
DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

PEDRO MIGUEL PEREIRA MATIAS

Master in Electrical and Computer Engineering

OUTLIER AND ATTACKER RESILIENT
METHODS BASED ON RATING AND
REPUTATION SYSTEM

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
March, 2023

DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

OUTLIER AND ATTACKER RESILIENT METHODS BASED
ON RATING AND REPUTATION SYSTEM

PEDRO MIGUEL PEREIRA MATIAS

Master in Electrical and Computer Engineering

Adviser: Daniel de Matos Silvestre
Assistant Professor, NOVA University Lisbon

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
March, 2023

Outlier and Attacker Resilient Methods based on Rating and Reputation Sys-
tem

Copyright © Pedro Miguel Pereira Matias, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.7.0) [1].

https://github.com/joaomlourenco/novathesis

To you, who watch over my heart.

Acknowledgements

I begin by thanking my advisor, Professor Daniel Silvestre, for the opportunity he has

given me as well as his patience and support throughout this project. To all faculty from

FCT and in particular to the members of the Department of Electrical Engineering. I am

thankful to our great university and all of its people, who work every day to ensure the

future of our younger generations.

I would also like to leave a word of appreciation toward all the people I have met

while attending this institution. To all my friends, both old and new, to all my classmates

and fellow students who have been there not just for me but for us all since the beginning.

To my family, who have supported my dreams and cared for me with all their love and

patience; who’ve pushed me forward and helped me at all moments.

Finally, I would like to leave a massive thank you to my girlfriend, without whom I

would not be the person I am today. She has inspired me like no other and helped me

in every manner humanly possible, and I am deeply thankful for all she’s done in that

regard. Thank you, my love.

Thank you, all.

This work was partially supported by the Portuguese Fundação para a Ciência e a

Tecnologia (FCT) through Institute for Systems and Robotics (ISR), under Laboratory for

Robotics and Engineering Systems (LARSyS) project UIDB/50009/2020, through project

PCIF/MPG/0156/2019 FirePuma and through COPELABS, University Lusófona project

UIDB/04111/2020.

iv

“I have no country to fight for; my country is the earth, and I
am a citizen of the world.” (Eugene V. Debs)

Abstract

A key component in an automatic surveillance system that can receive crowd-sourced

data, such as an early forest fire detection system, must consider the possibility of cor-

rupted data and also attacks on the processors in the network running the estimation

task. In both cases, there is the need to introduce some process to decide when to remove

a specific value from the computations. In this thesis, we study using reputation and

rating metrics to construct an algorithm that is resilient to erroneous data and attacks

in linear dynamical systems and compare it against traditional methods to remove out-

liers. It is shown in simulation that the presented methods have performance comparing

or surpassing the traditional methods, which is an interesting outcome that reinforces

the importance of the literature on rating and reputation use for resilient consensus and

distributed optimization.

Keywords: Outlier Detection, Isolation Forest, Local Factor Outlier, One Class Support

Vector Machines, Minimum Covariance Determinant, Rating and Reputation, Multi-

Agent Systems, Fault-tolerant, Estimation, Fault accommodation, unknown dynamics,

Attack resilient.

vi

Resumo

Um componente-chave num sistema de vigilância automática que pode receber da-

dos de crowdsourcing, como um sistema de detecção preventiva de incêndios florestais,

deve considerar a possibilidade de existirem dados corrompidos e também ataques aos

processadores na rede que executam a tarefa de estimação. Em ambos os casos, há a ne-

cessidade de introduzir algum processo para decidir quando remover um valor específico

aos cálculos. Nesta tese, estudamos o uso de métricas de reputação e classificação para

construir um algoritmo resiliente a dados erróneos e ataques em sistemas dinâmicos line-

ares e comparamos com métodos tradicionais de remoção de valores atípicos. É mostrado

em simulação, que os métodos apresentados têm desempenho semelhante ou superior

ao dos métodos tradicionais, o que é um resultado interessante que reforça a importân-

cia da literatura sobre uso de rating e reputação para consenso resiliente e otimização

distribuída.

Palavras-chave: Detecção de Erros, Isolation Forest, Local Factor Outlier, One Class Sup-

port Vector Machines, Minimum Covariance Determinant, Avaliação e Reputação, Siste-

mas Multi-agente, tolerância a falhas, estimação, acomodação de falhas, dinâmica desco-

nhecida, resistente a ataques.

vii

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Outlier Removal in Measurement Data 2

2.1 Motivation . 2

2.2 Problem Statement . 2

2.3 Automatic Outlier Detection Methods 3

2.3.1 Isolation Forest . 3

2.3.2 Local Outlier Factor . 5

2.3.3 Support Vector Machines . 7

2.3.4 Minimum Covariance Determinant 10

2.4 Rating and Reputation . 11

2.5 Method comparisons . 12

3 Multi-Agent Systems 18

3.1 Motivation . 18

3.2 Problem Formulation . 18

3.2.1 Weighted Consensus Method . 20

3.2.2 DEXTRA . 21

3.3 Changes to the Algorithm . 22

3.4 Results . 25

3.4.1 Algorithm performance without noisy agents in the network . . 26

3.4.2 Algorithm performance against single noise moment 29

3.4.3 Algorithm performance against persistent noise 32

4 Conclusion 35

Bibliography 37

viii

List of Figures

2.1 In dashed green lines, are shown the branches that isolate points A and B. In

this case, since they are on the outermost edges of the distribution, only 2

iterations of the algorithm are needed. In dashed blue lines, are shown the

successive branches for 5 iterations to isolate point C. 4

2.2 A close-up of the branching process to isolate C. Because this point is much

closer to the targets (red), it takes more iterations to isolate it. 5

2.3 D1 represents the k-dist(b) for k = 5 and D2 represents dist(a,b). [33] . . . 6

2.4 Distribution of points from MSVM in a Cartesian graphic. Class 1 (si = 1) can

be visualized in Red, while Class 2 (si = −1) can be visualized in Blue. . . . 7

2.5 On the left: The feature space H (grey) is created and the points are elevated

into its surface. On the right: The intersecting plane Φ separates points from

class 1 and class 2, according to the minimization function in (2.7). 8

2.6 The intersection of Φ with H, in pink, separates Class 1 (red) from Class 2

(blue). 9

2.7 Mean estimation error comparison with logarithmic y-scale. 13

2.8 Mean estimation error comparison with logarithmic y-scaling for the 2nd sim-

ulation . 14

2.9 A comparison of the ODM with the rating and reputation models, regarding

the simulation using a sliding window under a log y-scale. 15

2.10 The MCD, Rating, Reputation and OCSVM methods produce similar results.

A logarithmic scale is used to improve visibility and show that these methods

have not yet converged. 16

3.1 Weighted Consensus progression per node. 21

3.2 DEXTRA progression per node. 22

3.3 Outlier Detection Method Classification . 23

3.4 Rating and Reputation Classification . 24

3.5 Weighted Consensus progression per node, using different classification mech-

anisms. 27

3.6 DEXTRA progression per node, using different classification mechanisms. 28

ix

3.7 Weighted Consensus progression per node with single noise moment, using

different classification mechanisms. 30

3.8 DEXTRA progression per node with single noise moment, using different clas-

sification mechanisms. 31

3.9 Weighted Consensus progression per node with persistent noise moment, us-

ing different classification mechanisms. 33

3.10 DEXTRA progression per node with persistent noise moment, using different

classification mechanisms. 34

x

List of Tables

2.1 Comparison of the mean estimated error for the methods, taken during the

2nd simulation. 14

2.2 Mean Error Value of the Estimation task by each algorithm developed. . . . 16

2.3 Mean Error Value of the Estimation task over 10 simulations of Algorithm

3, with the lowest value for each simulation and the final average in bold

text.Values were rounded for visualization purposes. Real values stand within

a ±0.5 margin of shown values. 17

3.1 Weighted Consensus Steady State comparison in a system without noise. . 27

3.2 DEXTRA Steady State comparison in a system without compromised nodes. 28

3.3 Weighted Consensus Steady State comparison of the nodes with an isolated

noise moment. 30

3.4 DEXTRA Steady State comparison of the nodes with an isolated noise moment. 31

3.5 Weighted Consensus Steady State comparison of uncompromised nodes with

persistent noise moment. 33

3.6 DEXTRA Steady State comparison of uncompromised nodes with persistent

noise moment. 34

xi

List of Algorithms

1 Object Estimation for Simulation 1 . 12

2 Object Estimation for Simulation 2 . 13

3 Object Estimation for Simulation 3 . 15

xii

1

Introduction

In the field of fire surveillance, crowd-sourced data and citizen science can be valuable

sources of information to complement traditional fire detection methods [2–5]. Crowd-

sensing systems [6] may include the use of a dedicated application in the hands of citizens

[7, 8], social media monitoring [9], or reports from citizens through a dedicated phone

line. Further, these methods can be equated to a sensor network where each node moves

dynamically within the surveyed space.

However, the quality of crowd-sourced data is often questionable due to a lack of

standardization and control over the data collection process [10, 11], drawing a similarity

to a dynamic system with unknown dynamics and subject to outlier data, which can

lead to inaccurate results and faulty predictions. Here, outlier detection and removal

techniques can be used to aid in the identification and elimination of unreliable data

points, improving the accuracy and effectiveness of the fire detection system.

Looking towards the sensor network as a whole, it can be seen as a multi-agent system

[12, 13] with a distributed network, where each agent can be a user of a mobile app, or a

set of sensors working in a closed network and sending information to a larger network

that also encompassed the mobile users. Within the same context there is no assurance

that all agents in the network will be doing their best to help in the detection of a fire. The

sensors employed may suffer a malfunction or suffer noise due to unknown factors, or

mobile users can act as rogue agents and intentionally inject false data into the network,

compromising the integrity of the data and undermining the performance of the system,

thus methods that allow their identification and elimination is a must, ensuring the

accuracy and reliability of the estimation performed by the network.

In this thesis, we first look into the data received by a single sensor through the scope

of several outlier detection methods as well as scoring methods to understand which are

more fit to increase the accuracy of the data collected. Then, using the methods with the

better performance, we take a step further and verify their reliability within a multi-agent

system, with the goal of increasing the resilience of the network and elimination of rogue

agents.

1

2

Outlier Removal in Measurement

Data

2.1 Motivation

Methods to detect the presence of outlier values are well-known and disseminated

throughout the literature on the subject of automated classification. These algorithms are

useful to identify values that do not conform with the model in some sense, depending on

the given proposal. However, recent developments have focused on viewing an equivalent

process in the realm of dynamical systems as a way to enforce resilience against both faults

and bad sensor data.

In the industry, dynamical models have also played an important role in various

applications such as consensus [14], optimization [15], motion coordination tasks such

as flocking or leader following [16], rendezvous problems, computer network resource

allocation, algorithms to classify the relative importance of webpages (i.e., PageRank

[17]), clock synchronization, desynchronization at the Medium Access Control layer [18],

maintaining formations, among others.

There are several known methods across literature [19–26] to deal with this problem

when the dynamic model of the system is known. However, this hardly applies when

the model is unknown and past data is not available. In such scenario, it might be

preferable to employ distance metrics between the received values to discard bad data.

With Machine Learning, that can be accomplished via K-Nearest Neighbour (KNN) [27]

algorithms. Another method could be to discard the µ most extreme values [28], or by

defining scoring mechanisms [29].

2.2 Problem Statement

The problem of selecting the more accurate measurements provided by sensors or

human contributors with respect to the underlying state of an unknown dynamical system

is difficult to classify for the lack of available information.

2

2.3. AUTOMATIC OUTLIER DETECTION METHODS

In this chapter, we consider a dynamical system with state x ∈ Rn and external input

u ∈ Rp that can, for instance, used to model a wildfire. In such case, x accounts for

the state variables such as position and velocity whereas u accounts for external signals

such as wind, humidity, available fuel, etc, while the dynamics function g describes the

behaviour of the fire. Formally, this system is assumed to be described by the continuous-

time differential state equation:

ẋ = g(x,u). (2.1)

Depending on the approach and application, g may not be possible to describe math-

ematically, be it due to the complex dynamics of the system or other associated complica-

tions. Incidentally, a collection of sensors or human actors providing measurements of a

portion of the system state can be modelled by the output equation in discrete time:

y(k) = C(k) · x(k) + η(k) (2.2)

where, for simplicity of notation, the matrix C(k) ∈ Rmd×n models how all possible mea-

surements m of size d can be taken regarding the state x and the noise signal η(k) ∈ Rmd ,

which is unknown and acts on all measurements for which no prior stochastic information

or bounds are known.

Since not all measurements are known for all time instants k, some rows in C(k) and

η(k) can be set to a null value. It should also be noted that even though the state equation

in (2.1) is written in continuous time, measurements are received in discrete-time slots.

To further simplify, after removing null measurements, M(k) is defined as a set of all

received data at time k such that M(k) = {y(k) : y(k) , 0}.

2.3 Automatic Outlier Detection Methods

Outliers are observations that deviate so much from the remaining set suspected of

being generated by a different method [30]. Within the field of data analysis, methods

to correctly identify outliers are quite relevant to improve whatever values are being

computed with a given data sample.

In this paper, the purpose is to compare the performance of four Automatic Outlier

Detection Methods (AODM) against those inspired by Rating and Reputation system

often seen on movie or bookstore websites. Four AODMs were chosen for this task due to

their popularity and widespread use: Isolation Forest (iForest), Local Outlier Factor (LOF),

One Class Support Vector Machines (OCSVM) and Minimum Covariance Determinant

(MCD).

2.3.1 Isolation Forest

The Isolation Forest (iForest) algorithm functions by averaging the path length to

all external nodes of a collection of Isolation Trees (iTrees) which recursively isolate

observations in T nodes through a random feature q and a split value p, such that q < p,

3

CHAPTER 2. OUTLIER REMOVAL IN MEASUREMENT DATA

creating branches dividing objects into Tl and Tr [31]. The number of branches created is

the path length h(y) from the root to its external node.

One of the great advantages of this algorithm is its ability to score outlier points with

only a partial model since a large part of each tree is not needed for anomaly detection

(only up to the desired path length). It can also exploit sub-sampling techniques to avoid

problems such as swamping and masking.

Definition 2.3.1 (Swamping). When normal instances are too close to anomalies, the

number of partitions required to isolate them increases, which makes it harder to distin-

guish anomalies from normal instances. [31]

Definition 2.3.2 (Masking). When an anomaly cluster is large and dense, it increases the

number of partitions to isolate an anomaly, leading to the classification of anomalies as

normal data. [31]

Figure 2.1: In dashed green lines, are shown the branches that isolate points A and B. In
this case, since they are on the outermost edges of the distribution, only 2 iterations of
the algorithm are needed. In dashed blue lines, are shown the successive branches for 5
iterations to isolate point C.

To discover anomalous data, a method for scoring all data is required. Deriving such a

score is difficult as h(y) cannot be normalized due to the unbounded nature of each iTree’s

height, which grows linearly with the number of instances n in a sample, or its average

height, which grows by log(n) [31].

4

2.3. AUTOMATIC OUTLIER DETECTION METHODS

Figure 2.2: A close-up of the branching process to isolate C. Because this point is much
closer to the targets (red), it takes more iterations to isolate it.

The path taken to isolate the feature creates the decision function. The length of a

branch conveys the degree of belonging of an attribute. As such, it is possible to discern

that, when the trees consistently produce shorter branches for an attribute, it is more

likely that the attribute is an anomaly.

Figures 2.1 and 2.2 represent randomly generated points simulating the contributors’

use of an app that uses GPS locations to pinpoint their proximity (grey) to a developing

fire (red); with dashed lines denoting the branching required to isolate objects A, B and

C.

2.3.2 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm was introduced by Breunig, Kriegel, Ng and

Sander [32] as a non-binary density-based classification method to detect outliers in a data

sample. Unlike other methods, LOF first verifies the density of an object’s neighbourhood

(N) through a reachability distance function (2.3) of an object a with respect to an object

b:

reach-dist(a,b) = max(k-dist(b),dist(a,b)) . (2.3)

Here, k is the number of nearest neighbours being taken into account, k-dist(b) is

the distance between point b and its kth-nearest neighbour; and dist(a,b) is the distance

5

CHAPTER 2. OUTLIER REMOVAL IN MEASUREMENT DATA

between points a and b, in a straight line. The reachability distance will then be the largest

of either distance. In Figure 2.3, distances D1 and D2 are depicted: i) for objects a and b,

reach-dist(a,b) = dist(a,b) =D2; in case of yi ∈ {c,d,e, f } their respective reach-dist(yi ,b) =

k-dist(b) =D1.

Figure 2.3: D1 represents the k-dist(b) for k = 5 and D2 represents dist(a,b). [33]

In density-based algorithms, two parameters are required to determine a cluster’s

density threshold [32]: (i) kmin, minimizing the number of objects required to declare

a cluster; and (ii) a parameter specifying the volume of the cluster. Objects or regions

whose neighbourhoods respect these constraints are connected, forming clusters.

Another requirement [32] to the detection of outliers in these conditions is a method

to dynamically compare the density of different clusters of objects. For that, kmin is fixed

as a parameter, and reach-dist(a,b) ∀b ∈Nkmin(a) as a measure of the volume to determine

the density of an object a’s neighbourhood. This method is denoted the Local Reachability

Density (lrd) of the object a and is given by:

lrd(a) =
|Nkmin(a)|∑

b∈Nkmin(a)
reach-distkmin(a,b)

(2.4)

Formally, lrd(a) is denoted as the inverse of the average reachability distance of a

based on its kmin-nearest neighbours. It is also important to note that, by (2.4), it is

possible for lrd(a)→∞ if the sum of its reachability distances for all b ∈Nkmin(a) tends to

0. However, this case can be guarded against by forcing b , a∀ b ∈Nkmin(a).

The object’s LOF, also referred to as the degree of outlyingness, is thus denoted as the

average of the ratio of lrd(a) with lrd(b)∀b ∈Nkmin(a):

LOFkmin
(a) =

∑
b
lrdkmin (a)
lrdkmin (b)

|Nkmin(a)|
(2.5)

From (2.5) it is intuitive [32] how the algorithm will rank an object a with respect to

its neighbours: lower lrd(a) and large neighbours’ local reachability distances mean high

6

2.3. AUTOMATIC OUTLIER DETECTION METHODS

LOF(a). This means that the LOF of isolated objects will be much higher than 1, while

data points within a cluster will have values close to 1.

This method has a great advantage when classifying samples with many clusters of

different densities because it can verify that, even if an object does not belong to one

cluster, it may still belong to another without it becoming an outlier. Taking the initial

example of a forest fire having been located by several different sources, this could be

useful not only in cleaning the data received about their locations but to gauge if there is

enough data to suspect more than one focus point for the fire.

2.3.3 Support Vector Machines

The Support Vector Machine (SVM) algorithm is one focused on problems where

linear functions are not enough to separate between classes. SVM takes an approach to

elevate objects to a higher dimension, a feature space H, where points can be separated

by a linear function or a planar surface.

Using the measurement set M(k) defined in Section 2.2, let MSVM = {(yi , si)} ∀ yi ∈
M(k) ∧ si ∈ {−1,1} be a data sample where yi are input values and si are their respec-

tive output class. Figure 2.4 shows a representation of this with yi ∈ R2 and the Class

represented as Red for si = 1 and Blue for si = −1.

Figure 2.4: Distribution of points from MSVM in a Cartesian graphic. Class 1 (si = 1) can
be visualized in Red, while Class 2 (si = −1) can be visualized in Blue.

It is not possible to pass a linear hyperplane through the points that would separate

the 2 Classes. For this example in particular, SVM adds a 3rd dimension to the plot and

elevates all points along a feature space, H, as shown in Figure 2.5, on the right.

7

CHAPTER 2. OUTLIER REMOVAL IN MEASUREMENT DATA

Figure 2.5: On the left: The feature space H (grey) is created and the points are elevated
into its surface. On the right: The intersecting plane Φ separates points from class 1 and
class 2, according to the minimization function in (2.7).

The separation margin is then calculated by minimizing the distance between the

closest points of each class, generating a plane Φ intersecting the feature space, shown in

Figure 2.5 on the left, which can be described by (2.6), below:

ω⊺ · y + b = 0 (2.6)

Where ω ∈H and b ∈ R. The plane intersection is then projected back to the original

space, resulting in a non-linear margin surrounding the elements of Class 1, as shown in

Figure 2.6.

To prevent inadequacies with objects over Φ’s separation margins, a set of slack vari-

ables ζi is introduced. This creates a soft margin, which allows for an admissible training

error. So that this error does not create a bias in the model, the number of objects within

the soft margin has to be bounded, thus a control variable C > 0 is set. Its purpose is to

limit the number of accepted objects within the soft margin.

The minimization problem is described as follows:

min
ω,b,ζi

||ω||2

2
+C

n∑
i=1

ζi (2.7)

subject to the constraints:

• yi(Φ(yi) + b) ≥ 1− ζi ∀i = 1,2,3, ...,n

• ζi ≥ 0∀i = 1,2,3, ...,n

Resorting to quadratic programming and Lagrange Multipliers, the decision function

f (y) is then obtained as:

f (y) = sgn

 n∑
i=1

λisiK(y,yi) + b

 (2.8)

8

2.3. AUTOMATIC OUTLIER DETECTION METHODS

Figure 2.6: The intersection of Φ with H, in pink, separates Class 1 (red) from Class 2
(blue).

where, λi are the Lagrange multipliers. Since support vectors will be sparse, there will be

relatively few Lagrange multipliers with non-zero values. The term K(y,yi) is known as

the Kernel Function, and is given by

K(y,yi) = Φ(y)⊺Φ(yi) (2.9)

This function replaces the need to perform the explicit projection to the feature space

H, as shown in Figure 2.5. This kernel trick allows a faster solution of non-linear separable

objects.

There are a few variants of this algorithm in the literature. One such is Scholköpf’s

[33] approach, which turns the SVM into a one-class classifier. Meaning that, through

this approach, information can be inferred about a model while knowing only one clas-

sification state. This method is commonly referred to as the One-Class Support Vector

Machine (OCSVM). This approach excels in the detection of outlier points, which is the

focus of this chapter.

With OCSVM, objects are separated from the origin through a feature space akin to

the previous approach, maximizing the distance from the hyperplane to the origin. The

result is a binary function (2.11) which captures regions in the input space where the

probability density of the data lives and returns, as output, +1 in a «small» region and

-1 elsewhere. The quadratic programming minimization function differs from (2.7) as

follows:

min
ω⃗,ζi ,ρ

 ||ω||22
+

1
nν

n∑
i=1

(ζi − ρ)

 (2.10)

9

CHAPTER 2. OUTLIER REMOVAL IN MEASUREMENT DATA

OCSVM’s decision function differs from normal SVM with the introduction of ν that

replaces C and is referred to as the smoothness constant. Here, ν sets an upper bound

on the fraction of outliers and serves as a lower boundary on the number of training

examples required for Support Vectors. Using Lagrange multipliers and a kernel function

or the dot-product calculations, the decision function then becomes:

f (y) =sgn((ωΦ(yi))− ρ)⇔

f (y) =sgn

 n∑
i=1

(λiK(y,yi)− ρ)

 (2.11)

The method creates a hyper-plane, described by ω and ρ with maximized distance

from the origin in the feature space H, separating all objects from the origin.

2.3.4 Minimum Covariance Determinant

The Minimum Covariance Determinant’s (MCD) objective is to find a number o of

observations, in the universe of σ = |M(k)|, whose classical covariance matrix minimizes

its determinant [34]. Toward that goal, a collection of subsets Mi are randomly generated

with equal size and without repetition. Meaning that, in a data sample with M(k) =

{y1, ..., yσ } as inputs and yi ∈ Rd , each subset M1:σ contains elements such that M1 ∪M2 ∪
...∪Mn = M(k). Subset M1 is characterized by its arithmetic average (2.12) and its classical

covariance matrix (2.13).

T1 =
1
σ

∑
yi∈M1

yi (2.12)

S1 =
1
σ

∑
yi∈M1

(yi − T1)(yi − T1)⊺ (2.13)

Then, each point’s relative distance can be yielded through Mahalanobis Distances

d1(i) (2.14) and M′1 is formed by sorting d1 through a π-permutation such that d1(π(1)) ≤
d1(π(2)) ≤ ... ≤ d1(π(n)) and M′1 = {π(1), ...,π(n)}.

d1(i) =
√

(yi − T1)⊺S−1
1 (xi − T1)

∀i = 1, ...,n
(2.14)

If det(S1) > 0, applying equations 2.12, 2.13 and 2.14 in a sequence yields (T ′1,S
′
1) with

det(S ′1) ≤ det(S1). This sequence is denominated a Concentration Step (C-step), as it

concentrates on the o observations with lowest distances and S ′1 is more concentrated

than S1. This process is repeated until a ceiling, usually 10 iterations[34], is achieved or

det(S(n)
1) = 0 or det(S(n)

1) = det(S(n−1)
1).

Because the sequence of det(S1) ≥ ... ≥ det(S(n)
1) is a monotonic non-negative sequence

[34], it becomes intuitive that the algorithm will converge. This is a necessary condition,

albeit not sufficient to determine det(S(n)
1) as a global minimum for the MCD.

10

2.4. RATING AND REPUTATION

After convergence has been achieved throughout all subsets M, the arithmetic average

TMCD and the classical covariance matrix SMCD are obtained through (2.15) and (2.16),

respectively, where θi is constrained by (2.17).

TMCD =
∑n
i=1θiyi∑n
i=1θ

(2.15)

SMCD =
∑n
i=1(yi − TMCD)(yi − TMCD)⊺∑n

i=1θi − 1
(2.16)

θi =

1 ∀ d(TMCD,SMCD)(i) ≤
√
χ2
p,.975

0 otherwise
(2.17)

Computing (2.15) and (2.16) through the Mahalanobis Distance (2.14), an elliptical

separation margin is obtained, with normal objects enclosed inside it and outlying objects

left on the outside.

2.4 Rating and Reputation

Rating algorithms [10] are most prevalent in situations where there is little infor-

mation to start classifying data or its validity may be dependent on the most recently

available data.

The rating function uses the euclidean distance (2.18). Data is provided through a

set Λ containing the previously best-rated objects or, during a first iteration, all known

objects. This subset can also be called a sliding window when dealing with streamed data

and has a maximum size, defined by the user and is the minimum known information

required for a rating to be performed.

rating(p,Λ) =
∑
vi∈Λ
||p − vi ||22 (2.18)

The input p is the object being rated and, since the rating function is a sum of distances,

higher ratings will point to less reliable data, thus the better objects will be close to their

minimum values.

Reputation (2.19) serves the purpose of providing extra information in the shape of

weight to the rating system. This means that a sensor is considered reliable when the

rating score of its objects is consistently low.

rj = 1−
dj
sj

(2.19)

Here dj is the number of discarded messages by sensor j and sj is the total number of

messages sent by sensor j.

rating(p,Λ, r) =
∑
vij∈Λ

rj ||p − vij ||22 (2.20)

11

CHAPTER 2. OUTLIER REMOVAL IN MEASUREMENT DATA

The Rating and Reputation score is thus given by (2.20). Note that vij refers to object

v with id i provided by sensor j and r is the collection of reputation scores for all sensors

in the system.

2.5 Method comparisons

The objective of this section is to outline the steps performed to produce the com-

parison among all five methods surveyed in Section 2.3. For that purpose, a situation

was simulated where ten sensors, each with its own associated error ηj ∈ R such that

ηj = {0.01,0.173,0.366,0.5,45,56,67,78,89,100}. Each sensor sends a measurement re-

lated to the state x(k) ∈ R2 in time instant k. The objective is to understand the capabilities

of each ODM in a situation where information arrives in a live stream. The received data

in discrete-time slots are stored in matrix M(k) that denotes the collection of objects re-

ceived from all sensors at time-slot k. A history matrix Ψ was used to keep a record of all

good objects received such that Ψ (k) = Ψ (k−1)∪M ′(k), whereM ′(k) are the objects consid-

ered normal data for time-slot k. Algorithm 1 describes a first attempt at accomplishing

this.

Algorithm 1 Object Estimation for Simulation 1

Initialize Ψ (0) = ∅ ▷ History matrix
for k > 0 do

Receive M(k) ▷ Sensor Data
if Ψ (k − 1) , ∅ then

M ′(k) = Classif y(Ψ (k − 1),M(k))
Ψ (k) = Ψ (k − 1)∪M ′(k)

else
Ψ (k) = Ψ (k − 1)∪M(k)

end if
x̃(k) =mean(xi ∈ Ψ (k)) ▷ Compute estimate

end for

The Classify function implements the classification model and prediction for the

ODM being evaluated. Using the l2-norm - ||xi − x̃(k)||2 ∀ yi ∈ Ψ (k) - as a distance metric, a

comparative analysis of results was performed. The four ODM perform similarly as seen

in Figure 2.7, but cannot reach the performance of the Rating and Reputation algorithms.

This is due to the influence that old objects in Ψ have in the classification and prediction

calculations.

It should be noted that no guards were imposed for a minimum number of objects

required for classification to start or to control their arrival. As such, if in a given moment

k, no new objects received M(k) are accepted, only old objects are being counted in the

current estimation. This may have been the main reason for the weak performance, with

the OCSVM and LOF models having the worst mean error which was 4.402 and 4.204,

12

2.5. METHOD COMPARISONS

respectively. In comparison, the Reputation model achieved an error of 0.979 in the same

interval.

Figure 2.7: Mean estimation error comparison with logarithmic y-scale.

In order to account for the time-varying behaviour, Algorithm 1 was changed to take

into account only accepted points at the current time instant for the estimation. Addi-

tionally, if no points were deemed normal, the previous state estimation is used to avoid

large errors from the absence of points. These changes are documented on Algorithm 2.

Algorithm 2 Object Estimation for Simulation 2

Initialize Ψ (0) = ∅ ▷ History matrix
for k > 0 do

Receive M(k) ▷ Sensor Data
if Ψ (k − 1) , ∅ then

M ′(k) = Classif y(Ψ (k − 1),M(k))
Ψ (k) = Ψ (k − 1)∪M ′(k)

else
Ψ (k) = Ψ (k − 1)∪M(k)

end if
if M ′(k) = ∅ then:

x̃(k) = x̃(k − 1)
else

x̃(k) =mean(yi ∈M ′(k)) ▷ Compute estimate
end if

end for

The second simulation results are presented in Figure 2.8, showing a much more

competitive error between the ODM models and the Rating and Reputation algorithms.

The highest mean error for this simulation was 24.171, achieved by the LOF; while the

lowest was 0.740, achieved by the Reputation model (Table 2.1). Figure 2.8 shows interest-

ing results in this regard, as it is possible to remark that the OCSVM and iForest methods

showed better results than the Rating and Reputation models in earlier iterations. The

13

CHAPTER 2. OUTLIER REMOVAL IN MEASUREMENT DATA

reasons for the loss of accuracy across all ODM except the MCD, which performs coher-

ently across time, was found to be due to the guard restrictions imposed and overfitting.

This is especially prominent with OCSVM and iForest.

OCSVM decreases rapidly in early instants with the mean error then increasing

quickly because the value for x̃(k) used stagnated without new information from M ′(k),

thus the estimation becomes outdated.

Figure 2.8: Mean estimation error comparison with logarithmic y-scaling for the 2nd

simulation

iForest suffers of the same problem, although its manifestation occurs much later.

Prior to the stagnation, iForest had been outperforming every other model but, as soon

as its estimation begins to lose relevance, its estimation error increases.

Method Edge Mean Error Value
Reputation 0.740402
Rating Pool 0.849171

iForest 0.907189
MCD 7.948775

OC-SVM 8.063033
LOF 24.171177

Table 2.1: Comparison of the mean estimated error for the methods, taken during the 2nd

simulation.

The mean error behaviour for the ODM methods in the second simulation occurs

because points in initial time steps become irrelevant as time progresses. The Rating and

Reputation methods do not hold old information as a metric to inform the present as there

is no need for a training set and instead use a Sliding Window to keep its estimation timely.

This simulation also pinpoints a bias that happens as, at some point, the ODM methods

stop accepting new points due to overfitting. As a consequence, the mean estimation

error keeps increasing.

14

2.5. METHOD COMPARISONS

To counter this, the ODM estimators’ score_sample function, described in the scikit-

learn python package [35], was used. This function scores each object evaluated by the

classifier and returns an array of scores. Outlier objects always score negative values,

while normal objects have positive scores.

It is important to remark this leaves ODMs a step behind the Rating and Reputation

algorithms because, in order to always receive new objects with each iteration, they are

forced to accept some classified as outliers whenever there are no new normal objects in

the model. This solution showed results similar to the initial simulation.

Algorithm 3 Object Estimation for Simulation 3

Λ(0) = ∅ ▷ Initialize Sliding window
for k > 0 do

Receive M(k) ▷ Sensor Data
Λ(k) = update(Λ(k − 1),M(k))
if |Λ(k)| > ψ then

M ′(k) = Classif y(Λ(k))
Λ(k).discard(M(k)∩Λ(k)∩M ′(k)) ▷ Discard objects with high ratings
x̃(k) =mean(yi ∈Λ(k)∩M(k) ▷ Compute estimate

end if
end for

A third simulation was performed imposing a Sliding Window Λ to replace the global

history Ψ described in Algorithms 1 and 2. The size was chosen to allow for a significant

number of objects. Effectively, this means each object has a lifespan before it is discarded

and replaced by newer, more relevant data points. Thus |Λ| ≤ ψ = ceil(k)
10 = 20.

Figure 2.9: A comparison of the ODM with the rating and reputation models, regarding
the simulation using a sliding window under a log y-scale.

With Algorithm 3, results become competitive as depicted in Figure 2.9, where the

evolution of the mean error is presented. The OCSVM now shows to be approximately

15

CHAPTER 2. OUTLIER REMOVAL IN MEASUREMENT DATA

as effective in classifying the objects as the rating method, with the MCD not far behind.

The LOF method, however, cannot accompany the other methods. At this point, it can be

remarked that the LOF is not suited for this type of classification.

Figure 2.10: The MCD, Rating, Reputation and OCSVM methods produce similar results.
A logarithmic scale is used to improve visibility and show that these methods have not
yet converged.

A closer look at the last 15 iterations of k (Figure 2.10), shows that the methods

produce very similar results. It is intuitive that the Reputation method will outperform

the Rating method since it uses the same metric but adds a weight that rewards objects

sent by reliable contributors while punishing unreliable sources.

On Table 2.2, a comparison of the best values achieved after 200 iterations of the

simulations for the six compared methods is shown. At first inspection, these values

could lead to some misconceptions about the results.

Method A1 A2 A3
iForest 3.067 0.907 1.432

LOF 4.402 24.171 16.157
MCD 3.190 7.949 1.024

OCSVM 4.204 8.063 0.992
Rating 1.188 0.849 0.991

Reputation 0.979 0.740 0.957

Table 2.2: Mean Error Value of the Estimation task by each algorithm developed.

A first conclusion that can be drawn is that the LOF has consistently had the worst

performance. This can also be seen in Table 2.3, where its performance is evaluated over

10 simulations using Algorithm 3. This is due to its dependency on density functions

and the time relevance of the dynamic system. An object neighbourhood may be densely

populated, but if all its neighbours are outdated, then the scoring function will incur in

a bias. A possible solution to this could be the inclusion of a time variable in the object

16

2.5. METHOD COMPARISONS

Method iForest LOF MCD OCSVM Rating Reputation

Simulations

1 1.775 18.049 1.151 1.047 1.079 1.074
2 2.135 16.203 1.199 1.168 1.149 1.145
3 1.028 17.774 0.746 0.607 0.758 0.757
4 1.483 15.609 1.109 1.023 1.064 1.062
5 1.419 13.786 1.243 1.093 1.082 1.085
6 1.592 15.745 1.325 1.123 1.242 1.237
7 1.532 14.063 0.936 1.042 0.843 0.817
8 1.683 16.379 1.197 1.188 1.139 1.125
9 1.551 12.689 1.029 1.070 1.072 1.075

10 1.767 15.839 1.116 1.113 1.103 1.110
Average 1.597 15.614 1.105 1.048 1.127 1.049

Table 2.3: Mean Error Value of the Estimation task over 10 simulations of Algorithm 3,
with the lowest value for each simulation and the final average in bold text.Values were
rounded for visualization purposes. Real values stand within a ±0.5 margin of shown
values.

attributes.

Another conclusion is that the Reputation method is constantly outperforming all oth-

ers (Table 2.2). Its relation to the Rating method has already been stated and, compared

to the ODMs, it shows great potential within the scope of this problem. To better study

this, Table 2.3 was developed by comparing 10 different simulations using Algorithm 3.

From here, it is possible to verify that, over the 10 simulations, the Reputation method

accrued an average mean error of 1.049± 0.5. A value superseded only by the OCSVM’s

own average. The error margin given above is advanced as a measure of the rounding

process used. From all simulations, the lowest mean error of the estimations achieved

were 0.607 and 0.757, both in simulation 3 and by the OCSVM and Reputation methods,

respectively.

17

3

Multi-Agent Systems

3.1 Motivation

As technologies become increasingly connected through the Internet of Things (IoT),

multi-agent systems have become an integral part of the quotidian. These systems rely on

cooperation, accuracy and reliability of many devices to achieve their objectives. However,

their reliability and accuracy, crucial characteristics for the application of multi-agent

systems, can be compromised by the presence of uncooperative agents, which can inject

false data and harm the integrity of the system.

In wildfire surveillance, multi-agent systems can help improve systems of early detec-

tion, providing early warnings to firefighters and helping in the prevention of loss of life

and property, through relying on a network of sensors, citizen science and crowdsensing

mechanisms. To prevent the compromise of the data collected through these systems, we

explore how methods such as MCD, OCSVM, and rating and reputation systems can be

used to improve the reliability and accuracy of the system.

3.2 Problem Formulation

In this chapter, the results obtained in Chapter 2 are transposed to a distributed

systems topology, where the goal is to understand whether the methods studied can be

used in an environment of multi-agents to create resilient consensus.

To that goal, equation 3.1 is proposed as the node update function, where x(k+1) is

the system’s next state vector, W is a row stochastic weighted matrix derived from an

adjacency matrix A and altered through classification methods studied previously, x(k) is

the system’s current state vector and u(k) is an external input.

x(k+1) =Wx(k) +u(k) (3.1)

In this analysis, a set of agents will be denoted as a network, where each agent is repre-

sented as a node in the adjacency matrix A ∈ Rn×n where Ai,j = 1 if agent i communicates

18

3.2. PROBLEM FORMULATION

to agent j, and Ai,j = 0, otherwise. Intuitively, Ai,i = 1∀i, meaning the node is aware of its

own value.

Furthermore, since the goal is to reach a consensus, it must be ensured that A is

strongly connected: there must be at least one path that links any node to any other

node through a chain of communicating nodes. Thus, A can be described in the form

of a directed graph G = (V ,E) such that V = {v1, ...,vN } is a nonempty finite set of nodes

and E ⊆ V × V is a set of edges, in which an edge is represented by an ordered pair of

distinct nodes [36]. Formally, a directed graph G = (V ,E) is strongly connected if and

only if for any pair of distinct nodes i, j ∈ V , there exists a sequence of nodes such that

each pair (Vj ,Vi) ∈ E creates a chained path that passes through all nodes in the network.

The agents that can send information to agent i are defined as the set of in-neighbours of

agent i, denoted as N in
i . Similarly, the agents that can receive information from agent i

are defined as the set of out-neighbours of i, N out
i . Note that, in a directed graph, when

(i, j) ∈ E, it is not necessary that (j, i) ∈ E, thus generally N in
i ,N

out
i .

The state of each agent i at the kth iteration is represented as x(k)
i , where k is the

discrete-time index. The initial state of each agent in the network is given by x(0)
i . The

general state of the network at the kth iteration will be represented as x(k).

The practical value of the consensus value will float due to changes in A performed

by the classification algorithm. To perform an accurate comparison of the fidelity of the

algorithm, a theoretical consensus value is calculated through equation 3.2.

g = q⊺x(0) (3.2)

where g represents the theoretical consensus value, q is the left eigenvector of A associated

with the unity eigenvalue and x(0) is the initial state of the agents’ set.

In the previous chapters, the results obtained came from using a single agent system

that received a set of values and acted upon the information it had and reached decisions

on its own. As was observed, of the four ODM explored, only the MCD and OCSVM

reached comparable results to the proposed algorithms of rating and rating with reputa-

tion (Table 2.3). If the Rating and Reputation algorithms were to be removed from the

comparison, the OCSVM algorithm would have achieved the lowest average error in 8 out

of the 10 simulations, while the MCD algorithm gathered the remaining 2 lowest average

errors.

In the following sections, a new comparison survey is performed, using multi-agent

systems [12, 13], or MAS. These systems are composed of several agents able to interact

with each other to achieve a given collective goal. In the scope of this project, each agent

can classify a series of values corresponding to their position at a given time, compare

to the positions of other communicating agents and decide whether they should abide

their fellows and move toward them or stay their course. In order of performing this

comparison, two functions are used: Weighted Consensus [37, 38] and DEXTRA[39, 40].

19

CHAPTER 3. MULTI-AGENT SYSTEMS

3.2.1 Weighted Consensus Method

A simple and fast way to reach consensus in a fully connected network would be

to perform an average of all node values. In a strongly connected network, it is best

to use a weighted average instead. In this case, A must be transformed to provide a

neat description of the influence each node has on its neighbours’ values, resulting in a

weighted averages matrix W . Take the following adjacency matrix as an example:

A =

1 1 0 1 1

1 1 1 0 1

0 1 1 0 1

1 1 0 1 1

1 1 1 1 1

(3.3)

In order to achieve consensus between the values of x(k), W must be row stochastic.

Thus it is transformed such that Wi,j > 0 if j ∈ N in
i and Wi,j = 0 otherwise, with the

additional constraint that
∑n
j=1Wi,j = 1,∀i.

The weighted matrix of A, as provided in 3.3 becomes:

WA =

0.25 0.25 0 0.25 0.25

0.25 0.25 0.25 0 0.25

0 0.333 0.333 0 0.333

0.25 0.25 0 0.25 0.25

0.20 0.20 0.20 0.20 0.20

(3.4)

And the next state of the nodes is given by:

x(1)(i) =Wi,jx
(0)(j) (3.5)

The general case can be written similar to 3.1, with u(k) = 0,∀k > 0:

x(k+1) =W (k)x(k) (3.6)

where we will have to make W dependent on time to account for the changes in the

weights caused by the classification algorithms.

As an example, with the following initial state x(0) =
[
5.99 4.49 7.61 6.49 6.19

]⊺
and applying equation 3.6 iteratively, the consensus is achieved as shown in Figure 3.1,

where each agent is represented as a node and a progression of the sate values across

iterations can be verified.

20

3.2. PROBLEM FORMULATION

Figure 3.1: Weighted Consensus progression per node.

Using equation 3.2, the theoretical value for the consensus in this example is 6,00179.

After 20 iterations of equation 3.6, the value found for each node is

x(20) =
[
6.00408804 6.00408805 6.00408806 6.00408804 6.00408805

]⊺
(3.7)

which results in an average error of 2.298× 10−3. It can be concluded that, by extending

the limit of equation 3.6 to infinity, an accurate prediction of the consensus is produced.

A deeper analysis on weighted consensus algorithms can be found on [37, 38].

3.2.2 DEXTRA

DEXTRA stands for Directed Exact first-order Algorithm [40]. It is an improvement

over the EXTRA algorithm [41], introduced with the intent of pushing agents to achieve

consensus and reach the optimal solution for a composition of private cost functions for

the case of directed graphs.

As with the Weighted Consensus, each agent j ∈ V in DEXTRA keeps the state vector

x
(k)
j ∈ R

p. Additionally, a second vector z(k)
j ∈ R

p and a scalar value y(k)
j ∈ R, where k is the

discrete-time index, are introduced.

At the kth iteration, agent j weighs its states Wi,jx
(k)
j and Wi,jy

(k)
j , as well as W̃i,jx

(k−1)
j ,

and shares these to each of its out-neighbours i ∈ N out
i , where the weights Wi,j are a

weighted adjacency matrix and W̃i,j are defined as:

W̃i,j =

θ + (1−θ)Wi,j , i = j,

(1−θ)Wi,j , i , j,
(3.8)

where θ ∈ [0, 1
2]. The step update of x(k) is then performed using the following set of

21

CHAPTER 3. MULTI-AGENT SYSTEMS

equations:

x
(k+1)
i =

∑
i∈N in

j
Wi,jx

(k)
i −α∇fi(z

(k)
i), k = 0

x
(k)
i +

∑
i∈N in

j
Wi,jx

(k)
i −

∑
i∈N in

j
W̃i,jx

(k−1)
i −α

(
∇fi(z

(k)
i)−∇fi(z

(k−1)
i)

)
, k > 0

(3.9a)

z
(k)
i =D(k)x(k)

i (3.9b)

D(k) = diag(W k)1n (3.9c)

where fi is a convex and differentiable function only known to agent i, such that fi :

Rp −→ R, and ∇fi(z) is the gradient of fi at z = z(k)
i and α represents learning rate of the

step function. A deeper analysis on the DEXTRA algorithm can be found on [40].

Figure 3.2: DEXTRA progression per node.

After performing a similar test with DEXTRA as the one that preceded Figure 3.1,

Figure 3.2 is obtained. It is immediate that the DEXTRA algorithm is slower in achieving

consensus than the Weighted Consensus. After 50 iterations, the average error is 9.487×
10−5. An error much lower than the calculated for the Weighted Consensus. Again,

extending the limit to infinity demonstrates a tendency toward achieving a value close to

the theoretical goal.

3.3 Changes to the Algorithm

In Section 2.5, Algorithm 3 was used to estimate the mean value of x through a mean

of values considered by a classifier function. The method of progression was performed

22

3.3. CHANGES TO THE ALGORITHM

through two methods, keeping an active sliding window, which was updated as to always

maintain a collection of the best rated values received. This method can be useful in single

agent systems, but not in a multi-agent setting, thus a new method to use the classifiers

had to be developed, using the Consensus functions described previously to unify them.

As both the Weighted Consensus and the DEXTRA functions use the weight matrix W ,

then it can be used by the classifiers to tell the agent which values of its in-neighbours

are more valuable to the consensus.

For the MCD and OCSVM classifiers, the sliding window was kept to train the meth-

ods, and values accepted are used to change the adjacency matrix A, indicating that an

agent whose value is accepted should be used in the consensus and setting the corre-

sponding entry to zero if that agent was deemed an attacker. As it will be shown in later

sections, this method can also reduce the effects of noise or possible rogue agents. Figure

3.3 shows how the classification is performed, where v is any value contributed by the

in-neighbours of agent j, Q is a constant value introduced to cap the sliding window, and

model refers to the trained model for the ODM classifier.

Figure 3.3: Outlier Detection Method Classification

23

CHAPTER 3. MULTI-AGENT SYSTEMS

In the case of the Rating and Reputation algorithms, instead of severing the link for

the iteration, it is strengthened or weakened, depending on the score each of the agent’s

in-Neighbours’ achieves. In order to further reduce the effects of noise in the Rating and

Reputation algorithms, the score (S) is normalized through equation 3.10.

Snorm =
r

(k)
i −min(r(k))

max(r(k))
(3.10)

where r(k) represents the set of rating scores calculated through equation 2.18 at the kth

iteration and Snorm ∈]0,1]. Figure 3.4 shows how the classification is performed when

using the Rating or Reputation methods, where S is the score produced by equations 2.18

or 2.20, respectively. Note that, in Figure 3.4, Ej represents the reputation score of the

in-neighbours of j.

Figure 3.4: Rating and Reputation Classification

24

3.4. RESULTS

The ceiling δ imposed on the Rating and Reputation algorithms is used to prevent the

appearance of 1
0 undefined values, with the consequence of limiting the possible values

of rk to the interval]0,100]. While this may result in a smaller distinction between scores

when k −→ ∞ and the algorithm is closer to achieving consensus, it is not expected to

produce an increase in the classifier’s average error as agents with in-neighbours that

allow them to produce scores lower than 0.01 must be at most within 1
n of the agent’s own

value, where n = |N in
j |.

With the changes performed to the classification algorithms, the comparison can be

performed using a multi-agent system.

3.4 Results

In this section the classification algorithms described are put into practice. It is split

into three different scenarios where a comparison of results between the methods dis-

cussed in Chapter 3 are employed along with the Weighted Consensus or the DEXTRA

equations to achieve consensus in the algorithm. Each case is characterized by how noise

influences the results.

• Case 1: Algorithm performance without noisy agents in the network,

• Case 2: Algorithm performance against single noise moment,

• Case 3: Algorithm performance against persistent noise.

Before the consensus process is started, the initial state is generated randomly through

the python module numpy.random and the adjacency matrix A is generated through func-

tion strongly_connected_matrix1, such that first it generates a diagonal matrix with ones

along the main diagonal, and then iteratively adds random edges until the resulting graph

is strongly connected. Random edges between two nodes that are not yet connected have

a probability 1/3 of being created. For the tests performed in this section, the adjacency

matrix A used is

A =

1 1 0 1 1

1 1 1 0 1

0 1 1 0 1

1 1 0 1 1

1 1 1 1 1

(3.11)

and the initial state generated is x(0) =
[
5.99 4.49 7.61 6.49 6.19

]
. The theoretical

consensus calculated through equation 3.2 is 6.00179.

In Case 1, the goal is to create a baseline for how the classification algorithms perform

without noisy agents in the network. The expectation is that, without any noise, the

agents will reach a consensus close to what is seen in Figures 3.1 and 3.2.

1Can be found in module "essentials_v2"of https://github.com/pmmatias6/Tese_Pedro_Matias

25

https://github.com/pmmatias6/Tese_Pedro_Matias

CHAPTER 3. MULTI-AGENT SYSTEMS

In Case 2, a single noise moment will be introduced into the system at a given time,

representing a period where an agent is temporarily under the influence of exterior events.

The expectation here is that although the system may suffer a fluctuation along the path

to achieve consensus, it should still be able to recover and achieve a good performance.

Lastly, in Case 3 a persistent noise signal is introduced, overwriting one agent’s in-

formation throughout the simulation. The expectation is that, through the classification

methods, it will be possible to create a consensus between the remaining agents while the

noisy agent becomes isolated and its influence in the system is reduced.

3.4.1 Algorithm performance without noisy agents in the network

Once x0 and A were set and the theoretical consensus is obtained through equation

3.2, the simulation is conducted with the results being presented in the following figures.

Figure 3.5 shows the evolution of the nodes’ states per iteration, and their proximity

to the goal when using the Weighted Consensus method. The results obtained show that

the ODM classification (Figures 3.5a and 3.5b) obtained dissimilar results. While the

OCSVM method approaches closer to the theoretical value, hereafter referred to as goal,

the MCD method obtained the furthest distance from the goal. At the same time the

scoring mechanisms (Figures 3.5c and 3.5d) obtained competitive values when compared

with their ODM counterparts. This distance to the goal can be better demonstrated in

Table 3.1, where the steady state of each mechanism’s consensus and respective distance

to the goal is shown.

Repeating the same process using DEXTRA revealed similar conclusions as Figure

3.6 shows. Again, there is disparity in the results obtained by each ODM classification

mechanism studied, while the scoring mechanisms maintain close proximity between

their results. With DEXTRA, and using Table 3.2 as a comparison of the steady state

for each method, it is evident that in cases where there is no concern for attacks or the

sensors are not subject to significant noise fluctuations there isn’t need to make use of

classification. At the same time, we get a glimpse at MCDs future inadequacy for the

problem at hand.

This may be due to the fact that, as outlier detection methods, the MCD and OCSVM

will tend to classify values too different from their peers as outliers, thus ignoring their

influence. As this is performed through changing the connections in the adjacency matrix,

the practical value found will be different than the goal, as the weight matrix W will also

change throughout the consensus process.

Regarding the scoring methods studied, because equation 3.10 is used to alter the

weights of each node in W , there will always be at least one node whose communication

link is cut entirely, while the other nodes’ weights are changed to reflect their proximity to

each other’s values through the normalization of equations 2.18 and 2.20, using equation

3.10.

26

3.4. RESULTS

3.4.1.1 Weighted Consensus

(a) MCD (b) OCSVM

(c) Rating (d) Reputation

(e) w/o classification

Figure 3.5: Weighted Consensus progression per node, using different classification mech-
anisms.

Method Steady State
(
x(∞)

)
||
∑
x

(∞)
i
N − g ||

w/o Classification 6.00408805 0.00229805
MCD 6.3868 0.3850

OCSVM 5.9013 0.1004
Rating 6.1548 0.1530

Reputation 6.1932 0.1914

Table 3.1: Weighted Consensus Steady State comparison in a system without noise.

27

CHAPTER 3. MULTI-AGENT SYSTEMS

3.4.1.2 DEXTRA

(a) MCD (b) OCSVM

(c) Rating (d) Reputation

(e) w/o classification

Figure 3.6: DEXTRA progression per node, using different classification mechanisms.

Method Steady State
(
x(∞)

)
||
∑
x

(∞)
i
N − g ||

Simple 6.00179 9.96181× 10−12

MCD 7.8983 1.8965
OCSVM 5.916535349 0.08525
Rating 5.944988274 0.0568

Reputation 5.8578 0.1439

Table 3.2: DEXTRA Steady State comparison in a system without compromised nodes.

28

3.4. RESULTS

3.4.2 Algorithm performance against single noise moment

In this section, the network is assailed once by a noise peak where node 1, representing

agent 1 in the network, has its value set to 50 at a point of the classification process. In

Figures 3.7 and 3.8, the moment of the peak was iteration 10. No changes were performed

on the classification mechanisms employed.

Figure 3.7 shows the evolution of the nodes’ states using the Weighted Consensus,

while Figure 3.8 shows the evolution of the nodes’ states using the DEXTRA method.

It is visible that the presence of noise affects the behaviour of the consensus. Where

previously, without classification the deviation was minor, it is now much larger. At the

same time, the use of classification mechanisms granted the system with resilience against

the noise’s effects, as shown in Table 3.3. The fact that the results obtained by the OCSVM,

Rating and Reputation mechanisms are comparable to the previous simulations is a good

indicator of their effectiveness in this scenario. Again, the MCD has fallen behind its

competitors, showing a reduction in accuracy similar to the event without classification.

This may be due to a few factors such as overfitting, but it is more likely that the method

is not adequate for the problem at hand.

Table 3.4 shows the steady state of the nodes’ states using the DEXTRA method, as

well as the distance to the goal. Here, it is possible to see a reduction on all models’

accuracy. This is likely due to the sudden momentum generated by the gradients present

in equations 3.9a and 3.9b. The sudden noise introduction may have revealed a possible

fragility with the DEXTRA algorithm.

29

CHAPTER 3. MULTI-AGENT SYSTEMS

3.4.2.1 Weighted Consensus

(a) MCD (b) OCSVM

(c) Rating (d) Reputation

(e) w/o classification

Figure 3.7: Weighted Consensus progression per node with single noise moment, using
different classification mechanisms.

Method Steady State
(
x(∞)

)
||
∑
x

(∞)
i
N − g ||

Simple 14.5819 8.58012
MCD 14.8900 8.8882

OCSVM 6.2414 0.2396
Rating 6.1551 0.1533

Reputation 6.1936 0.1918

Table 3.3: Weighted Consensus Steady State comparison of the nodes with an isolated
noise moment.

30

3.4. RESULTS

3.4.2.2 DEXTRA

(a) MCD (b) OCSVM

(c) Rating (d) Reputation

(e) w/o classification

Figure 3.8: DEXTRA progression per node with single noise moment, using different
classification mechanisms.

Method Steady State
(
x(∞)

)
||
∑
x

(∞)
i
N − g ||

Simple -36.8792 42.8810
MCD -4.3970 10.3988

OCSVM -1.9480 7.9498
Rating -0.8391 6.8409

Reputation -214.6443 220.6461

Table 3.4: DEXTRA Steady State comparison of the nodes with an isolated noise moment.

31

CHAPTER 3. MULTI-AGENT SYSTEMS

3.4.3 Algorithm performance against persistent noise

In this section, a persistent noise signal infiltrates the network, overwriting node 1’s

values independently of its own value. Here, the objective is to assess the true resilience

of each mechanism. There no longer is a possibility of consensus between all nodes, but

the question to be answered is whether the remaining nodes can overcome the influence

of the noise and reach a consensus among each other without straying further from the

goal set beforehand.

In this case, Figures 3.9 and 3.10 show that all but the scoring classification mecha-

nisms fell prey to the noisy node and ended with a consensus diverted from the goal. Par-

ticularly, in DEXTRA’s case, the momentum generated by the persistent noise’s presence

provoked an exponential and out of bounds behaviour for the trials without classification,

OCSVM and MCD. In regards to the Rating and Reputation scoring mechanisms, their

nature allowed for a greater resilience against the noise, even isolating the faulty node

while achieving consensus.

In Tables 3.5 and 3.6 this achievement can be noted such that, in both cases, the

Reputation mechanism achieved the consensus closest to the goal. Despite this, it failed

to reach consensus using the DEXTRA algorithm, as shown in Figure 3.10d, where node
4 (corresponding with agent no. 4 of the network) suffered a slight deviation from the

consensus value and instead achieved its steady state at the value of 4.6685 (resulting

in a distance to the goal of 1.3333 instead). The reason behind this deviation might

be due to the communication post classification shifting in such a way that this node

became isolated of the network after being categorised as deviant at some point during

the simulation.

32

3.4. RESULTS

3.4.3.1 Weighted Consensus

(a) MCD (b) OCSVM

(c) Rating (d) Reputation

(e) w/o classification

Figure 3.9: Weighted Consensus progression per node with persistent noise moment,
using different classification mechanisms.

Method Steady State
(
x(∞)

)
||
∑
x

(∞)
i
N − g ||

Simple 50 43.99821
MCD 50 43.99821

OCSVM 49.9999 43.9981
Rating 6.3797 0.3779

Reputation 6.1954 0.1937

Table 3.5: Weighted Consensus Steady State comparison of uncompromised nodes with
persistent noise moment.

33

CHAPTER 3. MULTI-AGENT SYSTEMS

3.4.3.2 DEXTRA

(a) MCD (b) OCSVM

(c) Rating (d) Reputation

(e) w/o classification

Figure 3.10: DEXTRA progression per node with persistent noise moment, using different
classification mechanisms.

Method Steady State
(
x(∞)

)
||
∑
x

(∞)
i
N − g ||

Simple −1.15471× 1031 1.15471× 1031

MCD −1.80015× 1039 1.80015× 1039

OCSVM −1.30414× 1043 1.30414× 1043

Rating 5.2601 0.7416
Reputation 5.9999 0.00187

Table 3.6: DEXTRA Steady State comparison of uncompromised nodes with persistent
noise moment.

34

4

Conclusion

The studied problem of achieving a consensus with high accuracy in dynamic and

distributed systems is a complex issue in academia, especially when the system dynamics

are unknown and it is susceptible to faulty data, whether it be through attacks by outside

entities or noisy nodes. The proposed methods and mechanisms have their own place and

function within the scope of the issue, but static methods tend to fail when the scenario

becomes more complicated while the scoring nature of reputation and rating mechanisms

tend to be more stable overall, thus achieving resilience.

In simulation, it is shown that mechanisms which involve rating and reputation, be it

in dynamic systems or multi-agent distributed systems, perform better overall. Further,

in situations where there is a a danger of the network being compromised by rogue

agents (Figures 3.7, 3.8, 3.9, 3.10) these mechanisms maintain a greater resilience while

achieving consensus (Tables 3.3, 3.4, 3.5, 3.6), and have the advantage of being able to

identify the faulty node and isolating it.

In the scenario of pinpointing the location of a forest fire, the deviations obtained

are still too large. If the values are taken as the radius of a circumference (in kilometres)

encompassing an area where the fire is supposed to be developing, there isn’t a consensus

on which method has achieved better results. In Case 1 (section 3.4.1) the ideal situation

of a system that does not suffer from any sort of large noise fluctuations or attacks from

evil agents obtained weak results in regards to accuracy, with the Rating and the OCSVM

methods obtain the better results overall, yet still obtaining error margins between 56 and

153 metres - distances that still accrue too large of an error to be reliable without employ-

ing other scouting methods. When noise was first introduced in Case 2 (section 3.4.2), the

DEXTRA algorithm would have shown itself unable to provide an error margin below 7-8

kilometres in such a scenario. In the same situation, Weighted Consensus allowed for a

minimum error margin close to 150 metres, when using the Rating mechanism. With the

existence of persistent noise in Case 3 (section 3.4.3) all the ODM classification methods

can be declared as failures. In regards to scoring mechanisms, Reputation obtained the

highest accuracy when joined with the DEXTRA algorithm of all classification mecha-

nisms employed in the three studied cases, with an error margin of less than 2 metres.

35

CHAPTER 4. CONCLUSION

This may be the only situation where success can be confirmed, yet must be taken with a

grain of salt as consensus was not achieved for all non-compromised nodes, as shown in

Figure 3.10d.

With this, we conclude that, although the scoring mechanisms show promising fea-

tures in this field, further validation of the results obtained should be performed in the

future, through the exposure of the algorithms developed to real data and real-world

situations.

36

Bibliography

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on p. ii).

[2] J. Lloret et al. “A wireless sensor network deployment for rural and forest fire

detection and verification”. In: sensors 9.11 (2009), pp. 8722–8747 (cit. on p. 1).

[3] C. V. A et al. Science for Disaster Risk Management 2020. Scientific analysis or re-

view KJ-NA-30183-EN-N (online),KJ-NA-30183-EN-C (print). Luxembourg (Lux-

embourg), 2021. doi: 10.2760/438998(online),10.2760/571085(print) (cit.

on p. 1).

[4] R. Surette. “The thinking eye: Pros and cons of second generation CCTV surveil-

lance systems”. In: Policing: An International Journal of Police Strategies & Manage-
ment (2005) (cit. on p. 1).

[5] F. X. Catry et al. “Modeling and mapping wildfire ignition risk in Portugal”. In:

International Journal of Wildland Fire 18.8 (2009), pp. 921–931 (cit. on p. 1).

[6] A. Capponi et al. “A survey on mobile crowdsensing systems: Challenges, solu-

tions, and opportunities”. In: IEEE communications surveys & tutorials 21.3 (2019),

pp. 2419–2465 (cit. on p. 1).

[7] Z. Xu et al. “Mobile crowd sensing of human-like intelligence using social sensors:

A survey”. In: Neurocomputing 279 (2018), pp. 3–10 (cit. on p. 1).

[8] M. Hefeeda and M. Bagheri. “Wireless sensor networks for early detection of forest

fires”. In: 2007 IEEE International Conference on Mobile Adhoc and Sensor Systems.
IEEE. 2007, pp. 1–6 (cit. on p. 1).

[9] H. Zheng et al. “Monitoring surface water quality using social media in the context

of citizen science”. In: Hydrology and Earth System Sciences 21.2 (2017), pp. 949–

961 (cit. on p. 1).

[10] D. Silvestre. “Reputation-based Method to Deal with Bad Sensor Data”. In: IEEE
Control Systems Letters (2020) (cit. on pp. 1, 11).

37

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.2760/438998 (online),10.2760/571085 (print)

BIBLIOGRAPHY

[11] C. R. Perez-Toro, R. K. Panta, and S. Bagchi. “RDAS: reputation-based resilient data

aggregation in sensor network”. In: 2010 7th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).
IEEE. 2010, pp. 1–9 (cit. on p. 1).

[12] W. Van der Hoek and M. Wooldridge. “Multi-agent systems”. In: Foundations of
Artificial Intelligence 3 (2008), pp. 887–928 (cit. on pp. 1, 19).

[13] L. Busoniu, R. Babuska, and B. De Schutter. “Multi-agent reinforcement learning:

A survey”. In: 2006 9th International Conference on Control, Automation, Robotics
and Vision. IEEE. 2006, pp. 1–6 (cit. on pp. 1, 19).

[14] D. Silvestre, J. P. Hespanha, and C. Silvestre. “Broadcast and gossip stochastic

average consensus algorithms in directed topologies”. In: IEEE Transactions on
Control of Network Systems 6.2 (2018), pp. 474–486 (cit. on p. 2).

[15] D. Silvestre. “Optool—an optimization toolbox for iterative algorithms”. In: Soft-
wareX 11 (2020), p. 100371 (cit. on p. 2).

[16] R. Ribeiro, D. Silvestre, and C. Silvestre. “Decentralized control for multi-agent

missions based on flocking rules”. In: Portuguese Conference on Automatic Control.
Springer. 2020, pp. 445–454 (cit. on p. 2).

[17] D. F. Gleich. “PageRank beyond the Web”. In: siam REVIEW 57.3 (2015), pp. 321–

363 (cit. on p. 2).

[18] D. Silvestre, J. Hespanha, and C. Silvestre. “Desynchronization for decentralized

medium access control based on gauss-seidel iterations”. In: 2019 American Control
Conference (ACC). IEEE. 2019, pp. 4049–4054 (cit. on p. 2).

[19] A. Cristofaro and T. A. Johansen. “Fault tolerant control allocation using unknown

input observers”. In: Automatica 50.7 (2014), pp. 1891–1897 (cit. on p. 2).

[20] K. Manandhar et al. “Detection of faults and attacks including false data injection

attack in smart grid using Kalman filter”. In: IEEE transactions on control of network
systems 1.4 (2014), pp. 370–379 (cit. on p. 2).

[21] P. P. Menon and C. Edwards. “Robust fault estimation using relative information

in linear multi-agent networks”. In: IEEE Transactions on Automatic Control 59.2

(2013), pp. 477–482 (cit. on p. 2).

[22] J. K. Scott et al. “Constrained zonotopes: A new tool for set-based estimation and

fault detection”. In: Automatica 69 (2016), pp. 126–136 (cit. on p. 2).

[23] J. K. Scott et al. “Input design for guaranteed fault diagnosis using zonotopes”. In:

Automatica 50.6 (2014), pp. 1580–1589 (cit. on p. 2).

[24] D. Silvestre, J. P. Hespanha, and C. Silvestre. “Resilient desynchronization for

decentralized medium access control”. In: IEEE Control Systems Letters 5.3 (2020),

pp. 803–808 (cit. on p. 2).

38

BIBLIOGRAPHY

[25] D. Silvestre et al. “Fault detection for LPV systems using set-valued observers: A

coprime factorization approach”. In: Systems & Control Letters 106 (2017), pp. 32–

39 (cit. on p. 2).

[26] D. Silvestre et al. “Stochastic and deterministic fault detection for randomized

gossip algorithms”. In: Automatica 78 (2017), pp. 46–60 (cit. on p. 2).

[27] G. Gan and M. K.-P. Ng. “K-means clustering with outlier removal”. In: Pattern
Recognition Letters 90 (2017), pp. 8–14 (cit. on p. 2).

[28] S. M. Dibaji and H. Ishii. “Consensus of second-order multi-agent systems in the

presence of locally bounded faults”. In: Systems & Control Letters 79 (2015), pp. 23–

29 (cit. on p. 2).

[29] G. Ramos, D. Silvestre, and C. Silvestre. “A general discrete-time method to achieve

resilience in consensus algorithms”. In: 2020 59th IEEE Conference on Decision and
Control (CDC). IEEE. 2020, pp. 2702–2707 (cit. on p. 2).

[30] A. Atkinson and D. Hawkins. “Identification of Outliers.” In: Biometrics 37 (Dec.

1981), p. 860. doi: 10.2307/2530182 (cit. on p. 3).

[31] K. M. Liu Fei Tony and Z.-H. Zhou. “Isolation Forest”. In: 2008 eighth ieee interna-
tional conference on data mining (2008), pp. 413–422 (cit. on p. 4).

[32] M. M. Breunig et al. “LOF: identifying density-based local outliers”. In: Proceedings
of the 2000 ACM SIGMOD international conference on Management of data. 2000,

pp. 93–104 (cit. on pp. 5, 6).

[33] B. Schölkopf et al. “Support vector method for novelty detection.” In: NIPS. Vol. 12.

Citeseer. 1999, pp. 582–588 (cit. on pp. 6, 9).

[34] P. J. Rousseeuw and K. V. Driessen. “A Fast Algorithm for the Minimum Covariance

Determinant Estimator”. In: Technometrics 41.3 (1999), pp. 212–223. doi: 10.108

0/00401706.1999.10485670. eprint: https://www.tandfonline.com/doi/pdf/1

0.1080/00401706.1999.10485670. url: https://www.tandfonline.com/doi/

abs/10.1080/00401706.1999.10485670 (cit. on p. 10).

[35] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 15).

[36] Z. Li et al. “Designing Fully Distributed Consensus Protocols for Linear Multi-

Agent Systems With Directed Graphs”. In: IEEE Transactions on Automatic Control
60.4 (2015), pp. 1152–1157. doi: 10.1109/TAC.2014.2350391 (cit. on p. 19).

[37] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. “Dynamic consensus on mobile

networks”. In: IFAC world congress. 2005, pp. 1–6 (cit. on pp. 19, 21).

[38] R. Olfati-Saber and R. M. Murray. “Consensus problems in networks of agents with

switching topology and time-delays”. In: IEEE Transactions on automatic control
49.9 (2004), pp. 1520–1533 (cit. on pp. 19, 21).

39

https://doi.org/10.2307/2530182
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1080/00401706.1999.10485670
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1999.10485670
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1999.10485670
https://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485670
https://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485670
https://doi.org/10.1109/TAC.2014.2350391

BIBLIOGRAPHY

[39] C. Xi and U. A. Khan. “On the linear convergence of distributed optimization over

directed graphs”. In: arXiv preprint arXiv:1510.02149 (2015) (cit. on p. 19).

[40] C. Xi and U. A. Khan. “DEXTRA: A fast algorithm for optimization over directed

graphs”. In: IEEE Transactions on Automatic Control 62.10 (2017), pp. 4980–4993

(cit. on pp. 19, 21, 22).

[41] X. Sun and J. Zhang. “An exact first-order algorithm for decentralized consensus

optimization”. In: (2014) (cit. on p. 21).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.7.0) [0].

[0] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 40).

40

https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	

	1 Introduction
	2 Outlier Removal in Measurement Data
	2.1 Motivation
	2.2 Problem Statement
	2.3 Automatic Outlier Detection Methods
	2.3.1 Isolation Forest
	2.3.2 Local Outlier Factor
	2.3.3 Support Vector Machines
	2.3.4 Minimum Covariance Determinant

	2.4 Rating and Reputation
	2.5 Method comparisons

	3 Multi-Agent Systems
	3.1 Motivation
	3.2 Problem Formulation
	3.2.1 Weighted Consensus Method
	3.2.2 DEXTRA

	3.3 Changes to the Algorithm
	3.4 Results
	3.4.1 Algorithm performance without noisy agents in the network
	3.4.2 Algorithm performance against single noise moment
	3.4.3 Algorithm performance against persistent noise

	4 Conclusion
	Bibliography
	Back Matter
	Back Matter
	Back Cover

