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Prof. Célia Maria Santos Cardoso de Jesus
Prof. Daniel de Matos Silvestre
Prof. Rodrigo Martins de Matos Ventura

November 2023





Declaração
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Abstract

Space exploration and satellite-based services have become standard in our daily lives, whether it be
through the use of navigation systems, meteorological forecasts, or even satellite television. One of the
many problems that arise in the context of space exploration is the rendezvous manoeuvre, where a
spacecraft approaches another and matches its velocity, allowing for essential tasks such as refuelling,
resupplying, or even crew transfer.

This dissertation presents a rendezvous scenario between a chaser and a target satellite, focusing
on using Model Predictive Control (MPC) to build a controller capable of generating firing durations for
the chaser’s thrusters that drive it to the target. MPC is a flexible control technique based on optimization
that, unlike traditional methods, allows for the inclusion of constraints, such as obstacles in the chaser’s
path. This dissertation also addresses the computational complexity of the optimization problem posed
by the MPC controller and presents two algorithms that approximate the solution to this problem, while
taking much less time to do so.

The results show that these two algorithms generate trajectories very similar to the optimal solution,
making them much more suitable for real-time applications, where the MPC controller is used to gen-
erate firing durations for the thrusters in real time. Further work is needed to ensure that the solution
generated by these algorithms is close enough to the optimal solution to be useful in practice, as safety
and reliability are of utmost importance in space exploration.

Keywords: Spacecraft Rendezvous; Model Predictive Control; Optimization; Obstacle Avoidance
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Resumo

A exploração espacial e serviços baseados em satélites tornaram-se comuns no nosso dia-a-dia,
quer seja através do uso de sistemas de navegação, previsões meteorológicas, ou até televisão por
satélite. Um problema comum no contexto da exploração espacial é a manobra de rendezvous, onde
uma nave espacial se aproxima de outra e iguala a sua velocidade, permitindo tarefas essenciais como
reabastecimento, ou transferência de tripulação.

Esta dissertação apresenta um cenário de rendezvous entre um satélite perseguidor e um satélite
alvo, com foco no uso de controlo preditivo para construir um controlador capaz de gerar durações
de disparo para os propulsores do perseguidor que o conduzem ao alvo. Esta é uma técnica de con-
trolo flexı́vel baseada em otimização que, ao contrário de métodos tradicionais, permite a inclusão
de restrições no problema de controlo, como obstáculos ao longo da trajetória do perseguidor. Esta
dissertação aborda também a complexidade computacional do problema de otimização colocado pelo
controlador preditivo, e apresenta dois algoritmos que aproximam a solução deste problema, com um
custo computacional muito menor.

Os resultados obtidos mostram que estes algoritmos geram trajetórias semelhantes à solução ótima,
tornando-os adequados para aplicações em tempo real, onde o controlador é usado para gerar durações
de disparo para os propulsores em tempo real. É necessária investigação adicional para garantir que
a solução gerada por estes algoritmos é suficientemente próxima da solução ótima para ser útil na
prática, uma vez que a segurança e a fiabilidade são de extrema importância na indústria espacial.

Keywords: Rendezvous Espacial; Controlo Preditivo; Otimização; Desvio de Obstáculos
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Chapter 1

Introduction

1.1 Motivation and Spacecraft Rendezvous

Guidance, Navigation and Control (GNC) and Attitude and Orbit Control System (AOCS) systems handle

the control of spacecraft and satellites, which are key components of some services used in our daily

lives, such as communication, navigation, and meteorology.

Given the safety standards and high cost of space missions, this industry is very conservative in

nature, leading to the use of outdated tools and theoretical methods with a significant focus on safety,

robustness, and trust over performance. However, more and more space applications require high-

precision and agile control systems that cannot be realized with traditional methods. In particular, on-

orbit servicing, assembly, and manufacturing (OSAM) [4], or active debris removal (ADR) [5], are ex-

tremely complex up-and-coming proximity operations that require more advanced methods than those

that traditional GNC offers.

Within the context of control systems, numerical optimization has emerged in the last decades in

the form of the proliferation of MPC. MPC is a widely used control technique that involves solving an

optimization problem within a set of actuator constraints, but the computational complexity of MPC can

be a challenge in the context of space flight, as actuators are often bang-bang in nature. Moreover, the

use of MPC is limited by the onboard computational power, which is usually constrained by the available

power budget. Some research has been successful in reducing the computational load of MPC for some

space-flight applications, such as [6] and [7], but not for the particular case of spacecraft rendezvous.

Spacecraft rendezvous is the process of bringing two spacecraft together. This is a fundamental

problem in space exploration, as it is required for many space missions, such as docking, refueling, and

the aforementioned OSAM operations. Rendezvous is a non-trivial problem. If the target spacecraft is

in the same circular orbit, but ahead of the chasing spacecraft, simply accelerating towards the target

spacecraft will result in a higher altitude, drifting away from the latter. Likewise, if the target spacecraft is

behind the chasing spacecraft, accelerating towards the target spacecraft will result in a lower altitude,

also drifting away from it. If the target spacecraft is in a different orbit, the problem is even more complex,

as the spacecrafts will have different orbital periods.

Hohmann [1] showed that the most efficient way to transfer from one circular orbit to another is by
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performing two impulsive manoeuvres, one to transfer to an elliptical orbit, and another to transfer from

the elliptical orbit to the target circular orbit, as depicted in Figure 1.1 (presented by [1]) for the coplanar

case. This is known as a Hohmann transfer. When both spacecraft are in the same orbit, there are

several ways to perform a rendezvous maneuver such as those illustrated in Figure 1.2 (presented by

[2]).

Figure 1.1: Example Hohmann transfer, from circular orbit to circular orbit (with radii r1 and r2, respec-
tively), with the transfer orbit (dashed line) tangent to both orbits [1].

Figure 1.2: Example rendezvous maneuvers for spacecraft in the same orbit [2].

The first successful rendezvous was performed in December 1965, when the Gemini 6A and Gemini

7 spacecrafts met in orbit, keeping a distance below 100 meters for over 5 hours [8]. This was a big

landmark in space exploration, achieved only 4 years after the first human spaceflight.

Currently, rendezvous is a standard procedure in space missions. The International Space Station

is a good example of this, as it is composed of several modules that were launched separately and then

docked together in orbit and requires regular resupply missions. The Hubble Space Telescope was also

serviced several times [9]. However, existing rendezvous solutions rely on open-loop control during the

initial stages [10, Appendix B], where errors may accumulate and are only rectified during scheduled
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correction manoeuvres. An approach based on MPC able to perform rendezvous from a large distance

offers the advantage of continuous error correction throughout the mission, possibly minimizing fuel con-

sumption. This is extremely important in scenarios where recurrent rendezvous phases are foreseen,

for example for in-orbit assembly of large structures where multiple rendezvous to fetch materials and

deliver them to the assembly site must occur [11]. In-orbit servicing is another example, be it for refu-

elling, maintenance or disposal [5] – the chaser spacecraft has to recurrently rendezvous with different

targets and orbits. In these examples, it is very relevant to reduce propellant consumption. Within the

full rendezvous (and docking/berthing) phase, the far-range stages are the largest contributors to delta-

V expenditure. Therefore, having methods to improve performance (in terms of state dispersion) and,

most importantly, reduce consumption during such phases is an enabler for the future missions in these

contexts.

1.2 Model Predictive Control

This section provides a brief overview of MPC, as well as of convex optimization techniques that have

been successfully used in the past to improve the computational load of MPC, by avoiding solving non-

convex problems directly.

1.2.1 Formulation

Suppose we have a discrete-time system that can be described by a state x ∈ Rn. The system evolves

according to a dynamic model

xk+1 = f(xk,uk), (1.1)

where uk ∈ Rm is the control input at time k, xk ∈ Rn is the state at time k.

The goal is to find a sequence of control inputs U ∈ Rm×N that minimizes a cost function J(X,U),

X ∈ Rn×(N+1), subject to a set of constraints, over a finite time horizon N , given an initial state x̂0.

The sequence of control inputs U and the sequence of states X are composed as

U =
[
u0 u1 . . . uN−1

]
,

X =
[
x0 x1 . . . xN

]
.

(1.2)

The cost function is a function of X and U and is used to evaluate the performance of a given

sequence of control inputs and is commonly defined as a sum of a quadratic cost on the state and

control inputs and a terminal cost on the final state. MPC then solves the optimization problem, finding

the sequence of control inputs with the best performance.

The problem can be formulated as

3



minimize
X,U

J(X,U)

subject to xk+1 = f(xk,uk), k = 0, ..., N,

x0 = x̂0,

xk ∈ X k = 0, ..., N,

uk ∈ U k = 0, ..., N − 1.

(1.3)

The set X is the state constraint set, and U is the control input constraint set. These can repre-

sent safety constraints, such as the maximum speed of a vehicle and obstacles to avoid, or physical

constraints, such as the maximum steering angle and actuator limits.

After solving the optimization problem, the first control input, u0 ∈ Rm, is applied and the process

is repeated. This is the most explored control strategy used throughout this work, as it can deal with

constraints, which is not the case for other control techniques such as Linear Quadratic Regulator (LQR).

1.2.2 MPC Optimization

Solving an MPC problem (defined in more detail in Section 1.2.1) involving actuation with discrete states

(i.e. on or off), may be performed by using binary variables for the actuation states, and using a Mixed-

Integer Programming (MIP) solver. This is the most direct and standard approach and is used in many

applications, such as [12].

MIP is a class of optimization problems that contain discrete and (optionally) continuous variables.

There exist efficient algorithms to solve some MIP problems, such as the branch-and-bound algorithm

[13] (and optimizations of this algorithm for MPC applications [12]). MIP solvers such as CPLEX [14]

and Gurobi [15] are widely used and employ this algorithm to solve a wide range of MIP problems. How-

ever, these algorithms are not suitable for real-time applications, as they present worst-case exponential

complexity. This is because the solution of a MIP is such that the algorithm may need to explore a large

portion of the search space to find a feasible solution. This will be the baseline for comparison of the

algorithms presented in this work, as, despite its computational complexity, it is the only algorithm that

guarantees the optimal solution to the MPC problem among the algorithms presented in this work.

A non-convex problem may have a convex relaxation which is globally optimal at the global optimum

of its non-convex counterpart or for some subset of the feasible set of the non-convex problem. Some

optimization problems related to the issue at hand, namely minimum-fuel [16], and later, minimum-error

[17] rocket landing, have been shown to have convex relaxations. These methods have since been

extended to handle generalized versions of the original problem, as presented in [6] and [7]. The issue

at hand does not fall exactly into any of the classes of problems studied in the reviewed literature for

which convex relaxations have been proven to exist. Still, even if global optimality is not guaranteed,

we will use the relaxation proposed in [17] as a reference for other algorithms implemented in this work

regarding the solution of an optimization problem with similarly structured constraints on the actuation.
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Chapter 2

Methodology

2.1 Motion Dynamics

We will control a chaser spacecraft attempting to rendezvous with a target spacecraft assumed to be in

a circular orbit around a central body. We assume the gravitational pull caused by the spacecraft to be

negligible. Starting with a description of the reference frames to be used and the equations of motion for

a spacecraft in orbit, this section describes the dynamics of the spacecraft and the simplifications made

to the model used by the controller.

The chaser spacecraft, denoted as C, is assumed to be a point mass, with a mass mC. The target T

is orbiting the Earth, with mass mT and at an altitude RT. The Earth is assumed to be a perfect sphere,

with mass ME and radius RE. The universal gravitational constant is denoted by G, and the gravitational

parameter of the Earth is µ = GME. Note that the radius of the orbit of the target is then given by

RT +RE.

2.1.1 Reference Frames

The simplest way to describe the dynamics of the spacecraft is to express the equations of motion

(Newton’s second law) on an inertial frame centered but not fixed on the central body, the Earth in

this case. Moreover, an inertial frame may also be useful for other tasks, such as analyzing results.

Assuming that the masses of the two spacecraft are negligible with respect to the Earth’s, their gravity

force is neglected. Furthermore, it is assumed that the differences in accelerations due to the gravity of

the Sun are not significant, and the gravity of the Moon and other celestial bodies is neglected. Under

these assumptions, this frame is the Earth Centered Inertial (ECI) frame. It is defined as having its origin

at the centre of the Earth, and it is non-rotating. The z-axis points to the North pole, the x-axis points to

Earth’s vernal equinox, and the y-axis completes a right-handed reference frame.

On the other hand, since the control problem in this thesis is that of controlling the relative position

of the chaser spacecraft with respect to the target spacecraft, a reference frame centered on the latter

is useful for the controller, as the target is stationary in this frame and the dynamics can be simplified.

This frame is called the Local Vertical Local Horizontal (LVLH) frame. The origin of the LVLH frame is

the center of the target spacecraft, and the axes are defined as follows: the z axis – also denoted as
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R-bar – points from the target to the center of the Earth (the central body); the y is perpendicular to the

orbital plane, pointing in the opposite direction of the angular momentum of the target; and the x axis -

also denoted as V -bar – is tangent to the orbit of the target (pointing in the direction of the velocity of the

target for circular orbits), completing the right-handed coordinate system. Figure 2.1 shows both frames

along with some of the variables used in transformations between the two frames.

xECI

zECI

yECI

x

z y

x′

z′

rECI(t)

r(t)

rT (t)

Ṙ(t)r(t)

θ(t)

Figure 2.1: Relative motion of the chaser with respect to the target. Position of the chaser relative to the
LVLH frame r(t) and relative to the ECI frame rECI(t). LVLH frame rotated by θ(t) (blue axes x′ and z′).
Physical interpretation of Ṙ(θ(t))r(t) (blue). Position of the target relative to the ECI frame rT (t) (green).

Let r(t) = [x(t), y(t), z(t)]⊺ be the position of the chaser in the LVLH frame and rT (t) the position of

the target (by definition equal to the center of the LVLH frame), then the position of the chaser in the ECI

frame is given by

rECI(t) = R(t)r(t) + rT(t), (2.1)

where rECI(t) = [xECI(t), yECI(t), zECI(t)]
⊺ and R(t) is the rotation matrix that transforms vectors from

the LVLH frame to ECI frame, and that depends on the target’s position in the orbit, as well as the orbit

itself (in particular its eccentricity and inclination). The sequel will address the dynamics of rECI(t) and

rT(t).

2.1.2 Orbital Dynamics

In the ECI frame, the dynamics of any celestial object S according to Newton’s Second Law are given by

mSr̈S(t) = mSr̈Sg
(t) + uS(t), (2.2)

where dot notation to denote the derivative with respect to time was used, uS(t) represents the forces

applied on S, e.g. a control input for a spacecraft, and r̈Sg (t) is the acceleration due to gravity, itself given
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by Newton’s Law of Universal Gravitation as

r̈Sg
(t) = − µ

∥rS(t)∥3
rS(t). (2.3)

Not considering external control forces, all acting forces are central-forces. Therefore, there is conser-

vation of orbital angular momentum of the object. Hence, the orbital motion is planar and it is the same

as Kepler’s second law, which states that the swept out area during constant time intervals is constant.

The solution is then a conic curve: Keplerian orbits are circular, elliptical, parabolic, or hyperbolic. For

Earth-orbiting satellites, the first two categories are the most relevant. Assuming, circular orbits, the

motion of a celestial object (with uS(t) = 0) can be described as a circle, with its position entirely defined

by the true anomaly angle θ(t) and the orbital plane (see Figure 2.1).

Therefore, if the target spacecraft is in such conditions, it is possible to achieve a closed form solution

for (2.2). In particular, considering without loss of generality that the orbit is circular and equatorial (i.e.,

inclination is zero), the rotation matrix R(T ) becomes

R(θ(t)) =

− sin θ(t) 0 − cos θ(t)

0 1 0

cos θ(t) 0 − sin θ(t)

 , (2.4)

the target’s motion is described by

rT (t) =

RT cos θ(t)

0

RT sin θ(t)

 , (2.5)

and θ(t) = ωt is the true anomaly in the Keplerian orbit, i.e., the supplementary of the angle between

the z axis of the LVLH frame and the x axis of the ECI frame, as shown in Figure 2.1.

For the inverse transformation, from ECI to LVLH, it is only necessary to invert 2.1, as

r(t) = R(θ(t))⊺(rECI(t)− rT (t)). (2.6)

Note that R(θ(t)) is an orthogonal matrix, and therefore R(θ(t))⊺ = R(θ(t))−1. The transformation

of the velocity from ECI to LVLH is again given by the derivative of 2.6.

2.1.3 Relative Dynamics

Considering our scenario of a chaser approaching a non-actuating target spacecraft, it is possible to

write the relative dynamics as

r̈T(t)− r̈C(t) = r̈Tg
(t)− r̈Cg

(t)− 1

mC
uC(t), (2.7)

where the control input uC(t) will be described in Section 2.1.5, As described above, it is important to

obtain the equations of motion in the LVLH frame, as the relative dynamics can be further simplified.

First of all, recall (2.6), and take its first derivative

ṙ(t) = Ṙ⊺(t) (rC(t)− rT (t)) +R⊺(t) (ṙC(t)− ṙT (t)) , (2.8)
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which, calling the last parcel v(t) and noting that the derivative of Ra is Rω×a, with ω being the angular

velocity of the LVLH frame with respect to the ECI frame, can be rewritten as

ṙ(t) = −ω × r(t) + v(t). (2.9)

Taking now the derivative of v(t) and following similar steps as above yields

v̇(t) = −ω × v(t) +R⊺(t) (r̈C(t)− r̈T (t)) . (2.10)

Recalling (2.7) and replacing it in the above expression, allows to write

v̇(t) = −ω×v(t)− µ

∥rT(t)∥3
R⊺(t)rT(t)+

µ

∥rT(t) +R(t)r(t)∥3
R⊺(t) (rT(t) +R(t)r(t))− 1

mC
R⊺(t)uC(t),

(2.11)

where the chaser position is replaced using (2.1). Since this is a nonlinear expression, it is difficult to

remove the explicit influence of the target position. However, these equations of relative motion in the

LVLH frame can be simplified noting that the distance between the two spacecraft is much smaller than

the orbital radius of either spacecraft, i.e., ∥R(t)r(t)∥ ≪ ∥rT(t)∥. This is the basic assumption behind

the model derived in the 60’s by Clohessy and Wiltshire [18], which will be further detailed in the next

subsection. The next step is then to simplify the above expression as follows

v̇(t) ≈ −ω × v(t)− µ

∥rT(t)∥3
R⊺(t)rT(t) +

µ

∥rT(t)∥3
R⊺(t) (rT(t) +R(t)r(t))− 1

mC
R⊺(t)uC(t) (2.12)

= −ω × v(t) +
µ

∥rT(t)∥3
r(t)− 1

mC
R⊺(t)uC(t). (2.13)

If the target is in a circular orbit, these can be further simplified resulting in the Clohessy-Wiltshire (CW)

equations as explained next.

Having a model for the relative motion in the LVLH frame, it is relevant to also compute the velocity

of the chaser in the ECI frame for the particular case of our equatorial circular orbit. From 2.1,

ṙECI(t) = Ṙ(θ(t))r(t) +R(θ(t))ṙ(t) + ṙT (t), (2.14)

where

Ṙ(θ(t)) =

−ω cos θ(t) 0 ω sin θ(t)

0 0 0

−ω sin θ(t) 0 −ω cos θ(t)

 . (2.15)

2.1.4 The Clohessy-Wiltshire Equations

For the controller, it is useful to describe the dynamics of the spacecraft through a set of equations that

are simpler than the full dynamics, as an optimization problem (constrained by the dynamics) will be

solved at each time step. The Clohessy-Wiltshire (CW) equations [18] describe the relative motion of

a spacecraft in orbit around a central body. The equations are derived by linearizing the full dynamics

around a circular orbit. The equations, in the LVLH frame centered on the target described in Section

2.1.1, are given by
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ẍ(t)− 2ωż(t) = Fx(t)

mc

ÿ(t) + ω2y(t) =
Fy(t)
mc

z̈(t) + 2ωẋ(t)− 3ω2z = Fz(t)
mc

, (2.16)

where ω is the angular velocity of the target around the Earth, mc is the mass of the chaser, and

F(t) = [Fx(t), Fy(t), Fz(t)]
⊺ is the force applied to the chaser. (2.16) can be rewritten in a linear state-

space form

ẋ(t) = Acx(t) +Bcu(t), (2.17)

where

x(t) =



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


, u(t) =

Fx(t)

Fy(t)

Fz(t)

 , Ac =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2ω

0 −ω2 0 0 0 0

0 0 3ω2 −2ω 0 0


, Bc =



0 0 0

0 0 0

0 0 0
1
mc

0 0

0 1
mc

0

0 0 1
mc


.

(2.18)

This system is linear, so it can be discretized exactly for constant amplitude pulses as we will see in

Section 2.1.6, which is useful because it correctly models the actuators at hand, as we will also see in

Section 2.1.5.

2.1.5 Actuation

Propulsion systems used in spacecraft vary in complexity and capabilities. Currently, many propulsion

technologies are available [19]. There are chemical and electric propulsion systems, with different types

of thrusters. Within chemical propulsion, there are several types of thrusters, such as monopropel-

lant, bipropellant, and cold gas thrusters. These thrusters all share the same principle of operation: a

propellant is heated and expelled through a nozzle, generating thrust.

Ideally, a thruster would be able to instantly supply one hundred percent of its rated thrust for any

amount of time, and instantly stop when commanded to do so. In reality, this is not the case. Thrusters

have some response delay and a minimum amount of time they can be on for. Moreover, they take some

time to reach their maximum thrust, and some time to stop. In this work, we will consider a simplified

model of a thruster, discarding the delay and rise and fall times, effectively applying a constant force

in a single direction for a given amount of time. Figure 2.2 illustrates a typical thruster pulse, and a

rectangular pulse approximation.

For a spacecraft with M actuators, assuming each actuator is allowed at most a single pulse, the

control input u is given by
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pd s

Figure 2.2: Realistic thruster pulse. The thruster takes some time to reach its maximum thrust, and
some time to stop. Approximation of a thruster pulse with a rectangular pulse (blue). Pulse delay pd and
duration s. The delay is not considered. Adapted from [3].

u(t) =

M∑
i=1

Fiwi(H(t− τi − si)−H(t− τi)) (2.19)

H(t) =

1 if t ≥ 0

0 if t ≤ 0
, (2.20)

where, for actuator i, tmin
i ∈ R+ is its minimum pulse duration, Fi ∈ R is the maximum magnitude of the

force applied by itself, wi ∈ R3 is a unit vector in the direction of the force, and H(t− τi − si)−H(t− τi)

is a unit pulse denoting its state, which is 1 (on) starting at τi ∈ R for the duration si ∈ R+, and 0 (off)

the rest of the time.

In general, several pulses may be applied, such that

u(t) =

M∑
i=1

Fiwi

P∑
p=1

H(t− τpi − spi )−H(t− τpi ), (2.21)

where each actuator is turned on at most P times, with the pth pulse for actuator i starting at τpi and

lasting for spi .

It is also necessary to ensure that the pulses do not overlap, which can be done by ensuring that

the start of the next pulse occurs after the end of the previous pulse, and the minimum pulse duration is

respected, i.e.

τp+1
i ≥ τpi + spi + tmin

i . (2.22)
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2.1.6 Discretizing the Dynamics

In the notation used for discrete time, the time variable is represented as an index k, representing the

time at t = kT (e.g. xk represents x(kT )).

The discrete dynamics can be obtained from the continuous dynamics as

xk+1 = eAcTxk +

M∑
i=1

∫ T

0

eAc(T−τ)Bcui(τ)dτ, (2.23)

where T ∈ R+ is the sampling time, and eAct is the matrix exponential of Ac, given by

eAct =



1 0 6(ωt− sin(ωt)) 4
ω sin(ωt)− 3t 0 2

ω (1− cos(ωt))

0 cos(ωt) 0 0 1
ω sin(ωt) 0

0 0 4− 3 cos(ωt) 2
ω (cos(ωt)− 1) 0 1

ω sin(ωt)

0 0 6ω(1− cos(ωt)) 4 cos(ωt)− 3 0 2 sin(ωt)

0 −ω sin(ωt) 0 0 cos(ωt) 0

0 0 3ω sin(ωt) −2 sin(ωt) 0 cos(ωt)


. (2.24)

For actuator i, assuming the control input is applied at the beginning of each time step (applied for

si ∈ [0, T )), we can calculate the input part of the dynamics as

∫ T

0

eAc(T−τ)Bcui(τ)dτ = eAcT

∫ si

0

e−AcτBcFiwi dτ (2.25)

= eAcT

∫ si

0

e−AcτdτBcFiwi (2.26)

= eAcTG(si)BcFiwi, (2.27)

where

G(s) =

∫ s

0

e−Acτdτ =

s 0 −3s2ω + 6(1−cos(ωs))
ω

3s2

2 + 4(cos(ωs)−1)
ω2 0 2s

ω −
2 sin(ωs)

ω2

0 sin(ωs)
ω 0 0 cos(ωs)−1

ω2 0

0 0 4s− 3 sin(ωs)
ω

2 sin(ωs)
ω2 − 2s

ω 0 cos(ωs)−1
ω2

0 0 6ωs− 6 sin(ωs) 4 sin(ωs)
ω − 3s 0 2 cos(ωs)−1

ω

0 1− cos(ωs) 0 0 sin(ωs)
ω 0

0 0 3(cos(ωs)− 1) 2 1−cos(ωs)
ω 0 sin(ωs)

ω


.

(2.28)

The matrix describing the dynamics of the actuator G is a non-linear function of the time the actuator

is on, s. eAct and G(s) were computed using symbolic computation software.

The non-linear discrete-time dynamics are then given by

xk+1 = Axk +A

M∑
i=1

G(si)BcFiwi, (2.29)

where A is the state transition matrix, A = eAcT .
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2.1.7 Linearization of the Discrete Actuator Dynamics

The discrete actuator dynamics G(s) are non-linear with respect to the control variables. As we want to

build an MPC controller which solves an optimization problem constrained by these dynamics at each

time step, it is beneficial to linearize the dynamics around a point s0, so that we can use linear solvers

to solve the optimization problem. That is

G(s) ≈ G(s0) +
∂G

∂s

∣∣∣∣
s=s0

(s− s0) := Ḡ(s, s0) (2.30)

where ∂G
∂s

∣∣
s=s0

is the element-wise derivative of G(s) with respect to s evaluated at s0.

∂G

∂s

∣∣∣∣
s=s0

=

1 0 6s0ω − 6 sin(ωs0)
4
ω sin(ωs0)− 3s0 0 2

ω (1− cos(ωs0))

0 cos(ωs0) 0 0 1
ω sin(ωs0) 0

0 0 4− 3 cos(ωs0)
2
ω (cos(ωs0)− 1) 0 1

ω sin(ωs0)

0 0 6ω(1− cos(ωs0)) 4 cos(ωs0)− 3 0 2 sin(ωs0)

0 −ω sin(ωs0) 0 0 cos(ωs0) 0

0 0 3ω sin(ωs0) −2 sin(ωs0) 0 cos(ωs0)


.

(2.31)

Note that

Ḡ(s, 0) = 06×6 + sI6×6 = sI6×6, (2.32)

which is equivalent to fully disregarding the actuator dynamics over the pulse duration, and directly

applying force proportional to the pulse duration at the beginning of the pulse.

To demonstrate this, it is only necessary to recalculate the discrete dynamics calculation from 2.23,

but instead of ui, we use ūi(τ) = δ(τ)siFiwi, where δ(τ) is the Dirac delta function. Indeed,

∫ T

0

eAc(T−τ)Bcūi(τ)dτ = eAcT

∫ T

0

eAcτδ(τ)dτBcsiFiwi (2.33)

= eAcTBcsiFiwi (2.34)

= eAcT (06×6 + sI6×6)BcFiwi (2.35)

= eAcT Ḡ(s, 0)BcFiwi. (2.36)

2.2 MPC Controller

2.2.1 The Cost Function

In the formulation of the MPC controller, it is required to define a cost function that guides the behaviour

of the controlled system by penalizing certain behaviours. In our case, we want the spacecraft to reach

the target and stay there, so the cost function should penalize deviations from the target. Moreover, we

want the control effort to be as small as possible, so the cost function should also contain a term penal-
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izing the control effort. A convex quadratic cost on the state and control variables will be considered, as

it allows for position and velocity control, as well as balancing the control effort. This is enough to control

a simple version of the spacecraft rendezvous problem.

In the problem at hand, the control variables are ski , the time for which the ith actuator is active

between kT and (k + 1)T . It is useful to define a variable S ∈ RM×N containing all the control variables

S =


s11 s21 . . . sN1

s12 s22 . . . sN2
...

...
. . .

...
s1M s2M . . . sNM

 . (2.37)

Two different cost functions will be used and compared. The first one, defined as follows, penalizes

the control variables and the state error over the entire time horizon.

J1(X,S) =

N∑
k=1

(
(xk − xref)

⊺Q(xk − xref) + sk
⊺
Rsk

)
, (2.38)

where xref denotes the reference state, sk is the kth column of S, the positive definite matrices Q ∈ Rn×n

and R ∈ Rm×m penalizes the state error and control variables, respectively. As a reminder, there are

N + 1 states and N control inputs (the initial state x0 is not controlled).

The second cost function to be considered also penalizes the control variables over the entire hori-

zon, but penalizes the state error only at the final time step. It may be written as

J2(X,S) = (xN − xref)
⊺Q(xN − xref) +

N∑
k=1

sk
⊺
Rsk, (2.39)

As x is the relative position between the chaser and the target spacecraft expressed in the LVLH

frame centred in the target, the reference desired position is the origin, i.e., xref = 0. Simplifying both

cost functions, we obtain

J1(X,S) =

N∑
k=1

(
x⊺
kQxk + sk

⊺
Rsk

)
, (2.40)

and

J2(X,S) = x⊺
NQxN +

N∑
k=1

sk
⊺
Rsk. (2.41)

2.2.2 Obstacle Avoidance

Using MPC for the rendezvous problem comes with the advantage of being able to easily add constraints

to the optimization problem. Obstacles may be expressed as constraints on the state variables, and the

MPC controller will avoid them so long as there is a feasible solution - that is, it is possible to avoid them.

The obstacles are assumed to be circles on the orbital plane, each described by a radius R ∈ R+

and a center at C ∈ R2. The obstacles are assumed to be static in the LVLH frame and can be imagined

as debris fields or other spacecraft.

For a given obstacle i, the constraint on the state variables xk is given by
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∥Dxk −C∥2 ≥ R, (2.42)

where D ∈ R2×6 is a matrix that selects the position components of xk on the orbital plane. That is,

D =

[
1 0 0 0 0 0

0 0 1 0 0 0

]
. (2.43)

The constraint (2.42) is highly non-convex, and cannot be used directly in the optimization problem

without resorting to a non-linear solver, which is too computationally expensive for real-time applications

and is not guaranteed to find a feasible solution within some specified amount of time. Instead, we use

an algorithm very similar to the one described in [20] and [21] to find a feasible solution to the non-convex

problem using only linear constraints to approximate the non-convex constraint.

To describe this algorithm, consider the following generic MPC problem with (2.42)

minimize
X,U

J(X,U) (2.44a)

subject to xk+1 = f(xk,uk), k = 0, ..., N, (2.44b)

x0 = x̂0, (2.44c)

∥Dxk −C∥2 ≥ R k = 0, ..., N. (2.44d)

The main idea of the algorithm is to first solve (2.44) without the obstacle constraint (2.44d), and if

the solution is infeasible, add affine constraints tangent to the obstacle boundary, at the points nearest

to each of the infeasible states. A pseudo-code description of the algorithm is presented in Algorithm 1.

Algorithm 1 Sequential generation of affine constraints for avoiding a circular obstacle.

1: Input: x̂0, C, R

2: Output: U

3: X,U = solve (2.44) without the obstacle constraint (2.44d)

4: if X is feasible then

5: Return U

6: end if

7: while X not feasible or U has not converged do

8: newConstraints = ∅

9: for each currently or previously infeasible state xk do

10: add to newConstraints a plane tangent to the obstacle boundary at the nearest point to Dxk

11: end for

12: X,U := solve (2.44) with the constraints newConstraints, without the obstacle constraint (2.44d)

13: end while

14: Return U

A visual representation of the constraint boundaries generated by the algorithm for a trajectory with
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infeasible points is shown in Figure 2.3.

Figure 2.3: Example trajectory (blue - feasible - and orange - infeasible), constraint boundaries gener-
ated by the algorithm for the infeasible point (purple) and the nearest points on the circle to each of the
infeasible points of the trajectory (yellow).

2.2.3 MPC Optimization Problem

The optimization problem solved by the MPC can be explicitly written as

minimize
X,S

J(X,S) (2.45a)

subject to xk+1 = eAcTxk +

M∑
i=1

eAcT Ḡ(ski , s0)BcFiwi, (2.45b)

x0 = x̂0, (2.45c)

ski ∈ 0 ∪ [tmin
i , T ), i = 1, . . . ,M, k = 0, . . . , N, (2.45d)

∥Djxk −Cj∥2 ≥ R j = 1, . . . , O, k = 0, . . . , N, (2.45e)

where O is the number of obstacles.

Note that the non-linear actuator dynamics G(s) (2.28), if used directly, would be a source of non-

convexity, requiring the use of non-linear solvers to solve directly. In order to enable the use linear

solvers, these dynamics are replaced by the linearized actuator dynamics Ḡ(s, tmin) (2.30).

2.3 Simulator Layout

To produce results, a basic simulator was implemented. There are two main components to the sim-

ulator: the dynamics model and the controller. The dynamics model is responsible for simulating the

motion of the spacecraft, given a control signal. The controller generates the control signal. The dynam-

ics model and the controller are described in Sections 2.1.2 and 2.2, respectively.

The simulator has fixed time steps of T seconds. The controller matches the time step of the simula-

tor. It is assumed the chaser spacecraft has ideal sensors capable of measuring its correct position and

velocity. The controller generates the control signal based on the position and velocity at the end of the

previous time step. The control signal is then applied to the dynamics model, which simulates the motion

of the spacecraft for the next time step. The process is repeated until the end of the simulation time is
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reached. The dynamics model is described in Section 2.1.2. A diagram of the simulator is shown in

Figure 2.4. The simulator is used to test the controller and to generate the results presented in Chapter

3.

Actuators
Relative
Orbital

Dynamics

Sensors
(Passthrough)

MPC Controller
un

u(t) r(t), ṙ(t)

xn

Environment

Controller

Figure 2.4: One time step of the simulator for testing the MPC controller. The controller receives the
state xn and generates a control signal un. The control signal is converted to a force vector over time
u(t) by the actuators, which is applied to the continuous time dynamics model. The position and velocity
are measured by the sensors - in this case, the sensors are assumed to be perfect - and passed to the
controller.

2.4 Solver Algorithms

The optimization problem becomes a mixed-integer problem due to the constraints on each actuator’s

time of activation, ski ∈ 0∪ [tmin, T ). Several approaches will be tested to solve the optimization problem,

exploring the trade-off between computational cost and the optimality of the solution. The following

algorithms (name in bold) will be tested:

1. Standard: Use of a Mixed-Integer Linear Programming (MILP) solver, in this case, GUROBI in

MATLAB, to directly (and optimally) solve the simplified optimization problem 2.45.

2. Relaxed: Current state-of-the-art algorithm for convexification of similar mixed-integer problems to

convex problems.

3. Projected: Proposed algorithm for approximating the mixed-integer solution using only convex

problems as intermediate steps.

An important note is that using a mixed-integer nonlinear programming (MINLP) solver, such as fmincon

in MATLAB, would be the most direct approach to solving the full problem with non linear dynamics.

However, not only is this approach not feasible for real-time applications due to its high computational

cost, but it is also prohibitively expensive to run even simple simulations in a reasonable amount of time.

Therefore, this approach is not considered in this thesis.
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Obstacle avoidance and exploring efficient solutions for the mixed-integer problem are problems

considered separately in this thesis. In practice, this means obstacle avoidance is only implemented for

the Standard algorithm, serving mostly as a proof of concept for the flexibility of the MPC formulation,

and the remaining algorithms are only tested on the problem without obstacles. A joint analysis of the

effect of the obstacle avoidance algorithm and the relaxations introduced by the Relaxed and Projected

algorithms falls beyond the scope of this work.

2.4.1 Algorithm 1, Standard

The simplified optimization problem 2.45 without the obstacle constraint is a MILP problem, which can

be solved using a mixed-integer solver. In this case, the GUROBI solver in MATLAB is used.

Without obstacles, this approach is optimal in the sense that it guarantees the optimal solution to the

simplified optimization problem 2.45, therefore it is used as a baseline for comparing the performance of

the remaining algorithms.

However, this approach is not feasible for real-time applications, as it presents worst-case exponential

complexity on the number of integer constraints. The fact that the number of integer constraints is equal

to the prediction horizon N multiplied by the number of actuators M presents a significant limitation to

the prediction horizon that can be used while keeping the worst-case computation time within reasonable

limits. This is the main motivation for the remaining algorithms.

2.4.2 Algorithm 2, Relaxed

This algorithm is a simple relaxation of the integer constraints of the problem 2.45, leading to a convex

problem. This relaxation was motivated by the fact that similarly structured problems have been shown

to have convex relaxations that are globally optimal at the global optimum of the non-convex problem

[6]. Even though the problem at hand does not fall exactly into any of the classes of problems studied

in the reviewed literature for which convex relaxations have been proven to exist, we will use the relax-

ation proposed in [17] both to analyse the performance of this algorithm despite the lack of theoretical

guarantees, and as a reference for the other algorithms implemented in this work.

Because there is no guarantee that the solution to the relaxed problem is feasible for the original

problem, solutions to the relaxed problem that are not feasible for the original problem are projected

onto the nearest feasible solution space of the original problem. The actuator times are unidimensional,

so this projection is trivial.

For completeness, this section presents the full optimization problem for which [17] presents a convex

relaxation, along with the conditions under which the relaxation is globally optimal at the global optimum

of the non-convex problem.

Proposed by [6], and generalized on [7], this algorithm is one of the current methods for solving a

subset of mixed-integer MPC problems. The setup for this algorithm requires introducing a great deal of

new notation. For it not to become too convoluted, the notation within this section is self-contained and

does not follow the notation used in the rest of the thesis.
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Consider the following optimization problem:

minimize
ui, γi, tf

m(tf , x(tf )) (2.46a)

subject to ẋ(t) = Ax(t) +B

M∑
i=1

ui(t) + w, x(0) = x0, (2.46b)

γi(t)ρ1 ≤ ∥ui(t)∥2 ≤ γi(t)ρ2, i = 1, . . . ,M, (2.46c)

γi(t) ∈ {0, 1}, i = 1, . . . ,M, (2.46d)
M∑
i=1

γi(t) ≤ K, i = 1, . . . ,M, (2.46e)

Ciui(t) ≤ 0, i = 1, . . . ,M, (2.46f)

b(tf , x(tf )) = 0, (2.46g)

where x(t) ∈ Rn is the state of the system, ui(t) ∈ Rp is the control input of actuator i, w ∈ Rn is a known

external input, A ∈ Rn×n is the state transition matrix and B ∈ Rn×p is the control input matrix. Matrices

Ci ∈ Rqi×p define polytopic cones constraining the input vectors (the j-th row of Ci, Ci,j defines the

outward-facing normal of the j-th facet of the polytopic cone). b : R × Rn → Rq defines the terminal

manifold. m : R× Rn → R is the cost function (only a terminal cost is considered). ρ1, ρ2 ∈ R bound the

norm of the control input when the corresponding γi(t) is active. K is the maximum number of actuators

that can be active at any given time.

A few more definitions are needed to describe the conditions under which this algorithm can be used.

The input pointing sets are the cones constraining the control inputs:

Ui = {ui ∈ Rp | Ciui ≤ 0}. (2.47)

The Euclidean projection of z ∈ Rp onto a set S ⊆ Rn is PUi(z)
△
= ∥argmins∈S ∥s− z∥2∥2. The normal

cone at z to a set S ⊆ Rn is denoted NS(z) ⊆ Rn. The adjoint system is defined as

λ̇(t) = −ATλ(t), y(t) = BTλ(t), (2.48)

where y(t) ∈ Rm is its output. The input gain measure is Γi(t)
△
= PUi(y(t)).

According to [7], given that

1. the cones defined by the matrices Ci do not overlap,

2. matrices Ci are full row rank and the terminal cost is non-trivial (∇m(tf , x(tf )) ̸= 0),

3. the control norm bounds ρ1 and ρ2 are distinct,

4. the adjoint system (2.48) is observable,

5. either (a) or (b) hold:

(a) Γi(t) ̸= 0 a.e. t ∈ [0, tf ] for all i ̸= j, s.t. y(t) /∈ NUi
(0)
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(b) on any interval where Γi(t) = 0, Γj(t) > 0 for at least K other inputs.

6. either (a) or (b) hold:

(a) Γi(t) ̸= Γj(t) a.e. t ∈ [0, tf ] for all i ̸= j, s.t. y(t) /∈ NUi
(0)

(b) on any interval where Γi(t) = Γj(t), there exist K inputs with Γk(t) > Γi(t) or M −K inputs

with Γk(t) < Γi(t).

7. the following intersection holds:

range

[
∇xb[tf ]

⊺

∇tb[tf ]
⊺

]
∩ cone

[
∇xm[tf ]

⊺

∇tm[tf ]
⊺

]
= {0}, (2.49)

where cone(W),W ∈ Rn1×n2 denotes the conical hull of the columns of W and range(W),W ∈

Rn1×n2 denotes the vector space of all possible linear combinations of the columns of W.

then the following relaxed version of the problem (2.46) may be constructed, and its solution is globally

optimal a.e. t ∈ [0, tf ] for problem (2.46):

minimize
ui, γi, σi, tf

m(tf , x(tf )) (2.50a)

subject to ẋ(t) = Ax(t) +B

M∑
i=1

ui(t) + w, x(0) = x0, (2.50b)

γi(t)ρ1 ≤ σi(t) ≤ γi(t)ρ2, i = 1, . . . ,M, (2.50c)

∥ui(t)∥2 ≤ σi(t), i = 1, . . . ,M, (2.50d)

0 ≤ γi(t) ≤ 1, i = 1, . . . ,M, (2.50e)
M∑
i=1

γi(t) ≤ K, i = 1, . . . ,M, (2.50f)

Ciui(t) ≤ 0, i = 1, . . . ,M, (2.50g)

b(tf , x(tf )) = 0, (2.50h)

As mentioned, the structure of the problem for which the algorithm is proposed in this thesis is differ-

ent from the one presented in [7], leading to no guarantees of applicability of the algorithm. However, it

is the closest to the problem considered in this thesis, and thus it is used for comparison.

In particular, one important part of the cost function selected in Section (2.2.1) is the control effort,

which is not present in the cost function of [7]. Moreover, the actuator configuration considered (number

of actuators and thrust directions, specified in Table 3.1) would make it so conditions 5 and 6 are not

satisfied.

2.4.3 Algorithm 3, Projected

This algorithm, proposed in this thesis, is based on the idea of leveraging information from a relaxed

version of the problem to make decisions regarding which actuators to activate during the first time step.
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Consider a set of binary variables α ∈ {0, 1}M and β ∈ {0, 1}M , which will be used to constrain the

actuator activation times during the first time step of the prediction horizon s0i , i = 1, . . . ,M . If αi = 1

then s0i ∈ [tmini , T ), and if βi = 1 then s0i = 0. αi and βi are mutually exclusive, i.e. αiβi = 0 for all

i = 1, . . . ,M .

A relaxed version of the optimization problem 2.45, where the constraints on the actuator activation

times are relaxed to be convex and include the binary variables α and β, is then solved. This optimization

problem may be written as

minimize
X,S

J(X,S) (2.51a)

subject to xk+1 = eAcTxk +

M∑
i=1

eAcT Ḡ(ski , s0)BcFiwi, (2.51b)

x0 = x̂0, (2.51c)

s0i ∈ [αitmin, T (1− βi)), i = 1, . . . ,M, , (2.51d)

ski ∈ [0, T ), i = 1, . . . ,M, k = 1, . . . , N (2.51e)

By changing (2.45d) to (2.51d) and (2.51e), the problem becomes convex and therefore can be

solved efficiently, but may generate unfeasible solutions.

The algorithm consists of solving the relaxed problem (2.51) with α = 0 and β = 0, and checking if

the solution is feasible for the original problem (2.45). If it is, the algorithm returns the solution. If it is

not, for each infeasible actuation within the first time step, s0i , the algorithm sets αi = 1 if s0i is nearer

to tmini
than to 0, and βi = 1 otherwise. The relaxed problem is then solved again and the solution is

checked for feasibility, repeating the aforementioned process until a feasible solution is found.

In essence, the first relaxed problem solved by the algorithm fully ignores the set of unfeasible values

for the actuator activation durations, (0, tmin), within the first step of the prediction horizon, s0i , i =

1, . . . ,M . Setting some α and β elements to 1 locks the corresponding actuators’ states, constraining

their activation durations to either {0} or [tmin, T ). Solving the relaxed problem with these values for α

and β retrieves a solution that is both guaranteed to be feasible for the locked actuators and optimal for

the relaxed problem (2.51). The activation times of the still fully relaxed actuators may now be unfeasible

for the original problem (2.45) due to these new constraints, making it necessary to repeat the process

of locking actuator states and finding a new solution.

The algorithm is summarized in Algorithm 2. Note that the algorithm is guaranteed to terminate (and

find a feasible solution) after at most M iterations, as in each iteration at least one of the binary variables

αi or βi is set to 1, and any combination of αi and βi where
∑M

i=1 αi + βi = M is feasible for the original

problem (2.45) (noting that αiβi = 0 for all i = 1, . . . ,M throughout all iterations).
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Algorithm 2 Description of algorithm Projected.

1: Input: x0

2: Output: S

3: Initialize α and β to all zeros

4: do

5: Solve the relaxed problem (2.51) to obtain S

6: s0 is the first column of S, corresponding to the first time step

7: if s0 is feasible under 2.45d then

8: Return S

9: else

10: for each i ∈ {1, . . . ,M} do

11: if 0 < s0i < tmini then

12: if s0i < tmini
/2 then

13: βi ← 1

14: else

15: αi ← 1

16: end if

17: end if

18: end for

19: end if

20: while true
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Chapter 3

Results

3.1 Simulation Setup

The simulator described in Section 2.3 was implemented in Matlab [22]. The optimization problems were

solved using Gurobi [15].

3.1.1 Parameters Used

The default values for each parameter are presented in 3.2 and Table 3.1.

For simplicity, we will consider only cases where all actuators share the same minimum actuation

time tmin. That is,

tmin
i = tmin, i = 1, . . . ,M. (3.1)

Table 3.1: Default simulation parameters.

Parameter Value Description
G 6.674× 10−11 m3 kg−1 s−2 Gravitational constant
ME 5.972× 1024 kg Earth mass
RE 6371 km Earth radius
RT 800 km Target orbit altitude
RC 700 km Chaser orbit altitude
mC 2000 kg Chaser mass
M 6 Number of thrusters
wi (3.2) Actuator directions
Fi 1000N i = 1, . . . , 6 Actuator thrust
Q 16×6 State error weight matrix
R 16×6 Control effort weight matrix
Tsim 3600 s Total simulation time
tmin 5 s Minimum actuation time
tmax 10 s Maximum actuation time
s0 tmin Actuator dynamics linearization point1

T 10 s Step size
N 10 MPC prediction horizon
J J2 MPC cost function
x0

[
RT −RC 0 0 0 0 0

]T Initial state
1 This means by default, a change in tmin implies a corresponding update in s0.
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w1 = −w4 =

10
0

 , w2 = −w5 =

01
0

 , w3 = −w6 =

00
1

 . (3.2)

For the tested parameters, the initial position and velocity along the y axis (perpendicular to the orbital

plane, xz) are always zero. Because there is no interaction between the dynamics along the y axis and

the dynamics along the xz plane, the position and velocity maintain zero throughout the simulations. For

this reason, the trajectories are only shown on the xz plane. The total simulation time, Tsim, is set to

3600 s such that the full approach is completed within most configurations of the other parameters.

3.1.2 Mission Time and Fuel Spent

Considering a few quantitative metrics to evaluate the performance of the MPC controller in the ren-

dezvous scenario may be useful to draw conclusions about the performance of the controller for differ-

ent parameters, outside of the qualitative analysis possible by observing the trajectories and actuator

activations. Two such metrics are the mission time and the fuel spent.

1. Mission Time: The mission time is the time tm such that the distance between the chaser and the

target does not exceed 1 km for all t ≥ tm.

2. Fuel Spent: The fuel spent is the total amount of fuel spent by the chaser during the mission. As

all actuators are assumed to be identical except for their direction, the fuel spent by each actuator

is measured by the total amount of time it is activated during the mission. The fuel spent is then

the sum of the fuel spent by each actuator, measured in seconds.

There are limitations to these metrics. The end of mission does not take into account the velocity of

the chaser relative to the target, which may eventually need to reach zero, nor does it take into account

the fact that the chaser may be moving away from the 1 km boundary before the simulation ends. Even

with these limitations, these metrics were considered useful to compare the performance of the MPC

controller for different parameters, as in practice, for the simulations performed, the chaser was not to

exceed the 1 km boundary after reaching it.
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3.2 Model Validity

This section showcases the different results obtained by each model described in Chapter 2. Four

models are compared: the full dynamics directly using Newton’s Universal Law of Gravitation (2.3),

solved numerically using MATLAB’s ode45; the CW equations (2.16), also solved numerically using

MATLAB’s ode45; the CW equations discretized for pulses (2.29); and finally the discrete CW equations

with linearized actuator dynamics (2.29 using 2.30). Throughout this section, each of these models will

be referred to as ’full dynamics’, ’continuous CW’, ’discrete CW’, and ’linearized CW’, respectively.

Even though there should be no difference between the continuous and discrete CW models, except

for integration errors introduced by the numerical solver, both are shown to validate the implementation

of the discrete CW model.

3.2.1 Experiment 1 - Free Motion

This simulation ran for Tsim = 10 000 s, so that more than one orbit around the Earth occurred and the

error in the CW models became apparent. No actuators fired during this time. This experiment mostly

serves to highlight the differences between the full dynamics and the rest of the models, as the linearized

CW model is a simplification of the discrete CW model only on the actuator dynamics. This is what we

observe, as in Figures 3.1 and 3.2, showing the trajectories generated by each model in the LVLH and

ECI frames, respectively, we see only two lines, one for the full dynamics and one for the rest of the

models.
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Figure 3.1: In-plane trajectory (on the LVLH frame) generated by the different models, without any
actuation.

Figure 3.2 makes it evident how unrealistic the CW models’ trajectories become the further away the

chaser is from the target. This is clear by observing that the chaser does not orbit the Earth in the CW

models, but instead spirals outwards.

The error plots in Figure 3.3 contain the Euclidean distance between corresponding positions (w.r.t.

time) from the trajectories generated by each of the listed models to the trajectory of a reference model.
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Figure 3.2: In-plane trajectory (on the ECI frame) generated by the different models, without any actua-
tion.

The reference model in Figure 3.3a is the full dynamics, and in Figure 3.3b it is the continuous CW

model. We can verify the overlapping trajectory lines are indeed all the CW models by looking at these

error plots. At the end of the simulation, the error between the full dynamics and the CW models is of

the order of 106 meters, and the error between the CW models only about 10−6 meters.
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(a) Error between the trajectory generated by the full dy-
namics model and the trajectory generated by each of
the CW models.
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(b) Error between the trajectory generated by the con-
tinuous CW model and the trajectory generated by the
discrete CW and linearized CW models.

Figure 3.3: Experiment 1 error plots. The full dynamics model produces a trajectory that diverges from
the CW models over time. The CW models produce similar trajectories.

Even though these absolute error plots are informative, we are more interested in the relative error

between the models, as the relative error is independent of the scale of the trajectory - a 50m drift is

much more significant if the total distance travelled is 100m than if it is 10 000m. This is why we also

include the relative error plots in Figure 3.4. The relative error is calculated as the absolute error divided

by the total distance travelled by the reference model, in the LVLH frame, and shown as a percentage.

We can see that the relative error between the full dynamics and the CW models is well below 10% for

the first 2000 seconds (200 time steps) of the simulation, and sharply increases afterwards. In practice,
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Figure 3.4: Relative error between the trajectory generated by the full dynamics model and the trajectory
generated by each of the CW models.

for the simulations performed in this thesis, the prediction horizon used by the controller is of the order

of 100 seconds, never reaching 250 seconds. Table 3.2 shows the absolute and relative errors for some

key points in the simulation, especially those near to the prediction horizon used by the controller, and

we can see that the relative error is below 2% even at the 500 s mark.

Table 3.2: Experiment 1. Distance travelled (full dynamics) and ab-
solute and relative error between the full dynamics and the discrete
CW model.

Time Distance Travelled Absolute Error Relative Error (%)
50 s 411m 3.69m 0.90%
100 s 1.65 km 18.8m 1.14%
150 s 3.72 km 45.8m 1.23%
500 s 42.9 km 650m 1.51%

1000 s 189 km 4.02 km 2.12%

3.2.2 Experiment 2 - Actuated

A few simulations (this time lasting for 1000 s) were performed to validate the actuator dynamics by

applying different control inputs. The results are shown in Figures 3.5, 3.6, 3.7 and 3.8. Again, the

discrete and continuous CW models produce similar trajectories. The linearized CW model seems to be

a good approximation of the discrete CW model, with relative errors below 2.5% for all simulations. In

the next section, we will see that this performance is highly dependent on both the control input chosen

and the linearization point s0 used.

The control input is shown in each Figure as a function of time, yellow if the thruster is active (firing

during the entire time step) and blue if it is not. The thrusters are labeled relative to the reader’s view-

point: ’Right’, ’Left’, ’Up’ and ’Down’ refer to the thrusters pointing to negative x, positive x, negative z

and positive z, respectively. Note that the axes are inverted to more explicitly match the LVLH frame,

with the z axis pointing into the Earth and the x axis pointing in the direction of motion.
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Figure 3.5: Trajectory, control input (blue - inactive, yellow - active) and errors for case 1.
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Figure 3.6: Trajectory, control input (blue - inactive, yellow - active) and errors for case 2.
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Figure 3.7: Trajectory, control input (blue - inactive, yellow - active) and errors for case 3.
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Figure 3.8: Trajectory, control input (blue - inactive, yellow - active) and errors for case 4.
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3.2.3 Experiment 3 - Linearization

This section serves to investigate the influence of the linearization point s0 on the linearized CW model.

In the first simulation, this model was tested using different values of s0, and a control input such that

each thruster is either inactive, or active during the full time step T = 10 s. The results are shown in

Figure 3.9.
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Figure 3.9: Trajectory, control input (blue - s = 0, yellow - s = T ) and errors for different values of s0,
expressed in seconds.

Despite similar looking trajectories, there is a clear difference on the results for different values of

s0. For the values of s0 tested, error is clearly minimized for s0 = 5 s, which is the value used in the

rest of the simulations. The further s0 strays from 5 s, the further the trajectories appear in Figure 3.9a.

The trajectories generated by the full dynamics, discrete CW and s0 = 5 s overlap and are enclosed

by the remaining. The reason for this may be related to the symmetry of the thrusters’ directions and

the control input used. For example, consider a case where there only exist two thrusters with the

same thrust (F1 = F2 = F ) pointing in opposite directions (w1 = −w2). In this case, we can write the

discrete-time linearized dynamics as
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xk+1 ≈ Axk +A(Ḡ(s1, s0)BcFw1 + Ḡ(s2, s0)BcFw2) (3.3)

= Axk +A
∂G

∂s

∣∣∣∣
s=s0

(s1 − s2)BcFw1. (3.4)

On the other hand, the exact discrete-time dynamics may be expressed as

xk+1 = Axk +A(G(s1)BcFw1 +G(s2)BcFw2) (3.5)

= Axk +A(G(s1)−G(s2))BcFw1. (3.6)

On either case, when the opposing thrusters are on for the same amount of time (s1 = s2), the result

is free motion (xk+1 = Axk). When one actuator is on and the other one isn’t (s1 = s, s2 = 0), for the

exact discrete-time dynamics we get

xk+1 = Axk +A(G(s)−G(0))BcFw1, (3.7)

and the corresponding linearized dynamics are

xk+1 ≈ Axk +A
∂G

∂s

∣∣∣∣
s=s0

(s− 0)BcFw1. (3.8)

Picking s0 = s/2 places the linearization point in the middle of the interval [0, s], which minimizes the

furthest distance between s0 and the extremes of the aforementioned interval. Moreover, we observe in

Figure 3.9d that the relative error is minimized for s0 = 5 s (amongst the evaluated values for s0), which

is the middle of the interval [0, 10 s]. This suggests that for s1 = s and s2 = 0, s0 = s/2 is a good value of

s0 to use to get a good approximation of the discrete CW dynamics.

In order to solidify this hypothesis, a second simulation was performed, this time using a control input

such that each thruster, when active, is active only for half of the time step (s = T/2 = 5 s). The results

are shown in Figure 3.10. This time, the error is minimized for s0 = T/4 = 2.5 s, and as expected, the

trajectory generated by the full dynamics and discrete CW overlap for this value of s0.

Of course, G(s) is highly non-linear, and these observations only apply because ωs ≪ 2π. In par-

ticular, throughout this thesis, T = 10 s and ω = 1mrad s−1, so ωs ≤ ωT = 0.01 rad. These findings are

merely suggestive, and a consequence of the control input chosen, used to aid in choosing a suitable

value of s0. We will see in the next section, where the MPC controller is employed, that many different

control inputs are used, but s = T seems to be the most common, which is the reason why s0 = T/2 is

used in the rest of this thesis.
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Figure 3.10: Trajectory, control input (blue - s = 0, light blue - s = T/2) and errors for different values of
s0, expressed in seconds.

3.3 Standard Algorithm

Firstly, a few trajectories using different simulation parameters are shown in Fig.3.11, all using the Stan-

dard algorithm, represented in the LVLH frame. Along with the trajectories, the control signal is also

shown, making it possible to observe the manoeuvres performed by the satellite. The out-of-plane axis,

y is not shown, nor are the thrusters which only apply force along this axis, as they never fire. The default

parameter configuration is always shown, which can be seen as the red trajectory from Figure 3.11 to

Figure 3.12 and the second row from Table 3.3 to 3.4.

3.3.1 Varying N

Along with the results from the three simulations shown in Figure 3.11, Table 3.3 contains the values of

some quantitative metrics. We see that varying N has a significant impact on the manoeuvres performed

by the satellite and consequently on each trajectory. A larger horizon seems to produce shorter, more

efficient manoeuvres reaching the target sooner. However, increasing N comes with the cost of a

nonlinear increase in computational time.
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Figure 3.11: Trajectories and actuator activations for the simulated rendezvous using Standard algo-
rithm, varying N .

Table 3.3: Mission time and fuel spent for different values
of N .

Fuel Spent Mission Time Simulation Time
N = 5 5223.41 s 3540 s 5.06 s

N = 10 2931.49 s 1890 s 27.19 s
N = 15 2268.59 s 1380 s 141.87 s
1 Did Not Finish

3.3.2 Varying tmin

As we can observe from Figure 3.12 and Table 3.4, changing the minimum time the actuators can be

on doesn’t seem to largely impact the overall performance of the controller - only small adjustments

are affected by this constraint. The core of the manoeuvre requires some thrusters to be continuously

on (s = T ) for considerable amounts of time, and this is unaffected. Unlike all other positive values of

tmin = 0, for tmin = 0, the algorithm is not solving a mixed integer problem, but a linear one, as there are

no integer constraints. This is why the simulation time is so much lower than for the other values of tmin.

These results hint at the viability of using a linear solver for the rendezvous problem, which is what the

Relaxed and Projected attempt to do.

3.3.3 Comparing the Cost Functions

In this section, both cost functions, J1 and J2 (described in Section 2.2.1), were used in rendezvous

simulations. The results are shown in Figure 3.13 and Table 3.5. As a reminder, the only difference

between them is that J1 weighs the tracking error along the entire prediction horizon, while J2 only

weighs the tracking error at the end of the prediction horizon. In practice, the only advantage of using
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Figure 3.12: Trajectories and actuator activations for the simulated rendezvous using Standard algo-
rithm, varying tmin.

Table 3.4: Mission time and fuel spent for different values of
tmin.

Fuel Spent Mission Time Simulation Time
tmin = 0 3070.49 s 1930 s 4.50 s
tmin = 2 2931.49 s 1890 s 27.19 s
tmin = 4 3068.53 s 1890 s 21.62 s

J1 observable from this data is lower simulation times. Not only does the control effort increase but so

does the mission time.

Table 3.5: Mission time and fuel spent for the two dif-
ferent cost functions.

Fuel Spent Mission Time Simulation Time
J1 3763.89 s 2550 s 11.63 s
J2 2948.35 s 1860 s 25.55 s

34



-4-20246

x (m) 104

-2

0

2

4

6

8

10

z 
(m

)
104

(a) Trajectories, for the two different cost functions.

0 1000 2000 3000
Simulation Time (s)

Down

Up

Left

Right

T
hr

us
te

r

(b) Actuator activation for J1.

0 1000 2000 3000
Simulation Time (s)

Down

Up

Left

Right

T
hr

us
te

r

(c) Actuator activation for J2.

0%

100%
T

im
e O

pen

Figure 3.13: Trajectories and actuator activations for the simulated rendezvous using Standard algo-
rithm, for each cost function.

3.4 Obstacle Avoidance

The obstacle avoidance algorithm described in Section 2.2.2 makes it possible for the chaser to avoid

obstacles while still performing the rendezvous. The algorithm is tested in a simulated rendezvous with

two obstacles, placed in the path of the chaser.

The two obstacles are described by

C1 =
[
−10 km 70 km

]T
, (3.9)

R1 = 20 km, (3.10)

and

C2 =
[
10 km 30 km

]T
, (3.11)

R2 = 15 km, (3.12)

forming two constraints as described in 2.42. Algorithm 1 is then used to replace these nonconvex

constraints with linear constraints.

Figure 3.14 shows the trajectories and actuator activations for the rendezvous with and without ob-

stacle avoidance. We can see that without obstacle avoidance, the chaser’s trajectory collides with

the obstacles. However, with obstacle avoidance, the chaser is able to avoid the obstacles. Notably,

the fuel spent for the rendezvous with obstacle avoidance is slightly less than when not using obstacle

avoidance, even though the mission time slightly increases.

Figure 3.15 shows the trajectories and actuator activations for the rendezvous with obstacle avoid-
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Figure 3.14: Trajectories and actuator activations for the simulated rendezvous using Standard algo-
rithm, with and without obstacle avoidance.

ance, varying N . The lower the prediction horizon N , the more fuel is spent, and the closer the chaser

gets to the obstacles, due to having less time to react to them.
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Figure 3.15: Trajectories and actuator activations for the simulated rendezvous using Standard algo-
rithm, varying N .
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3.5 Algorithm Performance

This section shows the fundamental results this thesis aims to capture, presenting the performance of

the algorithms described in Section 2.4 in the rendezvous scenario along different metrics. The mixed

integer solution implemented as the Standard algorithm is used as the baseline for comparison, as it is

optimal for the simplified problem 2.45.

3.5.1 Solution Quality

The three algorithms, Standard, Relaxed and Projected, were used in the rendezvous scenario with

different values of N . The results are presented in Figures 3.16, 3.17 and 3.18, for N = 5, N = 10

and N = 15, respectively. We can see that, irrespective of the value of N , the trajectories generated by

each of the algorithms are very similar. It is not obvious that this should be the case, as the Standard

algorithm is optimal for the simplified problem, and it is also not clear how close to optimality the other

two algorithms are.

These results seem to indicate that there is not much to gain from exploring the mixed integer solution

space in these types of scenarios, as the Relaxed and Projected algorithms are able to generate

trajectories that are very similar to the optimal solution. This is further confirmed by the results presented

in Table 3.6, which shows the fuel spent and mission time for each of the algorithms, for different values

of N , also being very similar for all three algorithms. Furthermore, the Projected algorithm, which does

explore some small part of the mixed integer solution space, does not seem to be able to generate

trajectories that are significantly better than the Relaxed algorithm, which does not explore the mixed

integer solution space at all.

In Table 3.6, the worst-case exponential complexity of the Standard algorithm is hinted at, as the

simulation time increases significantly with N . The Relaxed and Projected algorithms, on the other

hand, do not suffer from this exponential complexity, and their simulation times are much lower. Even

still, the solutions generated by these algorithms are very similar to the optimal solution, as seen in

the actuator activations (and consequently in the trajectories themselves). The staggering difference

in simulation time between the Standard algorithm and the other two algorithms makes it inviable not

only to use the Standard algorithm in real-time, but also even in a simulation environment for higher

prediction horizons, unlike the Relaxed and Projected algorithms.

3.5.2 Computation Time

For a deeper analysis of the computational cost of each of the algorithms, 100 simulations were per-

formed per algorithm per value of N . Table 3.7 shows the mean, 95% percentile and 99% percentile

of the computation time for each of the algorithms, for different values of N . We can see that on aver-

age, the Standard algorithm takes significantly longer to solve the optimization problem than the other

two algorithms, accross all values of N . The Relaxed and Projected algorithms, on the other hand,

differ by less than an order of magnitude in terms of computation time, with the Projected algorithm

taking slightly longer than the Relaxed algorithm. This is expected, as the Projected solves several
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Figure 3.16: Trajectories and actuator activations for the simulated rendezvous using each of the algo-
rithms, for N = 5.
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Figure 3.17: Trajectories and actuator activations for the simulated rendezvous using each of the algo-
rithms, for N = 10.

optimization problems, one for each iteration of the algorithm, while the Relaxed algorithm only solves

one optimization problem.

For a fuller picture regarding the solve times for each algorithm, for each prediction horizon N , the

solve times for each of the 100 simulations were plotted in a histogram, shown in Figure 3.19. We
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Figure 3.18: Trajectories and actuator activations for the simulated rendezvous using each of the algo-
rithms, for N = 15.

Table 3.6: Mission time and fuel spent for the different algorithms, for
different values of N .

method Fuel Spent Mission Time Simulation Time

N = 5
Standard 5633.04 s DNF1 4.45 s
Relaxed 5256.60 s DNF1 1.88 s
Projected 5187.47 s DNF1 3.27 s

N = 10
Standard 3269.26 s 1860 s 18.28 s
Relaxed 2887.34 s 1880 s 2.79 s
Projected 2856.11 s 1860 s 5.17 s

N = 15
Standard 2405.63 s 1390 s 116.89 s
Relaxed 2231.39 s 1390 s 3.21 s
Projected 2203.84 s 1390 s 4.76 s

1 Did Not Finish

can see that the Standard algorithm has a much wider distribution of solve times than the other two

algorithms. Not only is it wider, but it is also shifted to the right, meaning that the Standard algorithm

takes longer to solve the optimization problem than the other two algorithms, and the larger the value

of N , the longer it takes. The Relaxed and Projected algorithms, on the other hand, have very similar

distributions, with that of the Projected algorithm being slightly shifted to the right.

Distributions in Figure 3.19 seem to be bimodal, a characteristic that becomes more pronounced as

N increases, even moreso for the Standard algorithm. The reason for this becomes clearer when we

look at the solve times for each time step of the simulation, for each algorithm, for different values of N ,

shown in Figure 3.20. We can see that the solve times for each algorithm are not constant throughout the

simulation, but rather vary significantly, especially for the Standard algorithm. Interestingly, the closer

the chaser is to the target (as the simulation progresses), the higher the solve time for the Standard
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Table 3.7: MPC solve time for the different algorithms (total time taken
to generate one control signal), for different values of N , over 100
simulations.

method Mean 95% Percentile 99% Percentile

N = 5
Standard 37.3ms 109ms 610ms
Relaxed 6.80ms 9.67ms 13.8ms
Projected 3.98ms 5.86ms 8.40ms

N = 10
Standard 47.0ms 115ms 181ms
Relaxed 8.74ms 11.9ms 14.1ms
Projected 5.24ms 7.11ms 8.84ms

N = 15
Standard 345ms 953ms 3.04 s
Relaxed 10.7ms 15.9ms 22.1ms
Projected 6.50ms 9.25ms 12.4ms

algorithm, while the solve times for the other two algorithms seem to vary less throughout the simulation

and actually tend to decrease as the simulation progresses.

Despite taking longer to solve the optimization problem, the Standard algorithm also produces con-

trol signals requiring more control effort, as can be seen in Figure 3.21, showing the cumulative control

effort for each algorithm, for different values of N . It is evident there is a large tradeoff between the

marginally better tracking offered by the Standard algorithm and the higher control effort and computa-

tional cost. Figure 3.21 also highlights two distinct phases of the simulation: the first phase, where the

chaser is far from the target, the control effort is higher, and a second phase, where the chaser is closer

to the target, the control effort is lower.

40



10 -2 10 -1 100

Solve Time (s)

0

500

1000

1500

2000

2500

C
ou

nt

Standard
Projected
Relaxed
Mean

(a) N = 5

10 -2 10 -1 100

Solve Time (s)

0

500

1000

1500

2000

2500

C
ou

nt

Standard
Projected
Relaxed
Mean

(b) N = 10

10 -2 10 -1 100

Solve Time (s)

0

1000

2000

3000

4000

5000

C
ou

nt

Standard
Projected
Relaxed
Mean

(c) N = 15

Figure 3.19: Histograms of the MPC solve time for the different algorithms, for different values of N , over
100 simulations.
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Figure 3.20: Mean of MPC solve times for each time step (solid line) and bounds (dotted lines), for
the different algorithms, for different values of N , over 100 simulations. The vertical lines indicate the
moment the mission is over.
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Figure 3.21: Accumulated control effort, for the different algorithms, for different values of N .
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Chapter 4

Conclusion

4.1 Summary

This dissertation presented a rendezvous scenario between a chaser and a target satellite, where the

chaser, equipped with a set of thrusters, is tasked with approaching the target. The chaser’s motion

is described by Newton’s Second Law of Motion and Newton’s Law of Universal Gravitation. A set of

equations known as the Clohessy-Wiltshire equations was used to linearize the chaser’s motion relative

to the target, which is assumed to be in a circular orbit. We modelled the chaser’s thrusters as directional

pulses with a minimum duration and discretized the resulting system in order to build an MPC controller

capable of generating firing durations for the thrusters that drive the chaser to the target. Taking advan-

tage of the flexibility of MPC, we were able to extend the rendezvous problem to include obstacles in the

chaser’s path. These obstacles were modelled as circular regions in the orbit plane, and an algorithm

was implemented to substitute the nonlinear constraints they impose with linear constraints.

A simulator was built to test the MPC controller, using the full nonlinear model of the chaser’s motion.

In order to solve the optimization problem posed by the MPC controller, three algorithms were imple-

mented: a mixed integer solution (optimal, but worst case exponential computational complexity on the

number of integer constraints), and two other algorithms that approximate the solution to the optimiza-

tion problem (not optimal, but linear complexity) - one that simply relaxes the integer constraints, and

another that iteratively projects the solution of the relaxed problem onto the feasible solution space.

Before testing the MPC controller in the rendezvous scenario, the linear model used by the MPC

controller was validated against the full nonlinear model both in the absence and in the presence of ac-

tuation. Then, the trajectories and actuator activations generated by the MPC controller using the mixed

integer solution were analyzed for different parameters such as the prediction horizon. The rendezvous

problem with obstacle constraints was then demonstrated.

The performance of these algorithms was compared in terms of solution quality and computation

time. The results showed that the two algorithms that approximate the solution to the optimization

problem are able to generate trajectories that are very similar to the optimal solution while taking much

less time to do so. This makes them much more suitable for real-time applications, where the MPC

controller is used to generate firing durations for the thrusters in real time.
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4.2 Future Work

The work presented in this dissertation allows for a number of possible extensions and improvements.

1. Theoretical Error Bounds: A significant portion of this dissertation is the implementation and

analysis of two algorithms that approximate the solution to the optimization problem posed by the

MPC controller. However, the theoretical error bounds of these algorithms are not known. It would

be relevant to explore these bounds, in order to understand how far from the optimal solution they

can be. This would allow for a better understanding of how much of the mixed integer solution

space needs to be explored in order to get a solution that is close enough to the optimal solution,

according to some metric.

2. Non-Circular Target Orbit: The rendezvous scenario presented in this dissertation assumes that

the target satellite is in a circular orbit. An opportunity for future work would be to extend the

scenario to include a target satellite that is not in a circular orbit, but in an elliptical orbit, or even a

target satellite that is not in a Keplerian orbit, such as an active satellite that is able to manoeuvre.

3. Attitude Control and Docking: The chaser is assumed to be a point mass, and its motion is

described by its position and velocity. The chaser could be extended to include attitude control,

enabling it to rotate and point its thrusters in different directions. This would allow for more complex

maneuvers, and eventually allow the chaser to dock with the target.

4. Obstacle Detection: The obstacle avoidance algorithm presented in this dissertation assumes

that the obstacles are known beforehand and are static. Detecting obstacles in real time and

avoiding them would be a valuable addition to the obstacle avoidance algorithm.
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