing because each node only has direct information about its neighbours and cannot

plan a completed route to the destination.

Route: A route in a computer network is a set of routers that a packet can follow to go from a source

node to a destination node. Due to the fact that we will only be performing next hop routing, we can only

know the complete route for a packet when it reaches the destination.

Routing table: The routing process is usually performed with the use of routing tables that maintain in

memory paths to different destinations in the network and possibly some other metrics to help decide the

next hop. Using the routing tables, the node can choose which link the packets will be sent through. This

tables may be specified by the network administrator and/or modified over time using routing protocols.

In our game, the next hop decision will be made as a function of some probability distribution dynamically

computed by a learning algorithm.

5

Routing protocol: Routing protocols specify how nodes communicate with each other in other to

exchange information that can be used in routing algorithms to compute the routes packets can follow to

reach their destination. In our experiments, we will perform this communication ”magically”, as our focus

is in the user packets.

Routing algorithm: Routing algorithms aim to compute a route for packets so they can reach their

destinations. This process is normally done by trying to predict which of the possible routes will be the

best according to a set of metrics. Most routing algorithms use only the best path that was computed,

although it is possible to make use of more than one route.

Multipath routing algorithm: This type of routing algorithm makes use of more than one route simul-

taneously to deliver its packets to the destination. This type of technique usually leads to an array of

benefits, such as increased bandwidth, better fault tolerance and improved security, as we aim to prove

with our game theory approach.

1.2.2 Stochastic Learning

Reinforcement learning: It’s an area of machine learning that explores how intelligent agents make

decisions in an environment with the aim of maximizing/minimizing some form of reward/cost. This type

of learning is especially useful in situations where the agent has a limited amount of information about

the environment.

Repeated game: In game theory, a repeated game is game that consists on a number of repetitions

of a base game. This type of games come form the idea that past playthroughs of the base game will

have an influence on the current and future games being played.

Stochastic game: Is an extension of a repeated game where each action available for each player in a

certain state has an associated probability of being played. This inserts a certain amount of randomness

into the game and makes it possible to explore more combinations and actions when compared to a

game where you always choose the ”best action”. Then, depending on the reward the player obtains in

a ”round” of the base game, it will adjust the probabilities of choosing his actions. We will simulate our

network as a stochastic game so that it is able to adapt to the disruption of the attacker.

Zero-Sum game: Describes a situation in a game where the aggregated gains of all players is equiv-

alent to the aggregated losses of all players, meaning that the net change in the game total ”wealth” is

always zero.

6

Matrix game: Is a two player zero-sum game in which the players have finite strategy sets. In our

game, each node has a finite number of actions, equal to its number of links.

Nash-Equilibrium: In game theory, NA is the usual way of defining a solution for a non-cooperative

game and it represents a set of strategies (one for each player) in which no player, knowing the strategies

all others choose, can unilaterally change its own strategy and get better rewards. This means that, in

a state of NA, no player has any incentive to pick another strategy, thus the game is said to be in

equilibrium.

Saddle point: A saddle point in a Matrix game is a pair of strategies that is both the minimum of its

row and maximum of its column. Also, if there is a NA in a Matrix game, it is necessarily a Saddle point.

Strategy: In game theory, a strategy is an action that a player chooses in a certain state, taking into

account, not only its own set of possible actions but also the other players’ possible moves after the

player did is own.

Pure strategy: A Pure strategy determines the action a player will perform at every possible state the

game can be on. This means that knowing the player and the game state is enough to know for sure

what action he would make. Obviously, a pure strategy does not make sense in our game, as it would

mean always taking the same path, defeating the purpose of a stochastic routing algorithm.

Mixed strategy: A mixed strategy consists in assigning a probability to each possible action a player

can execute in a given state. The player then randomly selects one move based on the probability

distribution. This probabilities are often computed proportionally to some ”expected value” of performing

the said move. This is the type of strategy we want our nodes to employ in order to maximise the

chances of their packets not being intercepted by the attacker.

1.3 Related Work

In this section we will present some work developed in the two main areas of research relevant to our

proposal: Network routing (Section 1.3.1) and Reinforcement learning (Section 1.3.2). We will make a

brief summary of some existing routing protocols as well as some learning algorithms and discuss some

of their shortcomings and flaws to lay the groundwork for our proposal.

7

1.3.1 Network Routing Protocols

We will first be looking at the evolution of Mobile Ad-Hoc NETworks (MANET) through some examples

that have been compiled in [11]. With this analysis we will see that some of the challenges and limitations

of MANET have been haunting researchers in the area of network routing since they first started getting

developed.

MANET have a lot of advantages when compared with more traditional networks, their infrastructure

is easier and cheaper to set up; they offer more fault tolerance due to their decentralized nature; the

usage of multiple hops reduces the risk of bottlenecks and, obviously, they offer the mobility that wired

networks cannot.

However, it is not all advantages as MANET still lacks in reliability due to its ever changing nodes and

connections and, because each router needs to perform routing tasks, they require more memory and

computational power, which contradicts their mobility advantage, as we want mobile devices to be small

and lightweight, but that limits their computational resources and battery power. MANETs are also hard

to scale, because as we increase the number of nodes in the network, the amount of processing power

and memory necessary to keep the routing efficient also increases, putting more work in each individual

node.

There are some other factors that negatively affect the performance of MANETs like the limited range

of wireless transmission and the constant flux of in and out of nodes in the network due to its mobile

characteristics, but here our main focus is security. Due to the mobile and wireless characteristics of

MANETs, malicious nodes can enter the network at any time and launch attacks such as man-in-the-

middle and Denial of Service (DoS). The security of the network is usually maintained by security layers,

like authentication [12] and cryptography [13], but what we propose is a way to increase security through

routing methods.

Some of first MANET algorithms were proposed in the 90’s like the Destination Sequenced Distance

Vector (DSDV) [14] and the Dynamic Source Routing (DSR) [15]. Both algorithms worked with precalcu-

lated routes, which means that when a packet is sent, the whole route is already determined. In order to

compute and maintain paths from and to multiple nodes, these algorithms used a lot of memory (to keep

the routes cached in routing tables) and needed a lot of bandwidth every time recalculations of paths

were necessary. The main difference between the two is in the way that they compute new routes when

a change happens in the network topology, DSDV [14] being proactive by constantly exchanging up-

dates between nodes and DSR [15] being reactive by making use of acknowledgements and triggering

rediscovery of paths when a lot of error messages are received.

8

After learning from the previous algorithms researchers came up with better performing protocols,

one of which was the Ad-hoc On-demand Distance Vector (AODV) protocol [16], improving upon the

DSDV protocol [14] and taking the route discovery through using on-demand route requests from DSR

[15]. But it still lacked a major feature, multicast support, that would be later implemented on a protocol

that was an extension of AODV, the Multicast Ad-hoc On-demand Distance Vector (MAODV) [17]. This

new functionality improves the protocol by enhancing communication with multiple nodes and increasing

routing knowledge while also reducing control traffic overheads [18].

After all these developments made in order to improve the reliability and performance of MANETs

there was still a major issue to be addressed, which was security. Wireless networks are more vulnerable

to a wide variety of network attacks than wired networks due to its non physical way of transmission.

The original AODV protocol had no security measures in place and as such, was extremely vulnerable

to malicious activity, like tempering with the control headers that were used by the nodes to exchange

network knowledge. To try and mitigate this problems, researchers developed numerous security and

authentication methods for MANETs [12] as well as continuing to iterate over previous protocols, such

as the Security-aware Ad-hoc On-demand Distance Vector (SAODV) [19] and Adaptive Secure Ad-hoc

On-demand Distance Vector (A-SAODV) [20], both designed after the AODV protocol, but with security

in mind.

Although a lot of progress has been made to improve security in wireless networks [21], the solutions

mostly revolve around authentication and authorization methods, that prevent attackers from forging

or changing messages and inject them into the network. What we want to propose here is a way to

improve security through routing methods, making it harder for a malicious node to have the chance of

intercepting packets in the network or having to expend a lot more resources to do so.

1.3.2 Reinforcement Learning

Now we will take a look at works developed in the machine learning area, more specifically, reinforce-

ment learning methods and techniques. Agents using this form of learning rely on getting rewards (or

penalties) for their actions, resulting in them adjusting their strategies to try to maximize some sort of

score or minimize some cost [22].

1.3.2.A Learning algorithms

Xiaosong Lu and Howard M. Schwartz designed and presented a decentralized learning algorithm [4]

that makes use of the Lagging Anchor algorithm [5] [6] to converge to a Nash-Equilibrium in two-player

zero-sum matrix games, be it a Pure Strategy or a Mixed one. They also proved that the algorithm

converges into NA with only the knowledge of the action and its reward. To achieve this, the authors

9

studied other algorithms that served as inspiration for the development of their own and divided them

into two groups. Of the four presented here, the first two are based on learning automata, which have

the objective of learning the optimal strategy by updating its action probability distribution based on the

environment response [4]. The latter two are based in gradient ascent learning methods that consist in

updating the player strategy in the direction of the current gradient with some small step size [8].

(1) Linear Reward-Inaction Algorithm The Linear Reward-Inaction algorithm is defined in [7] and

consists on a reinforcement learning method that attributes a probability to each action of a player and

after each play, if the reward was positive, the probability of choosing the same action in the future

increases, otherwise nothing changes. It is also proven in [7] that if all players in a matrix game use

this algorithm, then it ”guarantees the convergence to a Nash Equilibrium under the assumption that the

game only has strict Nash equilibria in pure strategies” [4].

(2) Linear Reward-Penalty Algorithm The Linear Reward-Penalty algorithm is similar to the previ-

ous Linear Reward-Inaction algorithm in the sense that it gives each of the actions of the player some

probability of being executed and after each play, if the reward is positive, it will increase the respective

probability of that action to be picked. However, if the action fails to give a positive reward, instead of

doing nothing, we decrease the probability of using the same action in the future. This algorithm can

only be applied to two-player zero-sum games that have Nash Equilibrium in fully mixed strategies [7].

It is also important to note that the Linear Reward-Penalty algorithm ”can guarantee the convergence to

the Nash equilibrium in the sense of expected value, but not the player’s strategy itself” [4].

(3) WoLF-IGA Algorithm Win or learn fast-infinitesimal gradient ascent algorithm [9] can be applied in

two-player two-action matrix games. The algorithm constantly updates the player strategy based on the

current gradient and some variable learning rate. This learning rate is smaller when the player is winning

when compared with the value when the player is losing. This algorithm ”can guarantee the convergence

to a Nash equilibrium in fully mixed or pure strategies for two-player two-action matrix games” [4], but is

not decentralized because the player needs to know its own reward matrix and the action selected by

the opponent.

(4) The Lagging Anchor Algorithm Introduced by Dahl [5] [6], the Lagging Anchor algorithm, like the

previous one, updates the player strategy according to the gradient but, unlike the WoLF-IGA algorithm,

in this one ”the limitation on each player’s actions to be two actions is removed and the convergence to

the Nash equilibrium in fully mixed strategies is guaranteed” [4], but it still requires the knowledge of the

reward matrices of the players, thus this algorithm is also not decentralized.

10

After studying the previous algorithms, the authors in [4] designed the LR−I Lagging Anchor algo-

rithm, focusing on ”both the player’s current strategy and the long-term average of the player’s previous

strategies at the same time” [4]. They basically took the way in which the player strategy is updated

in the Linear Reward-Inaction algorithm and added the lagging anchor term from the Lagging Anchor

algorithm [4]. They also proved that this new algorithm guarantees the convergence to NA in both pure

and fully mixed strategies in two-player two-action zero-sum games.

What makes this algorithm especially useful is the fact that it is decentralized, which is the type of

learning we want to apply to our network so that each node can be independent from all others. Also,

because we will be working with an incomplete information game, only needing to know the action and

consequent reward is a really good reason to try to make use of this algorithm.

1.3.2.B Artificial Barriers

Anis Yazidi, Daniel Silvestre and B. John Oommen discuss and propose the use of Artificial Barriers

in Learning Automata to solve Two-Person Zero-sum Stochastic Games [1]. LA had previously been

used [2] to compute the Nash-Equilibrium of this type of games under limited information. However, they

noted that these existing algorithms often focused in the cases where the Saddle Point existed in a Pure

Strategy. This can be a problem, especially on the game we are trying to solve in our research, because

if the game strategy converges into a single action, it becomes easy to predict the other player’s move.

So, they proposed a solution that makes it possible to converge into an optimal mixed Nash-Equilibrium

even if the game has no Saddle Point when a Pure Strategy is invoked. This was accomplished with the

use of Artificial Barriers that prevent the game from being absorbed into a Pure Strategy. Although a

similar method had already been proposed by Lakshmivarahan and Narendra [3] 40 years ago, this new

approach is, as described by the three researchers, “more elegant and required less parameter tuning”.

In section ”IV.Simulations D.Real-life Application Scenarios” [1] they suggest the use of their leaning

algorithm in security games and describe a very similar, although simpler, version of the game we

are trying to investigate in our proposal. The main reason for this suggestion is that a mixed Nash-

Equilibrium is preferred over Pure Strategies in security games, because it makes it a lot harder to

predict what the other player will do.

1.3.2.C Ant optimization

Ant optimization is a technique used to find good paths in a network. Initially proposed by Marco Dorigo

in 1992 [23] [24], the idea was to find an optimal path in a graph by emulating the ants’ behavior when

seeking a path between their colony and a source of food.

11

Real ants start by wondering randomly looking for food. When a ant finds a source of food, it starts

walking back to the colony and leaving a pheromone trail where it passes. Other ants will be attracted

to that pheromone and are more likely to start following that path. When they eventually find food as

well, they will reinforce the trail with more pheromones, creating a positive feedback loop where more

ants following a path will attract even more ants. This pheromone evaporates over time and if no ants

follow a path it will eventually be lost. This fact is very relevant, as longer paths will be more likely to

disappear, as they take more time to transverse, thus letting the pheromone evaporate. Thanks to this

fact, we avoid converging into a local optimal solution, as shorter paths will be more likely to retain higher

concentration of pheromone [25].

This type of algorithms have numerous applications in computer networks [26] [27] and we took

great interest in them because of their decentralized nature as well as being fast to adapt to changes

and having a low amount of overhead [25]. These characteristics make this approach a good candidate

for building a stochastic routing algorithm, as it will be useful to set the initial probabilities in the nodes’

routing tables to take advantage of multiple paths between source and destination.

12

2
Resilient Learning in Routing Games

Contents

2.1 Problem Statement . 15

2.2 Stochastic routing game development . 22

13

14

In this chapter we will go over the problem at hand, describing it and identifying the elements and

rules that compose it. Then we will present the software solution that was developed to help us study

the problem.

2.1 Problem Statement

In this section we will describe the game that we will be implementing and studying to analyse the

different strategies and algorithms to make and optimize routing decisions. We will start by making a

more informal and general description of the solution to give an overview of the game and make it easier

to understand. Then we will formalize it with a Game Theory approach.

2.1.1 Scenario Overview

First, we will present an example scenario to help illustrate the problem. As shown below, in Figure 2.1,

our problem consists in a computer network where there are multiple users exchanging packets. At some

point, an Attacker infects a router in the network. This malicious user has the objective of intercepting

packets from a specific user, we call it the Defender, from reaching their destination, the Target User.

What we want to study in this scenario is how can the routing algorithm adapt to help mitigate the

negative impact that the Attacker creates on the Defender; without needing to know who the Attacker

and Defender are, or even if there is a malicious user in the network.

Figure 2.1: Scenario example

15

2.1.2 Environment

Now let us describe the game environment in which the players will compete. Since we are trying to

simulate what would happen to network packets P in a computer wireless network, what makes the

most sense is representing the game world as a graph G = (V,E), in which the vertex Vi represents

the network node number i and the edge Ei,j represents the network link connecting nodes i and j.

Although this is a simulation, we want to apply some restrictions on our game network components to

closer reassemble a real life scenario, thus making the game more realistic and the obtained results

more reliable.

2.1.2.A Network Node

As stated before, a network node is represented by the vertex Vi of the graph G and works both as a

redistribution point and a communication endpoint. This means that all vertices are capable of redirecting

incoming packets as well as generating new ones and injecting them into the network.

A node can only send one packet per each unit of time and has a waiting queue that can have a

limited capacity. If a node has a full waiting queue it will discard some packets following some policy, for

example:

• Discards the latest packets that arrived at the node (gives priority to the packets that arrived first)

• Discards the oldest packets (the ones with lower Time to Live (TTL), meaning that they have been

circulating for more time)

• Discards the packets that are further away from their destination node (because they could be

more likely no not make it)

Aside from this discard policy, each node will also have a routing table that will determine which link

are the packets sent to. We will talk more about this in Section 2.2.5.A.

2.1.2.B Network Link

A network link that connects node i and node j is represented by the edge Ei,j and it works as the

medium in which packets can be transmitted from one node to another. Every link has a positive integer

length l that represents the number of units of time that a packet takes to be transmitted from node i to

node j and vice-versa.

16

2.1.2.C Network Packet

Network packets P are the units of data that transverse our network and carry the data to be transmitted

from some node Vi to some node Vj and metadata that takes part in helping to deliver the packet to its

destination. 1

Metadata that packets contain:

• Source/Destination node number

• TTL

• Route taken thus far

2.1.3 Agents

Our game is a competitive game, where two agents are trying to maximize their own score. On one

hand we have what we will call the defender and it represents a ”normal” user of the network that has

access to a node and wants to send packets to some other node; on the other hand we have the attacker

which represents a ”malicious” user of the network that is trying to sabotage the communication of the

defender.

2.1.3.A Defender

The defender has access to some node Vdefender in the network where he can inject packets. In each

unit of time, the defender can either send one packet or do nothing. The defender has no idea that

is being attacked and as such considers everything that happens to its packets a consequence of the

environment.

2.1.3.B Attacker

The attacker infects one node in the network that is neither the node that the defender has access

to or the node that the defender wants to send packets to (as that would make the attacker have an

overwhelming advantage). The attacker has control over the infected node and can:

• Generate packets and inject them in any link connected to the infected node

• Control the waiting queue of the node and the next packet to be sent

• Drop packets from the defender
1The data part of the packet is irrelevant in our simulations; we will assume that every packet has ”valid” data, because the

point here is to increase security through routing means and not data verification.

17

2.1.3.C Normal user

Normal users perform the same actions as the defender, but are not being targeted by the attacker. Their

role is to send packets to populate the network and make for a more realistic and complex scenario.

These agents could be seen as a part of the environment.

2.1.4 Game

A game has two phases: the ”preparation phase” (see Section 2.1.4.B) and the ”attack phase” (see

Section 2.1.4.C). A game is separated in multiple ”rounds” and each round represents what happens in

a unit of time.

2.1.4.A Round

A round represents everything that happens in one unit of time. In a round:

• Every network user (including the defender and the attacker) can send one packet through one of

its links

• Every packet that is currently on a link moves one step forward

• Every packet that either reaches its destination or gets dropped (by running out of TTL or, in the

case of the packets sent by the defender packets, gets attacked) sends an acknowledgment2 to all

the nodes it passed through

2.1.4.B Preparation phase

At the start, there is no attacker and the nodes have empty routing tables. In this phase the goal is to

populate these tables and establish the best routes in a normal situation. This is done by generating

packets in every node and send them to random destinations.

In this case, without the disruption of the attacker we expect the routing tables to tend to favor the

shortest paths if the number of packets sent is not too high. Otherwise, if the network is crowded

with packets we expect the routing tables to tend to favor splitting them between multiple links to take

advantage of multiple paths.

After some arbitrary number of iterations the tables will reach some equilibrium and won’t change

much anymore (if the rate at which packets are generated is constant). When this equilibrium is achieved

we can introduce the attacker.

2We are not going to simulate acknowledgment packets (might be something to experiment on in the future)

18

2.1.4.C Attack phase

In this phase the attacker starts by choosing a node to infect (that is not the source/destination of the

packets sent by the defender). Then the attacker starts redirecting packets that reach the infected node

and dropping packets that come from the defender.

In a similar fashion to the previous phase, the network will eventually reach an equilibrium in which

it wont change its routing tables much anymore, we can end the game at this point and collect relevant

data to compute ”scores” for both players.

2.1.5 Scoring

At the end of a game we want to attribute a score to both the attacker and the network (represented

by the defender). This will let us compare different strategies and algorithms across different games.

On one hand, the attacker will be rewarded by how much he was able to disrupt the packets sent by

the defender, on the other hand the network will be rewarded by how much it was able to ”protect” the

defender from the disruption caused by the attacker.

To attribute these scores we will use multiple metrics, like the packet loss experienced by the defender

(both from direct attacks and timeouts) and the time, paths and number of hops that packets took to arrive

to the destination (minimum/maximum, average, standard deviation, etc.).

2.1.6 Formal solution

Now we will formally define the proposed solution as a game. To define a game we need to specify

the Players, their available Actions, the Payoffs for each action and the Information that they have at

each point, known as PAPI (players, actions, payoffs, and information) [10]. We will be referring to

the proposed game as ”Stochastic Routing Game”. The game only truly starts when we have both

the attacker and the defender in the network, which we refer to as the ”Attack phase” described in

Section 2.1.4.C.

In the Routing Game we will define the players as attacker and defender. Both of the players will

occupy and play as a router (node in the graph), but there are many more routers in the network. These

other routers will have the same actions and information as the defender, but will not be targeted by

the attacker and will not have the objective of maximising some score/utility. As such, for simplicity of

the model, we will treat all other routers as the ”Nature” [10]. They will be simply following the routing

algorithm controlled by the defender and inject packets into the network randomly.

19

2.1.6.A Defender

The defender action set will be dependent on how many links the node he is occupying is connected

to, let us call it Vdefender. If the node Vdefender has n links, then the defender action set is defined

as Adefender = {ai}, (i = 1, ..., n), where each action ai represents sending a packet through the

ith link of node Vdefender. We also define the target node for the packets sent by the defender as

Vtarget ̸= Vdefender.

Each action ai will also have some probability pi of being executed by the defender and the set

of probabilities is defined as Pdefender = {pi}, (i = 1, ..., n), where each probability pi represents the

likelihood of sending the packet through link i of node Vdefender.

As for the payoff of each action, we need to first make the distinction between the expected payoff

and the actual payoff. Not only the defender cannot know the exact payoff some action will give when

it is played out, he also does not know right after executing the action. This is due to the fact that we

cannot know how successful or unsuccessful the network was at delivering a packet before it either

reaches the destination or is dropped. Because of this delay in receiving the reward, the defender needs

to have a set of expected payoffs for each action ai, defined as Edefender = {ei}, (i = 1, ..., n), where

each expected payoff ei represents an estimate of how successful the network will be at delivering the

packet through link i of node Vdefender, which directly correlates with the probability pi.

Regarding the information the defender (or any other node that is not the attacker) has available, he

only knows the final reward (score) of every packet he sent. This means that when a packet sent by the

defender reaches its end, successfully or not, the defender gets an acknowledgement3 with the reward

and associates it with the action ai that was executed to send the respective packet. This also means

that the order in which the defender gets the rewards for the actions he executes is not guaranteed to be

the same as the actions were played out. Because of this limited amount of information, we can even

consider the attacker as part of the ”Nature” from the perspective of the defender, as he is unaware that

he is being targeted.

2.1.6.B Attacker

The attacker has a decision to make before the start of the game that will influence the game until the

end. After the ”Preparation phase”, described in Section 2.1.4.B, the attacker has to pick a node to

occupy, (that is neither the defender or the target of the packets sent by the defender), let us call it

Vattacker ̸= Vdefender ̸= Vtarget.

After the making this initial decision, the game begins (start of the ”Attack phase”, see Section 2.1.4.C)

and the attacker has one action set dependent on how many links the node Vattacker is connected to. If

3As explained in note 1 in Section 2.1.4.A, this acknowledgements are made ”magically” in our game for the sake of simplicity.

20

the node Vattacker has m links, then the attacker action set is defined as Aattacker = {bi}, (i = 1, ...,m),

where each action bi represents sending a packet through the ith link of node Vattacker.

Each action bi will have some probability qi or ri of being executed by the attacker depending on the

origin of the packet at play.

If the packet has as its source the node Vdefender, the set of probabilities is defined as PattackerD =

{qi}, (i = 1, ...,m), where each probability qi represents the likelihood of sending the packet through link

i of node Vattacker.

If the packet has as its source some node Vi ̸= Vdefender, the set of probabilities is defined as

PattackerN = {ri}, (i = 1, ...,m), where each probability ri represents the likelihood of sending the

packet through link i of node Vattacker. (This separation gives the attacker means to strategize in a way

that he can maximize the damage caused to the defender while ”doing its job” as a normal router so that

the other routers do not start avoiding sending packets through Vattacker.)

Similarly to the defender, the attacker has to make his decisions based on an expected payoff, be-

cause he can only know the actual payoff of executing an action after the affected packet reaches its

end. As such, the attacker needs to have two sets of expected payoffs for each action bi, dependent on

the origin of the packet at play.

If the packet has as its source the node Vdefender, the set of expected payoffs is defined as EattackerD =

{fi}, (i = 1, ...,m), where each expected payoff fi represents an estimate of how unsuccessful the net-

work will be at delivering the packet through link i of node Vattacker.

If the packet has as its source some node Vi ̸= Vdefender, the set of expected payoffs is defined

as EattackerN = {gi}, (i = 1, ...,m), where each expected payoff gi represents an estimate of how

successful the network will be at delivering the packet through link i of node Vattacker.

In regards to the information available to the attacker, he only has knowledge of the final reward of

every packet he sent (same as all other nodes). This means that he has the same amount of information

has the defender, except for the fact that he knows who the defender is (otherwise he would not be able

to target him) and can differentiate between packets sent from the defender and all other nodes.

2.1.6.C Game example

Let us now present an example of the described game. In Figure 2.2 we can observe a game in the

Attack Phase (Section 2.1.4.C) that has been running for some time. The network has 6 routers, where

VD represents the defender, VT the destination for the packets created by the defender, VA the attacker

and V1, V2, V3 are normal users. The values in each extremity of a link represent the probability that the

node closest to the value has to send a packet through the link, when the destination of said packet is

VT . As an example, the routing table for V1 is shown in Table 2.1 for this moment in the game.

21

Table 2.1: Routing table for node V1

Link to VD Link to VA Link to V2

Router ?
Router VT 0.1 0.3 0.6
Router ?

Figure 2.2: Game example

2.2 Stochastic routing game development

In this section we will present the software project developed4 to facilitate the study of different network

and agent configurations to test and evaluate the proposed stochastic routing game. We will be going

through what was developed and how it works, as well as suggestions for improving the project and

further development ideas.

2.2.1 Software solution overview

2.2.1.A Used Technologies

First let us look at what technologies were used to develop the solution. The solution is written for the

most part in C# and developed in a visual studio environment. The program interface is a Windows

Presentation Foundation (WPF) project, which can only be ran on Windows systems, but all other sup-

porting projects are written in .NET Standard 2.0 which can be compiled to run in any system. This

means that if you want to run the solution in another Operating System (OS), you will need to implement

a new interface for it.

4You can view the code at https://github.com/RodrigoPires190776/NetworkGame

22

Other than standard Microsoft libraries, the WPF project also makes use of the ScottPlot.WPF [28]

library to display all the graphs used to present the simulations’ data.

There is also an optional feature that makes used of the Python3 library NetworkX [29] to generate

graphs given some parameters. This feature is integrated in the main solution, but you will need Python3

installed on the machine where you are running the program.

2.2.1.B Architecture Design

Let us analyse the overall architecture design of the solution.

The solution is composed of seven projects and can be divided in three major parts:

• User interface(Section 2.2.2): NetworkGameFrontend

• Backend services(Section 2.2.3): NetworkGameBackend, NetworkGameDataCollector and Net-

workGenerator

• Libraries(Section 2.2.4): Network, NetworkUtils and PythonIntegration

The user interface contains the executable part of the solution, where the user can see, interact and

control the application; the backend services have the logic to execute the main functionalities of the

application and the libraries consists of data structures and useful functions used across all backend

services.

Figure 2.3: Visual Studio Solution

23

NetworkGameFrontend

PythonIntegration

NetworkGameDataCollector NetworkGeneratorNetworkGameBackend

Network

NetworkUtils

User interface

Backend services

Libraries

Figure 2.4: Architectural design

2.2.2 User interface

First let us present the User Interface (UI) for the NetworkGame solution. There are 3 types of windows

that you can interact in the application, the MainWindow (Section 2.2.2.A) where you can see and con-

figure the NetworkGame simulations; the PlotViewer (Section 2.2.2.B) where various plots are rendered

to preset data from the simulations and miscellaneous windows that allow the application to prompt the

user for inputs.

2.2.2.A MainWindow

There are two major parts on the MainWindow UI, the Network Viewer (Figure 2.5 left) and the controls

(Figure 2.5 right and top).

24

Figure 2.5: Main window UI

A – NetworkViewer The NetworkViewer allows us to observe the simulations in real time to better

understand how the combination of algorithms and configurations being tested behave. It has multiple

functionalities:

• Panning: Holding the left mouse button and moving the cursor allows the user to pan over the

network

• Zooming: Scrolling the mouse wheel lets the user zoom in and out on the network

• Change speed: Slow down (Figure 2.6 1) and Speed up (Figure 2.6 3) the simulation

• Pause: Pause and resume (Figure 2.6 2) the simulation

• Change game: When running more than one game in a simulation, the user can change the game

being displayed (Figure 2.6 4) by typing the ID (0 to Number of games - 1) and pressing the button

(Figure 2.6 5)

• Hide packets: Show/Hide (Figure 2.6 6) packets in the network

• Show router information: Clicking on a router displays its information

25

Figure 2.6: NetworkViewer controls

B – Controls The application controls include the top bar and the right side panel. They allow the

user to control and configure the simulations.

The top bar lets us:

• File/Import: Import (Figure 2.7(a) 1) a network file into the application

• File/Generate: Generate (Figure 2.7(a) 2) a random connected network with some configurable

parameters

• Network/Load Network: Load (Figure 2.7(b) 1) a network that was either imported or generated

into the NetworkViewer

• Network/Export Network: Export (Figure 2.7(b) 2) a network into a file that the user can later import

back into the application

(a) File (b) Network

Figure 2.7: MainWindow Topbar

On the right side of the MainWindow we have the NetworkControls, where we can customize the

simulations we want to run, see live data from the simulations and create graphs to display data from

the NetworkGames. Using the NetworkControls we can:

• Choose (Figure 2.8 1) and configure (Figure 2.8 2) strategies for:

– Routing (Figure 2.8 1)

– Picking the next packet that a router will send (Figure 2.8 3)

– Generating new packets (Figure 2.8 4)

– Initialize the routing tables (Figure 2.8 5)

26

• Define the number of games (Figure 2.8 6) to run in parallel; the packet TTL (Figure 2.8 7) and

choose if the runtime data should be saved (Figure 2.8 9)

• Start the simulation (Figure 2.8 8)

• Observe data from the selected router (Figure 2.8 10)

• Introduce the attacker into the network (Figure 2.8 11)

• Generate (Figure 2.8 13) and configure (Figure 2.8 12) plots

• Generate the default plots (Figure 2.8 14) (this are the graphs that we most used during our testing)

• Observe information (Figure 2.8 15) from the network

Figure 2.8: MainWindow controls

27

2.2.2.B PlotViewer

A PlotViewer Figure 2.9 opens every time the user wants to render a graph. There is no limit to how

many PlotViewer windows can be open at the same time and they are all independent from each other.

In this window has functionalities such as:

• Panning: Holding the left mouse button and moving the cursor allows the user to pan over the

graph

• Zooming: Scrolling the mouse wheel lets the user zoom in and out on the graph

• Show Plot Information: Such as; if the data presented is an average of all running games or

a specific game (Figure 2.9 1) and how many game cycles does it take to update the network

(Figure 2.9 2) (how many cycles a unit on the x-axis represents)

• Reset View: Restores (Figure 2.9 3) the view of the graph to show the whole graph

• Save: Prompts (Figure 2.9 4) the user to choose a name and location to save a high resolution

image of the graph

Figure 2.9: PlotViewer

28

2.2.3 Backend services

In this section we will present the Backend services that implement all the logic required to import/ex-

port/generate networks (Section 2.2.3.A); run the simulations (Section 2.2.3.B) and gather data to be

presented in graphs (Section 2.2.3.C).

2.2.3.A NetworkGenerator

The NetworkGenerator project allows us to import/export networks in and out of the application and

generate networks using a python library.

A – .network file extension With the objective of being able to use the same network across multiple

simulations, we needed a way to store the network structure and load it into the application. For that, we

defined a structure that represents the network and allows the program to import and export networks.

The .network file has the following structure:

Listing 2.1: .network file example

1 6 # Number of routers in the network

2 0.1,0.2 # ---------------------------

3 0.7,0.8 #

4 0.3,0.9 # Positions of each router on a

5 0.8,0.4 # square with side length 1

6 0.85,0.5 #

7 0.2,0.4 #

8 1-2 # ---------------------------

9 0-3 #

10 0-1 #

11 0-2 # Links in the network , where the routers

12 3-4 # are identified by the order in which

13 1-4 # they appear in the "Positions" section

14 0-5 #

15 1-5 #

29

This example file Listing 2.1 will generate the following network when loaded into the application:

Figure 2.10: Network file example

B – Generator The NetworkGenerator project makes use of the Python library networkX to generate

random connected graphs and export them into a .network file that we can use in simulations. It takes

in 3 parameters: number of nodes, probability of 2 nodes having a link and the shortest length a link can

have.

2.2.3.B NetworkGameBackend

In the NetworkGameBackend project we have only 2 classes: Game and GameMaster. The main

objective of this project is to synchronize the multiple simulations that we can run at the same time and

to expose controls of the games to the NetworkFrontend project.

30

A – Game A Game contains one network. It is responsible to run the simulation on the network and

fire an event every time the network completes a cycle. This event will then be used to coordinate the

information shown on the application as well as the data gathered in the plots.

B – GameMaster The GameMaster class controls all the Games that are being ran at the time,

providing:

• Load balancing: When we have a lot of Games running at the same time, the GameMaster dis-

tributes the load across multiple threads to improve the performance of the simulations

• Synchronization: The GameMaster makes sure that all the games are in the same game cycle;

allowing the plotting of data from multiple games in real time

• Expose controls: This class also exposes functions that allow to control the simulations, such as

”Run/Pause” and ”Introducing the Attacker” into the networks

2.2.3.C NetworkGameDataCollector

The NetworkGameDataCollector is composed of 4 data structures that hold data about the various

entities of a network (routers, links, packets and the network itself). The main class on this project,

NetworkDataCollector, serves as a middleman to access the simulation data in the rest of the solution.

2.2.4 Libraries

In this section we will take a lot at the supporting libraries that contain data structures and functions

that are used across the entire solution. There are 3 libraries: PythonIntegration (Section 2.2.4.C) and

NetworkUtils (Section 2.2.4.B) that provide useful functions to other projects and the main library of the

solution, the Network project (Section 2.2.4.A).

2.2.4.A Network project

The Network project contains the logic of how the network works and how its should ”behave” during

a game. Its main class, NetworkMaster, holds all the networks loaded in the application and makes

them available in the whole solution. The classes that define the main Components in the games are

also implemented on this project, containing their data structures and logic, as well as, the Strategies

that change the behavior of the components and Route Discovery that allow us to set different initial

conditions.

31

A – Components The components in a game are the network, the routers, the links and the packets.

Every cycle of the game, every component performs a step, updating itself following the rules of the

game. Going from the simplest to the most complex, we have:

Packet:

• Increments the number of steps

Link:

• Advances all the packets in the link one position forward (depending on the direction they are

going)

• If a packet reaches a router, removes the packet from the link

• If a packet reaches the TTL, it is removed from the network

Router:

• Checks if there are packets in the queue that have reached the TTL, if so, removes them

• Tries to create a packet according to its Packet Creation Strategy

• If there are any packets in the queue:

– It chooses one to send following its Packet Picking Strategy

– Chooses which link to send the packet through, according to its Routing Strategy

– Sends the packet and removes it from the queue

Network:

• Steps all the packets

• Steps all the links

• Steps all the routers

• Created the update objects that contain the changes in the network for that cycle

After every cycle, the network returns an UpdateState object that has the information about the

changes that happened in that cycle. The UpdateState object corresponds to the network, in the same

way that the UpdateRouter, UpdateLink and UpdatePackets objects correspond to the Router, Link

and Packet components, respectively. This type of objects are called UpdateObjects and contain the

following information:

32

UpdatePacket:

• Number of cycles the packet has been alive for

• Whether it has reached its destination or not

• Whether it has been dropped or not

UpdateLink:

• List of the packets currently in transit in the link

• List of packets that were in transit in the link, but reached a router in this cycle

• List of packets that were in transit in the link, but were dropped in this cycle

UpdateRouter:

• Number of packets in queue

• If a packet was created this cycle

• If a packet was sent this cycle

UpdateState:

• List of UpdatePackets

• List of UpdateLinks

• List of UpdateRouters

• Average variance

• Number of total cycles that the network has been running for

These objects are then used to update the visual interface of the application, as well as providing

information to plot the simulation data in graphs.

B – Strategies The Strategies in the game define the behavior of the components and allow us to

test different combinations of configurations for the network. There are 3 types of strategies: Rout-

ing Strategies(Section 2.2.5.A), Packet Creation Strategies(Section 2.2.5.B) and Packet Picking Strate-

gies(Section 2.2.5.C).

C – Route Discovery By default, every link has the same probability of being chosen to send a

packet through at the start of the game. The Route Discovery option allows us to set the initial probabil-

ities in some other way, in order to test how the network adapts with different initial conditions.

33

2.2.4.B NetworkUtils

This library serves as a base for the entire solution, where we can define useful classes and functions

that we want to make available to all projects. Currently there is only one class implemented here, the

Property class; which lets us more easily implement user defined properties into the code.

For example, we can attribute some properties to a Strategy in the project, then when the user wants

to configure that Strategy during runtime, a configuration window, as seen in Figure 2.11, appears with

the properties dynamically loaded in, without needing a specific implementation for that Strategy.

Figure 2.11: User configurable properties example

2.2.4.C PythonIntegration

The PythonIntegration project allows us to run Python scripts through the application. It makes use of

the Property class to let the user input parameters to call the scripts and has a return object to allow the

application to receive values from the script. This project is being used to generate networks directly in

the application, using the Python library NetworkX [29].

It asks the user for inputs, as shown in Figure 2.12:

• Number of nodes in the network

• Probability of each pair of nodes having a link

• Length of the shortest link (that is used to compute the length of all other links)

34

And returns a string with the data to load the network in the .network file format.

Figure 2.12: Generate network properties example

2.2.5 Algorithm Implementations

In this section we will describe how and which behaviors are implemented. All strategies and route

discovery algorithms were developed using the Strategy Design Pattern, that easily allows the creation

of more behaviors, only needing to implement a class that inherits the base strategy.

2.2.5.A Routing Strategies

The Routing Strategies are the main focus of the work. They define how the router makes the decision

to send the packets through the links and how it updates its routing table.

All routing strategies extend the ”RoutingStrategy” class, that implements the logic for the Routing

table and has two properties: minimum and maximum probabilities that every link can have of being

chosen, implementing the artificial barriers described in [1].

First we will take a look at the routing table and then present the routing strategies that were imple-

mented..

A – Routing table The routing table holds all the information necessary for a router to choose a

link to send a packet through. Every router has a table and the table has an entry for every possible

destination (every other router in the network); each entry has an entry for every link in the router. So

35

every router has a matrix with N−1 rows and L columns, where N is the number of router in the network

and L the number of links the router in question has. 5

There are some special rules in place when updating values in the routing table in order to make it

more consistent:

The update value is adjusted in proportion to the probability of the link to being chosen: When

updating a value Vnew in the routing table, the input value Vin is balanced according to the current

probability Pij of that link being chosen (as is evident in 2.1). This is to counter-balance the fact that a

link with higher probability of being chosen, will have more opportunities to ”learn”, this is, to be updated.

When the input value is positive (reward), the value is reduced for links with high probability of being

chosen. When the input value is negative (penalty), the value is reduced for links with low probability of

being chosen:

Vnew =

Vin(1− Pij) if value > 0

VinPij if value < 0
(2.1)

This way of balancing the values allows for links that have a low probability of being chosen to be

more rewarded when they have a good result and links with high probability of being chosen to be more

punished when they have a bad result.

Updating a value updates all others in the same row: When updating a value, all other values in

the same row are equally updated to maintain the sum of all probabilities equal to 1.

Consider nodeX with the following routing table (Table 2.2). Imagine now that the router wants to

update the probability for choosing linkC when the destination of a packet is routerY by −0.1. When

the value for choosing linkC is decreased the difference has to be equally distributed across the other

links, as we can see in Figure 2.13.

Table 2.2: Routing table for node X

Link A Link B Link C
Router ?
Router Y 0.3 0.45 0.25
Router ?

5We are aware of possible memory problems that can arise from this configuration, as the memory necessary to hold all the
tables grows exponentially with the number of routers in the network as well as how many links the average router has. We
address this concerns in Section 4.3

36

Figure 2.13: Update value example with minimum barrier probability = 0.1

Updating a value would go over/under an artificial barrier: When updating a value would make it go

over a maximum or below a minimum (1 and 0 by default respectively), the ”excess” value is distributed

across the other link probabilities.

For example, lets say we are running a game where the minimum probability a link can have to be

chosen is 0.1. Imagine now that there is a nodeX with the following routing table (Table 2.3). Consider

that the router wants to update the probability for choosing linkC when the destination of a packet is

routerY by −0.1. However, because of the artificial barrier in place, we can’t set that probability to 0.05.

So the ”remainder” of the update has to be equally distributed across the other links, as we can see in

Figure 2.14.

Table 2.3: Routing table for node X

Link A Link B Link C
Router ?
Router Y 0.5 0.35 0.15
Router ?

Figure 2.14: Update value example with minimum barrier probability = 0.1

This rule is recursive, that is, when the routing table updates the other values, if any of those would

also go over/under an artificial barrier, the difference is once again distributed across the remaining links

that can still be updated.

37

B – Random routing strategy The Random routing strategy is the simplest of all the routing strate-

gies. It consists on never updating the routing table. This means that whatever happens to the packets,

it will not change the probability of a link being chosen.

By default, all links start with the same probability of being chosen (1/L, where L is the number of

links the router has). By using the Random routing strategy, these probabilities never change, thus the

routing is totally random and unpredictable.

We can combine this strategy with a route discovery algorithm to test some scenarios, for example,

what would happen if the router always chose the link that will lead to the shortest path, using the Best

Route only discovery, as presented in Section 3.1.2.

C – Linear Reward Inaction routing strategy The Linear Reward Inaction algorithm described in

Section 1.3.2.A (1) only updates the values in the routing table when a packet reaches its destination.

When a packet reaches its destination, all the routers where it passed through will update the probability

of choosing the link that they picked to send the packet with a positive value Vin, computed using the

Reward rate Rr and the number of steps that the packet took to reach the destination Si:

Vin =
Rr

S2
i

(2.2)

D – Linear Reward Penalty routing strategy The Linear Reward Penalty algorithm described in

Section 1.3.2.A (2) updates the values in the routing table whenever a packet either reaches its destina-

tion or its dropped (due to reaching the TTL or being caught by the Attacker). All the routers where the

packet passed through will update the link that they chose to send the packet with a value Vin, computed

using the Reward rate Rr, Penalty rate Rp and the number of steps that the packet took to reach the

destination Si:

Vin =


Rr

S2
i

if reached the destination

− Rp

STTL
if otherwise

(2.3)

2.2.5.B Packet Creation Strategies

The Packet Creation Strategies define when a packet should create a new packet and add it to its queue.

A – Random creation strategy The Random creation strategy attempts to create a packet every

cycle, with some user defined probability of actually creating a packet and adding it to the waiting queue.

If a packet is to be created, its destination is also randomly selected from all routers, except for the one

38

creating the packet. Each router has a 1/(N − 1), where N is the number of routers in the network,

probability of being the destination for the created packet.

2.2.5.C Packet Picking Strategies

The packet picking strategies define how a router chooses the next router to send from its waiting queue.

A – Random picking strategy The Random picking strategy will send a packet every cycle, when

there are packets in the waiting queue. It gives every packet in the queue an equal chance of being

chosen. The probability of each packet of being picked is 1/P , where P is the number of packets

currently in the queue.

B – FIFO picking strategy The FIFO picking strategy will send a packet every cycle, when there are

packets in the waiting queue. The packets are sent in the same order they were received in a First In

First Out fashion.

C – Random remove unreachable picking strategy The Random remove unreachable picking

strategy will send a packet every cycle, when there are packets in the waiting queue. It gives every

packet in the queue that can still reach its destination an equal chance of being chosen. We say a

packet can still reach its destination if the difference between the TTL and the number of steps done by

the packet (the number of cycles before it expires) is more than the length of the shortest path between

the current router and the destination router. The probability of each packet of being picked is 1/P ,

where P is the number of packets currently in the queue that fit the condition.

2.2.5.D Route Discovery

The Route discovery algorithms allow the user to set different initial values in the routing table to be able

to test a variety of scenarios with distinct starting conditions.

A – No route discovery When the user does not set a route discovery algorithm, the default values

in the routing table are applied. In this case, every link has the same chance of being chosen by a router

(Figure 2.15). Each router sets the probability of choosing each of its links at 1/L, where L is the number

of links the router has.

39

Figure 2.15: Link probabilities to send packets with destination router 0 using no route discovery

B – Best Route Only discovery The Best route only discovery performs the Dijkstra algorithm on

the network to find the shortest routes between every pair of nodes. It then sets the probability of

choosing the links in the shortest routes to 1 and all others to 0, so that at the start of a game only the

shortest paths are chosen (Figure 2.16).

40

Figure 2.16: Link probabilities to send packets with destination router 0 using best route only discovery

C – Breadth First Route discovery The Breadth first route discovery performs a BFS for each node

to compute the minimum number of hops necessary to reach each other router in the network. Then it

gives each link a probability of being chosen that is inversely proportional to the minimum number of hops

needed to reach the destination after the packet transverses the link (Figure 2.17). The probability of a

link being chosen becomes hi/SumH where hi is the number of hops needed to reach the destination

after taking link i and SumH is the sum of h for all links in the router.

41

Figure 2.17: Link probabilities to send packets with destination router 0 using breadth first route discovery

D – Dijkstra Route discovery The Dijkstra route discovery performs the Dijkstra algorithm on the

network to find the shortest routes between every pair of nodes. Then it gives each link a probability

of being chosen that is inversely proportional to the minimum number of cycles (a link with length x

takes x cycles to be transversed) needed to reach the destination after the packet transverses the link

(Figure 2.18). The probability of a link being chosen becomes li/SumL where li is the number of cycles

needed to reach the destination after taking link i and SumL is the sum of l for all links in the router.

42

Figure 2.18: Link probabilities to send packets with destination router 0 using dijkstra route discovery

43

44

3
Simulations and Results

Contents

3.1 Random routing strategy . 53

3.2 Linear reward penalty routing strategy . 56

45

46

In this chapter we will present the simulations that were done and the results that we got from them.

We tested a variety of scenarios to see how different algorithms and initial conditions lead to different

results.

The variables that characterize each game are:

• Network size (number of nodes)

• Network average degree (average number of links per router)

• Route discovery (initial values in the routing tables)

• Routing strategy

• Packet creation strategy

• Packet picking strategy

• Artificial barriers threshold

For each simulation we will be looking at data from 6 different types of graphs generated while running

the games. In all the graphs presented, the x-axis represents the time, where every unit is equal to 100

cycles in the game. The values shown in the graphs are always an average of the values from all the

games running. The agents(described in Section 2.1.3) are randomly selected in each game; first we

pick a pair of nodes to be the defender and the target of the packets sent by the defender, then we pick

a node that is in the shortest path between the former 2, to be the attacker.

Average variance line chart Shows how much the values in the routing tables are changing on aver-

age for the past 100 cycles for all games running. It is computed by recording the values in the routing

tables every 100 cycles and calculating the average of the difference between the values at the moment

and 100 cycles ago.

Meaning of each line in the chart:

• Green line: Average variance

• Black dotted line: Interpolation of the average variance values to fit a smooth curve

• Blue line: Maximum average variance

• Red line: Minimum average variance

• Red horizontal line: User defined threshold (for reference only); y-axis value is a percentage of the

maximum of the average variance

47

Figure 3.1: Average variance line chart example

Average packet queue time chart Shows the average time (number of cycles) packets are staying in

router queues for the past 100 cycles for all games running.

Meaning of each line in the chart:

• Green line: Average packet queue time

• Black dotted line: Interpolation of the average packet queue time values to fit a smooth curve

• Blue line: Maximum average packet queue time (single game)

• Red line: Minimum average packet queue time (single game)

48

Figure 3.2: Average packet queue time line chart example

Average packet delivery time normalized chart Shows the average time normalized Tn that the

packets took from their creation to reaching the destination for the past 100 cycles for all games running.

The delivery time is normalized to account for differences in path lengths. The minimum normalized time

a packet can take to reach the destination is 1, when the real time Tr is equal to the no delay time Tnd

(shortest path + no queue times).

Tn =
Tr

Tnd
(3.1)

Meaning of each line in the chart:

• Green line: Average packet queue time

• Black dotted line: Interpolation of the average packet queue time values to fit a smooth curve

• Blue line: Maximum average packet queue time

• Red line: Minimum average packet queue time

49

Figure 3.3: Average packet delivery time normalized example

Router created packets line chart Shows the cumulative number of packets that were created and if

they were delivered or dropped.

Meaning of each line in the chart:

• Green area: Sum of packets delivered

• Yellow area: Sum of packets dropped

50

Figure 3.4: Router created packets line chart example

Router created packets percentage line chart Shows the percentage of packets that were delivered

or dropped for the past 100 cycles for all games running.

Meaning of each line in the chart:

• Green area: Percentage of packets delivered

• Yellow area: Percentage of packets dropped

51

Figure 3.5: Router created packets percentage line chart example

Defender created packets percentage line chart Shows the percentage of packets created by the

defender that were delivered or dropped for the past 100 cycles for all games running.

Meaning of each line in the chart:

• Green area: Percentage of packets created by the defender delivered

• Yellow area: Percentage of packets created by the defender dropped

52

Figure 3.6: Defender created packets percentage line chart example

3.1 Random routing strategy

Let us start by presenting the results of running simulations using the random routing strategy as it will

serve as our benchmark to evaluate other routing strategies.

The simulations in this subsection were ran on a medium network with 20 nodes and probability of

each pair of nodes having a link equal to 0.1 (see Figure A.1).

For each scenario, we will present a table summarizing the results of the simulations. The full graphs

can be viewed in Appendix A. Each column in the following tables has a reference to the corresponding

graphs.

Let us also define some variables that we will use to give different properties to each game:

• Pc - Probability of packet creation: Represents the probability that each router has of creating a

packet in each round.

• Rr - Reward rate: Weight given to the rewards when using learning algorithms

• Rp - Penalty rate: Weight given to the penalties when using learning algorithms

53

3.1.1 No route discovery

The simulations in this sub-subsection were ran with no route discovery. Analyzing Table 3.1 we can

compare the results from running simulations with different probabilities of creating a new packet each

cycle. With these simulations we want to see what happens when the packets are sent in completely

random directions with different amounts of packets created in the network.

We can see that the average variance stays equal to 0 throughout the whole simulation as we are

using the random routing strategy that never updates the values in the routing table.

The average packet queue time goes up as the network becomes more crowded with packets. The

value for the simulations with Pc = 0.1 is low, at less than 1 cycle per packet, as the routers never have

more than a couple packets in the queue at the same time. However, as we increase the Pc, this value

quickly goes up, due to the packets being picked randomly (some packets never get picked and end up

being dropped in the waiting queues due to reaching the TTL).

When looking at the average packet delivery time normalized, it actually starts off high even with

low Pc, because of the random routing. The value goes up to 2.8 with Pc = 0.5 which is close to the

maximum it can reach, as the packet TTL in all the simulations presented in this chapter is TTL = 59,

which is close to 3 times the average path length of the network (see Figure A.1).

Analyzing now the number of packets created we can see that they go up proportionally as we

increase Pc and that the percentage of packets delivered goes down rapidly. Because the routing is

random, the fact that the packets spend more time in waiting queues makes it so that they have ”less

opportunities” to reach their destination. Considering now only the packets sent by the defender, we see

that they reached their destination roughly 60% of the time when compared with the average percentage

of packets delivered for the whole network with the same Pc.

Table 3.1: Comparison for different packet creation probabilities on network shown in Figure A.1 with random routing
and no route discovery

A(Figure A.2) B(Figure A.3) C(Figure A.4)
Pc = 0.1 Pc = 0.3 Pc = 0.5

Average Variance 0 0 0
Average Packet Queue Time 0.9 9 20.5

Average Packet Delivery Time Normalized 2.15 2.45 2.8
Total Packets Created 1 400 000 4 150 000 6 900 000

Total Packets Delivered(%) 280 000(20%) 470 000(11.3%) 500 000(7.2%)
Total Packets Dropped(%) 1 120 000(80%) 3 680 000(88.7%) 6 400 000(92.8%)

Defender % Packets Delivered 12% 8% 4%
Defender % Packets Dropped 88% 92% 96%

Last cycle 7292 7118 7095
Introduce attacker cycle 3451 3259 3404

Note: The presented values are approximations and computed from the average results from 100 games in the same initial

54

conditions. The agents(described in Section 2.1.3) in each game are randomly selected.

3.1.2 Best path only

The simulations in this sub-subsection were ran with best path only discovery. Analyzing Table 3.2 we

can compare the results from running simulations with different probabilities of creating a new packet

each cycle. With these simulations we want to see how the network performs when the packets are

always sent through the shortest paths with different amounts of packets created in the network. This

means that the routing is deterministic instead of stochastic.

We can see that the average variance stays equal to 0 throughout the whole simulation as we are

using the random routing strategy that never updates the values in the routing table.

The average packet queue time goes up as the network becomes more crowded with packets. The

value for the simulations with Pc = 0.1 is almost 0, as the routers almost never have more than 1 packet

in the queue. However, as we increase the Pc, this value quickly goes up, due to the packets being

picked randomly (some packets never get picked and end up being dropped in the waiting queues due

to reaching the TTL). We can see that the queue time values are slightly lower than the values with no

route discovery (see Table 3.1) because the packets only follow the best route, thus there are no packets

going in random directions cluttering the network.

When looking at the average packet delivery time normalized, it starts at an almost perfect time with

low Pc, because the packets follow only the shortest paths and the waiting queues are almost always

empty. The value goes up to 1.95 with Pc = 0.5 due to the network being more crowded and because

central nodes in the network will be part of more ”optimal paths”, they will have bigger waiting queues.

Still, this value is a lot better than the value in the same conditions but with no route discovery (see

Table 3.1).

Analyzing now the number of packets created we can see that they go up proportionally as we

increase Pc and that the percentage of packets delivered goes down as we increase Pc. Because the

packets always take the shortest path, there are nodes that will have bigger waiting queues, as they are

more central in the network, thus being part of more ”optimal paths”. This makes it that, as we increase

Pc, this central nodes become more and more busy, dropping packets in the queue. Considering now

only the packets sent by the defender, we see that they reached their destination roughly 30% of the

time when compared with the average percentage of packets delivered for the whole network with the

same Pc. At first thought, we might have expected that this value would always be 0, as the agents

(described in Section 2.1.3) are randomly pick and the attacker is always positioned in a router that is

the the shortest router between the defender and its packets destination. However, because the agents

are randomly selected, there are cases where the defender and its destination router are neighbours,

55

this is, there are no routers between them in the shortest path. So, this value would indeed be 0 if the

defender never sent packets to a neighbour.

Table 3.2: Comparison for different packet creation probabilities on network shown in Figure A.1 with random routing
and best path only discovery

A(Figure A.5) B(Figure A.6) C(Figure A.7)
Pc = 0.1 Pc = 0.3 Pc = 0.5

Average Variance 0 0 0
Average Packet Queue Time 0.07 5.7 15.6

Average Packet Delivery Time Normalized 1.05 1.45 1.95
Total Packets Created 1 490 000 4 150 000 6 900 000

Total Packets Delivered(%) 1 465 000(98.3%) 2 890 000(69.6%) 3 300 000(47.8%)
Total Packets Dropped(%) 25 000(1.7%) 1 260 000(30.4%) 3 600 000(52.2%)

Defender % Packets Delivered 30% 22% 17.5%
Defender % Packets Dropped 70% 78% 82.5%

Last cycle 7502 7099 7137
Introduce attacker cycle 3706 3275 3156

Note: The presented values are approximations and computed from the average results from 100 games in the same initial

conditions. The agents(described in Section 2.1.3) in each game are randomly selected.

3.2 Linear reward penalty routing strategy

3.2.1 No route discovery & low probability of creation

The simulations in this sub-section were ran with no route discovery and Pc = 0.1. Analyzing Table 3.3

we can compare the results from running simulations with different learning rates. With these simulations

we want to see how the network performs with different learning rates when there is a low amount of

packets being created.

Looking at the average variance, we can see that the changes from the start of the simulations

to the end change proportionally to the learning rates; as we multiply the learning rates by 10, the

average variance also increases roughly by the same factor. This makes sense because the values of

the rewards and penalties are multiplied by the respective learning rate before updating the values in the

routing table. We can also see that having low learning rates makes it so it takes a lot of cycles to get

the point where routing tables are stable (consistent variance).

The average queue time starts low across the 3 simulations, as the main factor is how crowded the

network is, this is, the value of Pc. However, we can see that, with higher learning rates, the queue

times rapidly approach a value close to 0, the same value we see in the simulation results shown in

Table 3.2(Pc = 0.1), as the network learns the optimal paths.

Looking at the average packet delivery time normalized, we can see that in all cases, the starting

56

value is similar to the value we see in Table 3.1(Pc = 0.1), as the initial values in the routing tables is the

same. With high learning rates, this value quickly approaches the value in Table 3.2(Pc = 0.1), as the

network learns the optimal paths.

Analyzing the number and percentage of packets delivered and dropped we can see that the learning

rates have a huge influence on how fast the network learns the best paths and how many packets are

dropped in the process. For the simulation with the highest learning rates, we can see that they approach

the values in Table 3.2(Pc = 0.1) when the average variance stabilizes. Considering now only the

packets sent by the defender, we can see that when the attacker is introduced, the delivery percentage

takes a huge hit when compared to the network average. However, it recovers as the network learns

to avoid sending the packets through the router occupied by the attacker, getting close to the network

average. Comparing the packet delivery rate after some time to adjust to the attacker with medium to

high learning rates with the values in Table 3.2(Pc = 0.1), we can see a huge improvement, because the

network makes use of less optimal paths to avoid the router occupied by the attacker when compared to

using only the shortest path where the attacker can intercept the packets.

Table 3.3: Comparison for different learning rates on network shown in Figure A.1 with linear reward penalty routing,
no route discovery and Pc = 0.1

A(Figure A.8) B(Figure A.9) C(Figure A.10)
Rr = 0.1 Rr = 1 Rr = 10
Rp = 0.1 Rp = 1 Rp = 10

Average Variance 8 ∗ 10−6 to 7 ∗ 10−6 7.8 ∗ 10−5 to 1.7 ∗ 10−5 6 ∗ 10−4 to 3 ∗ 10−5

Average Packet Queue Time 0.9 to 0.5 0.8 to 0.1 0.65 to 0.07
Average Packet Delivery Time Normalized 2.15 to 2.05 2.1 to 1.35 1.95 to 1.15

Total Packets Created 6 100 000 6 000 000 2 900 000
Total Packets Delivered(%) 1 800 000(30%) 4 050 000(67.5%) 2 420 000(83.4%)
Total Packets Dropped(%) 4 300 000(70%) 1 950 000(32.5%) 480 000(16.6%)

Network % Packets Delivered 20% to 37.5% 22% to 86% 26% to 92.5%
Defender % Packets Delivered 15% to 30% 42.5% to 72.5% 47% to 72.5%
Network % Packets Dropped 80% to 62.5% 78% to 14% 74% to 7.5%
Defender % Packets Dropped 85% to 70% 57.5% to 27.5% 53% to 27.5%

Last cycle 31043 30385 14640
Introduce attacker cycle 18956 19344 8906

Note: The presented values are approximations and computed from the average results from 100 games in the same initial

conditions. The agents(described in Section 2.1.3) in each game are randomly selected. Values for defender only start being

recorded when the attacker is introduced.

3.2.2 No route discovery & medium probability of creation

The simulations in this sub-section were ran with no route discovery and Pc = 0.3. Analyzing Table 3.4

we can compare the results from running simulations with different learning rates. With these simulations

57

we want to see how the network performs with different learning rates when there is a medium amount

of packets being created.

Looking at the average variance, we can see that the changes from the start of the simulations

to the end change proportionally to the learning rates; as we multiply the learning rates by 10, the

average variance also increases roughly by the same factor. This makes sense because the values of

the rewards and penalties are multiplied by the respective learning rate before updating the values in the

routing table. When comparing with the values in Table 3.3 we observe that the values for the average

variance are higher across the board when the value Pc is higher as well due to the fact that having more

packets creates more opportunities for the network to learn, thus updating the values more often in the

same amount of time (cycles).

The average queue time starts with similar values in the 3 simulations, as the main factor is how

crowded the network is, this is, the value of Pc. As the simulations progress we can see that the average

queue time goes down in all cases, but the simulation with learning rates equal to 1 seem to perform

better than with higher learning rates. We can also see in Figure A.13 that the value goes up after

the introduction of the attacker in the simulation with high learning rates and never goes back down.

A possible explanation for this phenomenon might be that, because the values in the routing tables

are updated so ”aggressively” they might never stabilize on the ”best values”, this is, they never stay

in the equilibrium. We can also note that the average queue time for the medium and high learning

rates simulations is lower than the one in Table 3.2(Pc = 0.3); because the network makes use of more

routes, the ”central” routers are less busy than when the packets only take the shortest paths. As for the

simulation with lower learning rates, the average queue time was still going down when the simulation

ended, so it is safe to assume that it would reach a value similar to the simulation with medium learning

rates, or even a bit lower; however it would take a lot of time (cycles).

Looking at the average packet delivery time normalized, we can see that in all cases, the starting

value is similar to the value we see in Table 3.1(Pc = 0.3), as the initial values in the routing tables is

the same. However the values do not go as low as the one in Table 3.2(Pc = 0.3). The reasoning is the

same as to why the average queue time is lower, this is, because the packets take other routes other

than the shortest one, the average delivery time will end up higher, as the paths they transverse take

more cycles to complete.

Analyzing the number and percentage of packets delivered and dropped we can see a similar trend

to the previous metrics, in that the simulation with medium learning rates performed better than the one

with high learning rates. For the simulation with learning rates equal to 1, we can see that, by the end

of the simulation, it approaches the percentage of packets delivered by the network in Table 3.2(Pc =

0.3), however the percentage of the packets sent by the defender delivered is doubled (from 22% in

Table 3.2(Pc = 0.3) to 46%) thanks to the network learning to ”avoid” the infected router.

58

Table 3.4: Comparison for different learning rates on network shown in Figure A.1 with linear reward penalty routing,
no route discovery and Pc = 0.3

A(Figure A.11) B(Figure A.12) C(Figure A.13)
Rr = 0.1 Rr = 1 Rr = 10
Rp = 0.1 Rp = 1 Rp = 10

Average Variance 1.18 ∗ 10−5 1.15 ∗ 10−4 8.5 ∗ 10−4

to 8.3 ∗ 10−6 to 3 ∗ 10−5 to 3 ∗ 10−4

Average Packet Queue Time 9 to 6.5 9.2 to 4.25 8 to 5.1
Average Packet Delivery Time Normalized 2.45 to 2.05 2.45 to 1.7 2.25 to 1.8

Total Packets Created 54 000 000 33 000 000 8 300 000
Total Packets Delivered(%) 17 000 000(31.5%) 19 000 000(57.6%) 4 700 000(56.6%)
Total Packets Dropped(%) 37 000 000(68.5%) 14 000 000(42.4%) 3 600 000(43.4%)

Network % Packets Delivered 12% to 56% 12.5% to 69% 16% to 60%
Defender % Packets Delivered 20% to 31% 37% to 46% 28% to 28%
Network % Packets Dropped 88% to 44% 87.5% to 31% 84% to 40%
Defender % Packets Dropped 80% to 69% 63% to 54% 72% to 72%

Last cycle 90629 55143 14139
Introduce attacker cycle 68346 42461 8978

Note: The presented values are approximations and computed from the average results from 100 games in the same initial

conditions. The agents(described in Section 2.1.3) in each game are randomly selected. Values for defender only start being

recorded when the attacker is introduced.

3.2.3 No route discovery & medium probability of creation & high penalty rate

The simulations in this sub-section were ran with no route discovery, Pc = 0.3, a high penalty rate

(Rp = 10) and artificial barriers for the minimum probability (0.02). Analyzing Table 3.5 we can compare

the results from running simulations with different reward rates (Rr = {0.1, 1, 10}). With these simulations

we want to see how the network performs when the routers punish bad results disproportionately to how

they reward good results from delivering the packets.

Looking at the average variance, we can see that the changes from the start of the simulations to

the end are very similar for reward rates equal to 0.1 and 1, as the main factor to how much the average

variance changes is the bigger learning rate, in this case the penalty rate. With reward rate equal to

the penalty rate, the average variance goes a bit lower, but not by a factor of 10 like when both learning

rates go up.

Regarding the average queue times, they are again very similar, with the simulation with high reward

rate performing just a little bit better. One thing to note is that, with everything else equal, the network with

a barrier for minimum probability of 0.02 performs worse than not having a barrier (Table 3.4(C)), which

makes sense because by not allowing links to have 0 probability of being picked, sometimes packets

can be sent in the ”wrong direction”, leading to them being more time in the network and, consequently,

more time in router waiting queues.

59

Looking at the average delivery times, it is once again similar across the board, with simulation C

having a small advantage. Comparing simulation C with Table 3.4(C), it performs slightly worse, in the

same vein as the average queue time.

Analyzing the number and percentage of packets delivered and dropped we can see that the higher

the learning rate, more packets are delivered, both in the network average as well as the defender.

Looking at simulation C and comparing it with the results in Table 3.4(C), we see that having the artifi-

cial barrier seems to hurt the overall network performance, but might slightly help the defender deliver

packets, although the difference is minimal.

Table 3.5: Comparison for different reward rates on network shown in Figure A.1 with linear reward penalty routing,
no route discovery, Pc = 0.3, high penalty rate and artificial barriers (MinP = 0.02)

A(Figure A.14) B(Figure A.15) C(Figure A.16)
Rr = 0.1 Rr = 1 Rr = 10
Rp = 10 Rp = 10 Rp = 10

Average Variance 8.5 ∗ 10−4 8.7 ∗ 10−4 8.4 ∗ 10−4

to 5.8 ∗ 10−4 to 5.7 ∗ 10−4 to 4.8 ∗ 10−4

Average Packet Queue Time 8.3 to 6.75 8.25 to 6.6 8.1 to 6
Average Packet Delivery Time Normalized 2.35 to 2.05 2.35 to 2.02 2.25 to 1.95

Total Packets Created 6 250 000 5 600 000 8 200 000
Total Packets Delivered(%) 2 450 000(39.2%) 2 250 000(40.2%) 4 050 000(49.4%)
Total Packets Dropped(%) 3 800 000(60.8%) 3 350 000(59.8%) 4 150 000(50.6%)

Network % Packets Delivered 15% to 42% 15% to 43% 17% to 52%
Defender % Packets Delivered 22% to 23% 26% to 27% 27% to 29%
Network % Packets Dropped 85% to 58% 85% to 57% 83% to 48%
Defender % Packets Dropped 78% to 77% 74% to 73% 73% to 71%

Last cycle 10620 9628 13992
Introduce attacker cycle 6291 5775 9009

Note: The presented values are approximations and computed from the average results from 100 games in the same initial

conditions. The agents(described in Section 2.1.3) in each game are randomly selected. Values for defender only start being

recorded when the attacker is introduced.

3.2.4 No route discovery & high probability of creation

The simulations in this sub-section were ran with no route discovery, Pc = 0.5, medium learning rates

(Rr = 1, Rp = 1) and artificial barriers for the minimum probability (0.05). Analyzing Table 3.6 we

can compare the results from running simulations with different packet picking strategies (see Sec-

tion 2.2.5.C): random(A) where all packets in the queue have an equal chance of being picked, FIFO(B)

where packets go out the router in the same order they entered and randomRU(C) where the packets

that can no longer reach their destination are ignored and the remaining have an equal chance of being

picked.

60

Looking at the average variance, we can observe that the changes from the start of the simulations

to the end for random(A) and FIFO(B) are basically the same, but randomRU(C) manages to be a bit

more stable in the end.

Regarding the average queue times, random(A) and FIFO(B) are again similar and randomRU(C)

performs a lot better than the 2. Even when comparing with the results in Table 3.2(C) the queue time is

lower as packets that have no chance of reaching their destination are ignored.

Considering now the average delivery times, as expected FIFO(B) performs the worse out of the 3,

because every packet is guaranteed to wait for every other packet that was already in the queue to be

sent. Next is random(A), which has a bigger average delivery time when compared to randomRU(C),

because even though both randomly pick the next packet to be sent, randomRU(C) has a smaller pool

to choose from, as it ignores packets that can no longer reach their destination. All 3 strategies perform

worse than the values in Table 3.2(C) in terms of delivery time, but that is also attributed to using

stochastic routing instead of just the shortest paths.

Analyzing the number and percentage of packets delivered and dropped we can see that for the net-

work average, randomRU(C) manages to deliver about double the amount that random(A), FIFO(B) and

the values in Table 3.2(C) do. However, when considering only the packets sent by the defender, ran-

domRU(C) actually performs worse than random(A) and FIFO(B). One explanation for this phenomenon

may be that, because randomRU(C) leans more towards the shortest paths than random(A) and FIFO(B)

(as is evident by comparing the average packet delivery times), when the attacker is introduced, as it

infects a router in the shortest path between the defender and its destination, it will negatively affect a

network using the randomRU(C) strategy more than the first 2 strategies.

61

Table 3.6: Comparison for different packet picking strategies (see Section 2.2.5.C) on network shown in Figure A.1
with linear reward penalty routing, no route discovery, Pc = 0.5, Rr = 1, Rp = 1 and artificial barriers
(MinP = 0.05)

A(Figure A.17) B(Figure A.18) C(Figure A.19)
Random FIFO RandomRU

Average Variance 7.2 ∗ 10−5 7.2 ∗ 10−5 7 ∗ 10−5

to 6.3 ∗ 10−5 to 6.4 ∗ 10−5 to 5.1 ∗ 10−5

Average Packet Queue Time 20.3 to 19.6 21 to 19.5 15 to 13.75
Average Packet Delivery Time Normalized 2.75 to 2.6 3.35 to 3.2 2.5 to 2.28

Total Packets Created 26 500 000 26 000 000 26 500 000
Total Packets Delivered(%) 4 000 000(15.1%) 3 500 000(13.5%) 7 000 000(26.4%)
Total Packets Dropped(%) 22 500 000(84.9%) 22 500 000(86.5%) 19 500 000(73.6%)

Network % Packets Delivered 8% to 19% 8% to 17% 11% to 32%
Defender % Packets Delivered 17.5% to 19% 17% to 19% 14% to 14%
Network % Packets Dropped 92% to 81% 92% to 83% 89% to 68%
Defender % Packets Dropped 82.5% to 81% 83% to 81% 86% to 86%

Last cycle 26854 26283 26846
Introduce attacker cycle 20363 20399 20526

Note: The presented values are approximations and computed from the average results from 100 games in the same initial

conditions. The agents(described in Section 2.1.3) in each game are randomly selected. Values for defender only start being

recorded when the attacker is introduced.

In section Section 4.2 we will go over the main conclusions that we were able to draw from all this

experiments.

62

4
Conclusion

Contents

4.1 Summary . 65

4.2 Overview . 65

4.3 Future work . 67

63

64

With computer networks expanding in both size and complexity, as well as being used in more critical

areas, like online banking, it is important to keep reinforcing the security of these systems, without

taking a toll on the performance. Networks nowadays are very secure against attacks that want to steal

sensitive data, with the use of authentication methods and cryptography, but are still vulnerable to attacks

that attempt to disrupt their normal operation like packet dropping attacks and denial of service (DoS).

With our work we aim to increase security in computer networks, not by making messages harder to

decrypt, but by making it harder to intercept them in the first place. To achieve that, we proposed the use

of stochastic routing protocols that make use of multiple paths in the network, decreasing the chance of

all packets getting intercepted by an attacker, while trying to maintain or even increase the performance

of the network.

4.1 Summary

In summary, we developed an application to simulate computer networks as games and present the data

from those simulations. With the results we were able to analyze the impact that different strategies and

algorithms have on the performance of the network and the protection that the network is able offer to a

node that is being targeted by an attacker.

We saw that, utilizing learning algorithms to dynamically change the probabilities of choosing the

next hop significantly increases the amount of packets that a network is able to deliver when a user is

being targeted by an attacker that aims to remove its packets from the network; more than doubling it in

some cases (see Section 3.2.1).

We also noticed that the impact on the performance varies, mostly depending on how busy the net-

work is; when the network does not have many packets in circulation, deterministic routing prioritizing

the shortest routes yields faster deliveries in general; however, in networks with a high amount of traf-

fic, utilizing stochastic routing to make use of different paths that may not be optimal, increases the

effectiveness of delivering packets when compared to more deterministic approaches.

With our results we were able conclude that, if security is the main concern in a network, utilizing

stochastic routing is a valid option to consider, because it increases the robustness of the network while,

in the worst case, having a minimal impact on the performance and, in the best case, even increasing the

network performance through the indirect loading balancing that making use of multiple paths provides.

4.2 Overview

In order to investigate our proposition, we developed an application(presented in Section 2.2) that allows

us to simulate networks and test the behavior of different algorithms by running multiple simulations as

65

games. The simulations ran in our application have 3 main characteristics that facilitate the study of our

proposition:

• Instead of running a single game at the time, our application allows us to run any number of games

in parallel with the same configurations and combine the results, in order to reduce the uncertainty

that comes from using stochastic algorithms.

• It is possible to configure multiple behaviors of the network, not only the routing algorithms, but

others like how the routers create packets and how the routers choose which packet to send next.

It is also easy to expand these behaviors and create more as all the code of the application is

accessible.

• Data collection and presentation are deeply integrated in the simulations, which allows us to vi-

sualize just about any data we need from the games. This feature is also expandable with new

graphs and types of data that we might want to study.

Then we performed multiple simulations using the application, where we tested and analysed various

scenarios. We started by doing 2 tests using the random routing strategy(see Section 2.2.5.A) and

variant packet creation probability to serve as benchmarks for the other simulations:

• No route discovery(described in Section 3.1.1) : Allows us to analyse how the network would

perform in complete randomness.

• Best path only discovery(described in Section 3.1.2) : Lets us see how the network performs using

a deterministic approach that only makes use of the shortest paths.

Following these tests, we ran network game simulations using the linear reward penalty routing

algorithm(presented Section 2.2.5.A) under different circumstances and compared the results between

the different runs and the previous 2 benchmark tests:

• Low packet creation probability(Section 3.2.1) : Shows the differences between learning rates in a

network with low amount of traffic.

• Medium packet creation probability(Section 3.2.2) : Shows the differences between learning rates

in a network with medium amount of traffic.

• Medium packet creation probability with high penalty rate(Section 3.2.3) : Lets us analyse the

differences in changing only the reward rate, while keeping a high penalty rate in a network with

medium amount of traffic.

• High packet creation probability(Section 3.2.4) : Allows us to see the differences between packet

picking strategies in a network with high amount of traffic.

66

The simulations produced data presented in the form of graphs by the application we developed. The

data collected was then compiled in tables (presented across Chapter 3), with simulations with different

configurations side by side for easier comparison. By analyzing this results we were able to draw some

conclusions, like:

• The rate at which the network is able to ”learn” greatly correlates with how many packets are being

sent (how many chances it has to learn) and the value of the learning rates (how much do the

values in the routing tables change each time it learns).

• When the network is not crowded (the probability of a router to create a packet is low), the values

in the routing tables converge to mainly prefer the shortest paths, becoming almost a form of

deterministic routing. However, as the network becomes more crowded, the values in the routing

tables tend to be more distributed; because the majority of shortest paths contain a small set of

central routers that quickly become overwhelmed if all packets in the network are sent through

them, making it a better option to make use of longer paths to avoid spending a lot of time in

waiting queues.

• In less crowded networks, the use of stochastic routing tends to perform worse than simply us-

ing the shortest paths when there is no attacker. As the network becomes more crowded, the

stochastic routing approaches the deterministic routing in performance and even surpasses it, as

it provides a form of load balancing, preventing more central routers of being clogged.

• Overall, the use of stochastic routing is a positive for a router that is being targeted by an attacker,

even when the network average performance is worse.

• Other than the routing, other decisions, like the order in which the packets are sent from the waiting

queues, can greatly affect the performance of the network and its ability to ”protect” the defender.

4.3 Future work

In this section we will suggest what could possibly be done in the future to continue the work in this area,

with the help of the work that was done.

4.3.1 Improving the application

Concerning the application that was developed, some points that could be worked on are:

• Documentation; not much has been written about the code solution itself, apart from Section 2.2

and some comments on the code.

67

• Application UI; the UI was developed enough to be usable, but some work can be done to make it

more user friendly and a better experience overall to use.

• In Section 2.2.5.A we brought up a possible memory concern regarding the way the routing table

is implemented, as its size grows exponentially with the number of nodes in the network. One way

to solve this problem is to group nodes that are close together in a region. The routers then have

a table where each entry is a router in their region and another table where each entry is a region

that is not their own. This way it is possible to massively reduce the number of entries each routing

table needs. This solution can also be implemented with any number of levels, meaning that a

router can be part of a region, sub-region, sub-sub-region...

• Implementing more strategies and functionalities that future investigators might find useful to study

• Implementing new graphs and collect different types of data to better study the results of changing

strategies and configurations

• Make the simulations more realistic; like for example attributing a more realistic amount of time(cycles)

to different actions (travel time between routers, time to send a packet, time it takes for the router

to make decisions, etc.).

4.3.2 Further investigation

In regards to the matter of the study, the use of stochastic routing algorithms to enhance network security,

a lot more could be explored with the help of the implemented solution:

• Simulations with different networks; varying in both size and topology.

• Studying new routing strategies using other learning algorithms; like the Lagging Anchor Algorithm

discussed in Section 1.3.2.A.

• Studying new packet creation strategies; like creating packets following some sort of distribution or

even a way to simulate dividing and replicating packets so that some packets can be intercepted

but the message still gets fully transmitted (see hamming codes [30])

• Studying new packet picking strategies; like some ”smart” way of choosing the packets to send in

order to minimize the quantity of packets dropped.

The study of all this possibilities could lead to a real world implementation of a stochastic routing

algorithm in certain scenarios where the concerns with packet interception are high and security is the

highest priority.

68

Bibliography

[1] A. Yazidi, D. Silvestre and B. J. Oommen, ”Solving Two-Person Zero-Sum Stochastic Games With

Incomplete Information Using Learning Automata With Artificial Barriers,” in IEEE Transactions on

Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2021.3099095.

[2] P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning of nash equilibria in multi-

person stochastic games with incomplete information,” IEEE Transactions on systems, man, and

cybernetics, vol. 24, no. 5, pp. 769–777, 1994.

[3] S. Lakshmivarahan and K. S. Narendra, “Learning algorithms for twoperson zero-sum stochastic

games with incomplete information: A unified approach,” SIAM Journal on Control and Optimization,

vol. 20, no. 4, pp. 541–552, 1982

[4] Lu, Xiaosong and Howard M. Schwartz. “Decentralized learning in two-player zero-sum games:

A LR-I lagging anchor algorithm.” Proceedings of the 2011 American Control Conference (2011):

107-112.

[5] F. A. Dahl, “The lagging anchor model for game learning — a solution to the crawford puzzle,”

Journal of Economic Behavior & Organization, vol. 57, pp. 287–303, 2005

[6] F. A. Dahl, “The lagging anchor algorithm: reinforcement learning in two-player zero-sum games

with imperfect information,” Machine Learning, vol. 49, pp. 5–37, 2002.

[7] M. Thathachar and P. Sastry, Networks of Learning Automata: Techniques for Online Stochastic

Optimization. Boston, Massachusetts: Kluwer Academic Publishers, 2004.

[8] S. P. Singh, M. J. Kearns, and Y. Mansour, “Nash convergence of gradient dynamics in general-

sum games,” in Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, San

Francisco, CA, USA, 2000, pp. 541–548.

[9] M. Bowling and M. Veloso, “Multiagent learning using a variable learning rate,” Artificial Intelligence,

vol. 136, no. 2, pp. 215–250, 2002.

69

[10] Rasmusen, Eric (2007). Games and Information (4th ed.). ISBN 978-1-4051-3666-2.

[11] Alex Hinds, Michael Ngulube, Shaoying Zhu, and Hussain Al-Aqrabi, ”A Review of Routing Pro-

tocols for Mobile Ad-Hoc NETworks (MANET),” International Journal of Information and Education

Technology vol. 3, no. 1, pp. 1-5, 2013.

[12] R. Akbani, T. Korkmaz, and G .V. S. Raju, “HEAP: A packet authentication scheme for mobile ad

hoc networks,” Ad Hoc Networks, vol. 6, no. 7, pp. 1134–1150, 2008.

[13] Shyam Nandan Kumar, “Review on Network Security and Cryptography .” International Transaction

of Electrical and Computer Engineers System, vol. 3, no. 1 (2015): 1-11. doi: 10.12691/iteces-3-1-

1.

[14] C.Perkins and P.Bhagwat,“Highly Dynamic Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers,” in Proc. of Sigcomm conference on Communications architectures,

protocols and applications, London, England, UK, 1994, pp. 234-244

[15] D. B. Johnson and D. A.Maltz,“Dynamic Source Routing in Ad Hoc Wireless Networks,” Mobile

Computing, T. Imielinski and H. Korth, Ed. Kluwer Academic Publishers, 1996, vol. 5, pp. 153-181.

[16] C. E. Perkins and E. M.Royer,“Ad-hoc On-Demand Distance Vector Routing,” in Proc. of the 2nd

IEEE workshop on mobile computing systems and applications, 1997, pp. 1-11.

[17] W. A. Mobaideen, H. M. Mimi, F. A. Masoud, and E. Qaddoura, “Performance evaluation of mul-

ticast ad hoc on-demand distance vector protocol,” Computer Communications, vol. 30, no. 9, pp.

1931–1941, 200

[18] C. E. Perkins and E. M. Royer,“Multicast operation of the ad-hoc on-demand distance vector rout-

ing protocol,” in Proc. of 5th annual ACM/IEEE international conference on Mobile computing and

networking, Seattle, Washington, USA, August 15-20, pp. 207-218.

[19] M.G. Zapata, Secure Ad hoc On-Demand Distance Vector Routing, ACM SIGMOBILE Mobile Com-

puting and Communications Review. Jun, (2002), vol, 6(3), pp.106-107.

[20] D. Cerri and A. Ghioni, “Securing AODV: the A-SAODV secure routing prototype,” IEEE Communi-

cations Magazine,vol.46 no. 2, pp. 120-125, 2008.

[21] Di Pietro, R.; Guarino, S.; Verde, N.V.; Domingo-Ferrer, J. (2014). Security in wireless ad-hoc

networks – A survey. Computer Communications, 51(), 1–20. doi:10.1016/j.comcom.2014.06.003

[22] Kaelbling, Leslie P.; Littman, Michael L.; Moore, Andrew W. (1996). ”Reinforcement Learn-

ing: A Survey”. Journal of Artificial Intelligence Research. 4: 237–285. arXiv:cs/9605103.

doi:10.1613/jair.301. S2CID 1708582.

70

[23] A. Colorni, M. Dorigo et V. Maniezzo, Distributed Optimization by Ant Colonies, actes de la première

conférence européenne sur la vie artificielle, Paris, France, Elsevier Publishing, 134-142, 1991.

[24] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di Milano, Italy,

1992.

[25] Kwang Mong Sim, ; Weng Hong Sun, (2002). [IEEE Comput. Soc 2002 International Symposium

Cyber Worlds: Theory and Practices. CW2002 - Tokyo, Japan (6-8 Nov. 2002)] First International

Symposium on Cyber Worlds, 2002. Proceedings. - Multiple ant-colony optimization for network

routing. , (), 277–281. doi:10.1109/cw.2002.1180890

[26] Zhao, Dongming; Luo, Liang; Zhang, Kai (2009). [IEEE 2009 Fourth International Conference on

Bio-Inspired Computing (BIC-TA) - Beijing, China (2009.10.16-2009.10.19)] 2009 Fourth Interna-

tional on Conference on Bio-Inspired Computing - An improved ant colony optimization for commu-

nication network routing problem. , (), 1–4. doi:10.1109/BICTA.2009.5338074

[27] B. Chandra Mohan; R. Baskaran (2012). A survey: Ant Colony Optimization based re-

cent research and implementation on several engineering domain. , 39(4), 4618–4627.

doi:10.1016/j.eswa.2011.09.076

[28] ScottPlot (2022, October 19) https://scottplot.net/

[29] NetworkX (2022, October 19) https://networkx.org/

[30] R. W. Hamming, ”Error detecting and error correcting codes,” in The Bell System Technical Journal,

vol. 29, no. 2, pp. 147-160, April 1950, doi: 10.1002/j.1538-7305.1950.tb00463.x.

[31] Max Roser, Hannah Ritchie and Esteban Ortiz-Ospina (2015) - ”Internet”. (2022, October 27)

’https://ourworldindata.org/internet’

[32] ICT Statistics (2022, October 27) https://www.itu.int/ITU-D/ict/statistics/ict/

[33] Number of smartphone subscriptions worldwide from 2016 to 2021, with forecasts from 2022 to

2027 (2022, October 27) https://www.statista.com/statistics/330695/number-of-smartphone-users-

worldwide/

71

72

A
Network images

73

74

Figure A.1: Network with 20 nodes and probability of each pair of nodes having a link equal to 0.1; Longest path
= 39, Average Path Length ∼ 19, 78, TTL = 59

75

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.2: Network A.1; random routing; no discovery; packet creation probability 0.1

76

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.3: Network A.1; random routing; no discovery; packet creation probability 0.3

77

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.4: Network A.1; random routing; no discovery; packet creation probability 0.5

78

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.5: Network A.1; random routing; best path only; packet creation probability 0.1

79

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.6: Network A.1; random routing; best path only; packet creation probability 0.3

80

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.7: Network A.1; random routing; best path only; packet creation probability 0.5

81

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.8: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.1; low learning
rate

82

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.9: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.1; medium learn-
ing rate

83

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.10: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.1; high learning
rate

84

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.11: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3; low learning
rate

85

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.12: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3; medium
learning rate

86

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.13: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3; high learning
rate

87

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.14: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3; low reward
rate and high penalty rate

88

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.15: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3; medium
reward rate and high penalty rate

89

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.16: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.3; high reward
rate and high penalty rate

90

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.17: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.5; random
packet picking

91

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.18: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.5; FIFO packet
picking

92

(a) Average variance (b) Average packet queue time

(c) Average packet delivery time normalized (d) Router created packets

(e) Router created packets percentage (f) Defender created packets percentage

Figure A.19: Network A.1; linear reward penalty routing; no discovery; packet creation probability 0.5; random
remove unreachable packet picking

93

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Main Objectives
	1.2 Terms and definitions
	1.2.1 Networks and Routing
	1.2.2 Stochastic Learning

	1.3 Related Work
	1.3.1 Network Routing Protocols
	1.3.2 Reinforcement Learning
	1.3.2.A Learning algorithms
	1.3.2.B Artificial Barriers
	1.3.2.C Ant optimization

	2 Resilient Learning in Routing Games
	2.1 Problem Statement
	2.1.1 Scenario Overview
	2.1.2 Environment
	2.1.2.A Network Node
	2.1.2.B Network Link
	2.1.2.C Network Packet

	2.1.3 Agents
	2.1.3.A Defender
	2.1.3.B Attacker
	2.1.3.C Normal user

	2.1.4 Game
	2.1.4.A Round
	2.1.4.B Preparation phase
	2.1.4.C Attack phase

	2.1.5 Scoring
	2.1.6 Formal solution
	2.1.6.A Defender
	2.1.6.B Attacker
	2.1.6.C Game example

	2.2 Stochastic routing game development
	2.2.1 Software solution overview
	2.2.1.A Used Technologies
	2.2.1.B Architecture Design

	2.2.2 User interface
	2.2.2.A MainWindow
	2.2.2.B PlotViewer

	2.2.3 Backend services
	2.2.3.A NetworkGenerator
	2.2.3.B NetworkGameBackend
	2.2.3.C NetworkGameDataCollector

	2.2.4 Libraries
	2.2.4.A Network project
	2.2.4.B NetworkUtils
	2.2.4.C PythonIntegration

	2.2.5 Algorithm Implementations
	2.2.5.A Routing Strategies
	2.2.5.B Packet Creation Strategies
	2.2.5.C Packet Picking Strategies
	2.2.5.D Route Discovery

	3 Simulations and Results
	3.1 Random routing strategy
	3.1.1 No route discovery
	3.1.2 Best path only

	3.2 Linear reward penalty routing strategy
	3.2.1 No route discovery & low probability of creation
	3.2.2 No route discovery & medium probability of creation
	3.2.3 No route discovery & medium probability of creation & high penalty rate
	3.2.4 No route discovery & high probability of creation

	4 Conclusion
	4.1 Summary
	4.2 Overview
	4.3 Future work
	4.3.1 Improving the application
	4.3.2 Further investigation

	Bibliography
	Appendix A

	A Network images

