
Passively Safe Trajectory Generation using Model
Predictive Control

João Guilherme Mendes da Costa Felizardo

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Advisor(s)/Supervisor(s): Prof. Daniel de Matos Silvestre
Prof. Rita Maria Mendes de Almeida
Correia da Cunha

Examination Committee
Chairperson: Prof. João Luı́s Da Costa Campos Gonçalves Sobrinho

Advisor: Prof. Daniel de Matos Silvestre
Members of the Committee: Prof. Rodrigo Martins de Matos Ventura

November 2024

Declaration

I declare that this document is an original work of my own authorship and that it fulfils all the require-
ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

Acknowledgments

This thesis marks the end of my journey at IST. I will forever remember with joy these last five years, and
I want to thank all the people who left their mark on this wonderful experience.

Firstly, I would like to express my gratitude to my supervisor, Professor Daniel Silvestre, and to Dr.
Pedro Lourenço. I am deeply thankful for the time and effort you dedicated to guiding me throughout this
work.

To my family, thank you for your constant care, encouragement and belief in me. I am forever grateful
for the love and support I felt throughout my life. Each one of you has helped shape the person I am
today, and I could not have done this without you.

To my childhood friends, the good times we shared together are invaluable. I am grateful to each of
you for being there through both the ups and downs, and I will always appreciate your friendship.

Finally, to my IST friends, I want to thank you for your companionship and support. Sharing this expe-
rience with you all has made it infinitely more meaningful. You have made this journey truly memorable.

This work was partially supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT)
through project FirePuma (https://doi.org/10.54499/PCIF/MPG/0156/2019), through LARSyS FCT fund-
ing (DOI: 10.54499/LA/P/0083/2020, 10.54499/UIDP/50009/2020, and 10.54499/UIDB/50009/2020) and
through COPELABS, University Lusófona project 10.54499/UIDB/ 04111/2020.

iii

Abstract

The rapid advancement of autonomous systems in areas such as aerospace, automotive, and robotics
has intensified the need for safe and reliable control strategies. Operating in uncertain and dynamic
environments, these systems face significant challenges in maintaining safe trajectories under real-
time disturbances and limited computational resources. Ensuring passive safety, i.e. keeping systems
within safe operational limits without active intervention, is critical, especially for missions in remote or
unpredictable conditions. Model Predictive Control (MPC) has shown promise in handling the essential
constraints for such environments. However, effective application of MPC under uncertainty demands
innovative approaches to balance computational efficiency with precise state estimation.

This thesis presents a contribution to the development of a framework based on MPC for trajectory
generation, using zonotope-based state estimation to ensure passive safety in autonomous systems.
By considering the simple example of the unicycle vehicle and future state estimation process, this work
serves as a guide for the implementation of passively safe trajectory generation. Furthermore, using
Constrained Convex Generator (CCG)s, the thesis presents a minimal conservatism estimation of the
progression of a unicycle’s uncertain set for a given input.

In simulations, we show the adequate performance of the proposed framework, which maintains
safe trajectories under varying levels of uncertainty. This research is a starting point for the design of
passively safe trajectories, where optimizations in the state estimation process and further constraint
definition can effectively ensure the passive safety of generated trajectories.

Keywords: Model Predictive Control, Trajectory Generation, Passive Safety, State Estimation,
Autonomous Systems

v

Resumo

O rápido crescimento da utilização de sistemas autónomos em áreas como a aeroespacial, automóvel e
robótica motiva o desenvolvimento de estratégias de controlo seguras. Garantir segurança passiva, ou
seja, manter os sistemas dentro de limites operacionais seguros sem intervenção ativa, é fundamental
para os sistemas em ambientes incertos e dinâmicos. A utilização de estratégias de Controlo Preditivo
tem mostrado ser uma solução promissora. No entanto, uma aplicação eficaz de Controlo Preditivo em
condições de incerteza requer abordagens inovadoras que equilibram eficiência computacional com a
precisão da estimativa do estado.

Esta dissertação desenvolve uma estrutura baseada em Controlo Preditivo para a geração de tra-
jetórias, utilizando uma estimativa do conjunto do estado para garantir a segurança passiva em sistemas
autónomos. Ao considerar o exemplo simples de um uniciclo e o processo de estimação de estados fu-
turos, este trabalho serve como um guia para a implementação da geração de trajetórias passivamente
seguras. Adicionalmente, com recurso à representação de conjuntos por CCGs, esta dissertação apre-
senta uma estimativa de mı́nima conservatividade para a progressão do conjunto incerto de um uniciclo.

Os resultados das simulações mostram a eficácia da estrutura proposta, que preserva trajetórias
seguras sob diferentes nı́veis de incerteza. Esta pesquisa é um ponto de partida para o design de
trajetórias passivamente seguras, onde otimizações no processo de estimação de estados e a definição
de mais restrições podem garantir de forma eficaz a segurança passiva das trajetórias geradas.

Keywords: Controlo Preditivo, Geração de Trajetórias, Segurança Passiva, Estimação do Estado,
Sistemas Autónomos

vii

Contents

List of Tables xii

List of Figures xiv

Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and Approach . 3
1.3 Outline . 3
1.4 Notation . 3

2 Theoretical Background 4
2.1 Model Predictive Control . 4

2.1.1 Nonlinear Model Predictive Control . 4
2.1.2 Linear Model Predictive Control . 6

3 State-of-the-art 7
3.1 Robust control . 7

3.1.1 Corridor MPC . 8
3.2 Simulation Methods . 9
3.3 State estimation . 10

4 Problem Formulation 11

5 Proposed Solution 13
5.1 Set estimation . 13

5.1.1 Set representations . 13
5.1.2 State estimation . 16

5.2 Set Propagation Algorithm . 16
5.3 Model Linearization . 24
5.4 Solution Algorithm . 27

5.4.1 Estimation of model error . 28
5.4.2 MPC formulation . 32
5.4.3 Next state estimation . 34
5.4.4 Overview . 34

ix

6 Results 36
6.1 Default simulation . 37
6.2 Obstacle Variation . 38
6.3 MPC state estimation . 40
6.4 MPC horizon variation . 43
6.5 State uncertainty variation . 44
6.6 Time step size variation . 46
6.7 Actuation variation . 46
6.8 Summary . 48

7 Conclusion 50
7.1 Future Work . 50

Bibliography 52

x

List of Tables

6.1 Default simulation parameters . 37
6.2 Default simulation results . 38
6.3 Obstacle variation test parameters . 38
6.4 Obstacle variation simulation results . 40
6.5 Model error estimation results . 42
6.6 MPC optimal control sequence, for iteration k = 2. 42
6.7 Test results for increased horizon and different obstacles 44
6.8 Variation of uncertainty parameters from the default simulation 44
6.9 Test results for different uncertainty values . 44
6.10 Variation of parameters from the default simulation . 46
6.11 Variation of parameters from the default simulation . 48
6.12 Obstacle variation test parameters . 48
6.13 Obstacle variation simulation results for less actuation . 49

xii

List of Figures

2.1 Principle of an MPC formulation for a continuous-time system, with a target set-point [1] . 5

5.1 Simulation results for u =
[
2, π

4

]⊤ considering different time step sizes h, and correspond-
ing percentual errors. 17

5.2 Representation of the first two steps of the set propagation algorithm 18
5.3 Representation of the last two steps of the set propagation algorithm 19
5.4 Result of the algorithm, showing the evolution from the initial set (black) to the set for the

next time step (in red). The white sets, represent set propagation for different θ values in
the considered uncertain values, subject to a Minkowski sum to account for the model error. 19

5.5 Result of the algorithm for uncertain ω, the different colours represent the corresponding
set for the consecutive iterations of the set propagation. Considering an interval for ω ∈[
−π

8 ,
π
8

]
, and a smaller step size of h = 0.05 s. 20

5.6 Representation of the points of interest, where points p1 and p2 represent the centre of
the respective blue sets, and the white segment represents the desired circle segment
defined by AS and bS . 21

5.7 Representation of the auxiliary variables to define the inequality constraint, s represent
the maximum of the slack variable value . 22

6.1 Representation of the uncertain state set trajectory. Alternating in red and blue are the
consecutive representations for each time step of the simulations. The block in black
shows the obstacle at x = 0.22 meters. 37

6.2 Evolution of the system’s position in the given reference and obstacle conditions. 38
6.3 Representation of the input v and ω, where the plots are limited to the respective maximum

actuation . 39
6.4 Uncertain state evolution for the first and third simulations 39
6.5 Representation of the state trajectory for the multiple simulations of different obstacle values 40
6.6 Input values variation for all four simulations with different obstacles 41
6.7 Representations of the process of over-approximating the model error 41
6.8 Representation of the estimated uncertain state trajectory given by the optimal control

input sequence. 42
6.9 Trajectory of the uncertain state set, with an obstacle x < 0.22 m 43
6.10 State trajectory simulation for different obstacles and increased horizon N 43
6.11 Side-by-side representations of the uncertain state trajectories for both simulations 45
6.12 Representations of the state trajectories for both simulations 45
6.13 Representation of the input sequence for both simulations 45
6.14 Side-by-side representations of the uncertain state trajectories for both simulations 46
6.15 Representations of the state trajectories for both simulations 47
6.16 Representation of the input sequence for both simulations 47

xiv

6.17 Result of simulation 3, with the same obstacle as the default simulation 48
6.18 Representation of the state trajectory for the multiple simulations of different obstacle values 49

xv

Acronyms

ADR Active Debris Removal. 1

AV Autonomous Vehicle. 1, 2

CBF Control Barrier Function. 8

CCG Constrained Convex Generator. v, vii, 10, 13, 15, 17, 20–24, 51

CLF Control Lyapunov Function. 7, 8

CMPC Corridor Model Predictive Control. 8

GNC Guidance, Navigation and Control. 1

LTI Linear time-invariant. 26, 50

LTV Linear time-variant. 10, 27

MPC Model Predictive Control. v, xiv, 2–9, 11–15, 24, 27, 28, 30, 32–36, 38–40, 42–44, 49–51

MPPI Model Predictive Path Integral. 8

NMPC Nonlinear Model Predictive Control. 4–6, 8

OSAM On-orbit Servicing, Assembly and Manufacturing. 1

ZCBF Zeroing Control Barrier Function. 8

xvii

Chapter 1

Introduction

This Chapter aims to establish the motivation and objectives for the thesis.

1.1 Motivation

In modern society, the rapid rise of autonomous systems has led to significant transformations across
various industries, including aerospace, automotive, and robotics. These systems are expected to op-
erate reliably and safely in complex, dynamic environments where the margin for error is minimal. As
autonomous systems become more integrated into critical applications, the demand for systems that are
not only efficient but also inherently safe has never been more critical.

In the aerospace industry, the recent expansion in space exploration has contributed to an increase
in space debris, presenting serious hazards to spacecraft and satellites. According to the United Nations
Office for Outer Space Affairs[2], over 17,000 objects have been launched into space since the beginning
of space exploration. This large number highlights the significance of space-based technology today,
with approximately half of all recorded launches occurring within the last five years alone. The vast
accumulation of debris, which includes fragments generated during collisions or mission failures, is
especially problematic. NASA reports that there are currently around 25,000 pieces of debris larger
than 10 cm and between 300,000 to 500,000 pieces from 1 to 10 cm [3]. The risk of debris-related
collisions increases with the rise in space traffic, intensifying the need for accurate debris tracking and
avoidance techniques for operational spacecraft.

Addressing this challenge, Active Debris Removal (ADR) technologies have been developed to either
prevent or remove hazardous debris. In addition, trajectory generation techniques for collision avoidance
have become essential. An example of this is orbital rendezvous, which is crucial in missions involving
spacecraft docking or debris retrieval. This operation requires precise trajectory planning and real-time
adjustments, as even minor errors can result in mission failure or create additional debris in orbit. The
rendezvous is a well-studied manoeuvre and part of the On-orbit Servicing, Assembly and Manufacturing
(OSAM) operations that represent a major development in the industry. By enabling in-space operations,
OSAM effectively improves space systems’ performance and operational lifetimes and provides other
possibilities for more complex operations. These operations require various complex safety demands
that motivate continuous innovation in the field of Guidance, Navigation and Control (GNC) systems for
spacecraft.

Another critical application of safe trajectory generation relates to Autonomous Vehicle (AV) control.
The emergence of AVs has the potential to drastically reduce traffic accidents. According to the World
Health Organization, road traffic accidents currently result in approximately 1.19 million fatalities each

1

year, with 20 to 50 million non-fatal injuries worldwide [4]. AVs, equipped with advanced sensors and
control algorithms, have the capacity to navigate safely while reducing energy consumption, pollution,
and traffic congestion and also improving the accessibility of transportation for a broader segment of
the population. However, the complexity of AV control lies in ensuring safe trajectory planning while
navigating complex urban environments with pedestrians, cyclists, and other vehicles. This requires
real-time adjustments, taking into account road conditions, regulations, and the unpredictable behaviour
of nearby drivers. One of the primary difficulties is ensuring that these adjustments prioritize safety while
maintaining efficient travel.

In recent decades, with the boost in computing power, the utilization of numerical optimization in
control systems has also risen. Model Predictive Control has been widely studied as a control strategy
[5][6] consisting of solving an optimization problem that considers the system dynamics and actuator
constraints with careful trajectory design to be applied in complex missions. Its ability to handle mul-
tivariable systems without adding complexity to the design process and to handle system constraints
explicitly during the control process is particularly useful in scenarios that demand both safety and effi-
ciency. For this specific work of designing passively safe trajectories, MPC’s predictive nature is a great
advantage since it provides optimal control over a future time horizon, considering both the current state
and potential future conditions.

In the automotive and aerospace industries, given the safety-critical nature of these applications,
MPC has gained popularity as a promising control strategy for safe trajectory generation. The missions
using MPC are continuously being studied, with multiple applications already extensively researched, as
the use for spacecraft rendezvous [7] [8], automotive operations [9] and mobile robots [10], serving as
examples for many more implementations being investigated.

However, despite its advantages, MPC presents challenges, especially concerning computational
demand. Solving an optimization problem at each control step can be computationally intensive, particu-
larly for systems with limited onboard processing power, such as those found in autonomous spacecraft
and vehicles. Another critical part of the MPC implementation is the correct modelling of the system
since many spacecraft and automotive vehicles have complex processes and dynamics that need to be
adequately modelled to reduce uncertainty in the control strategy and improve performance.

Using the MPC, this work will strive to guarantee a safe operation, not only incorporating the typical
constraints of actuator limits, performance requirements, and active collision avoidance (defining re-
stricted areas) but also considering passive safety. The system will take into account the passive safety
of the generated trajectory. Passive safety relates to trajectories that are safe even without active inter-
vention or with an actuation failure. The MPC output may consider paths that briefly involve unsafe or
collision routes (corrected later on by a defined action). This kind of trajectory is not passively safe, since
a possible actuation failure can lead to an unsafe state, such as an unsafe drift trajectory for example.

In MPC, the system’s continuous-time model is typically discretized to operate in discrete time, and
the choice of sample time is crucial, as it affects the accuracy of the discrete-time approximation and the
computational requirements. Larger sample times effectively reduce computational complexity, which is
essential given the limited onboard computational power in multiple missions, but might result in less
accurate control actions. On the other hand, shorter sampling times correspond to a more frequent
solving of complex optimization problems and a more significant computational load in an already lim-
ited context. Safe trajectory generation should minimize these concerns about disturbances, actuation
failure, and long sampling time consequences.

2

1.2 Objectives and Approach

In this thesis, we will develop a Model Predictive Control (MPC)-based framework for generating pas-
sively safe trajectories for autonomous systems with uncertain states. This involves encoding a set of
conditions into the problem constraints and cost function, which should ensure safety for the designated
route by preemptively accounting for possible actuation failures, unmodeled disturbances and other un-
certainties. In extreme malfunctioning situations, it is impossible for the method to guarantee safety. The
framework employs zonotope-based state estimation to predict future states accurately, balancing safety
with minimal conservativeness. This state estimation is used to define the set of safety conditions into
the MPC problem.

This work can further validate the use of MPC for critical and complex missions in both aerospace
and automotive industries.

1.3 Outline

This document consists of seven chapters. In this first chapter, we address the motivation, the work
objectives, and the notation used throughout the document. Afterwards, we introduce technical concepts
related to the work. This introduction is essential for comprehending the State of the Art Chapter, where
current related work is examined. The subsequent chapter provides the problem formulation, and the
following chapter of the Proposed Solution describes everything regarding the methods used to tackle
the problem. To conclude the thesis, there is a chapter which shows the results of the proposed solution,
followed by a conclusion chapter.

1.4 Notation

Throughout this work, scalar variables are denoted by plain lowercase letters, vectors by bold lowercase
letters, and matrices by bold uppercase letters. The identity, null, and ones matrices, each appropriately
sized, are denoted by I, 0, and 1, respectively. Specifically, In, 0m×n, and 1m×n represent the n × n

identity matrix, and the m× n null and ones matrices, respectively. The absolute value of a real number
x is denoted by ∥x∥. For a vector v ∈ Rn, its infinity norm, Euclidean norm, and general p-norm are
denoted by |v|∞, |v|, and |v|p, respectively. The ith component of vector v is denoted by (v)i and the
transpose of a vector v is denoted by v⊤. Given vector v, diag(v) denotes the n × n square diagonal
matrix whose diagonal is v, while diag(A1, . . . ,AN) denotes the block diagonal matrix whose diagonal
blocks are given by matrices A1, . . . ,AN . The Minkowski sum of two sets is denoted by ⊕, and the
intersection after applying matrix R to the set is denoted by ∩R.

3

Chapter 2

Theoretical Background

This chapter introduces the fundamental concepts of model predictive control which will be further ex-
plored throughout this work.

2.1 Model Predictive Control

As stated in Section 1.1, the fundamental idea behind the MPC control strategy is iteratively solving
an optimization problem (in each control step). The goal is to determine the optimal control inputs that
minimize a particular cost function while satisfying the imposed constraints.

2.1.1 Nonlinear Model Predictive Control

Consider a discrete-time system characterized by a state xk ∈ Rn at time k and a control input uk ∈ Rm

at time k. The process can be described by the model

xk+1 = f(xk,uk), (2.1)

and by an output equation

yk = g(xk,uk), (2.2)

where yk ∈ Rp, and, in this case of Nonlinear Model Predictive Control (NMPC), f and g are nonlinear
functions.

The sequence of optimal control inputs U ∈ Rm×N , corresponding state sequence X ∈ Rn×(N+1)

and output sequence Y ∈ Rp×(N+1), are defined by

U = [u0 u1 ... uN−1],

X = [x0 x1 ... xN],

Y = [y0 y1 ... yN],

(2.3)

and are obtained by minimizing a cost function J(Y,U), over a finite prediction horizon N , subject to a
set of constraints and given an initial state x̂0.

To model MPC, we can define the prediction horizon and the control horizon as Tp and Tc, respec-
tively. The prediction horizon determines the timeframe for forecasting future system behavior, offering
insight into the system’s evolution. The control horizon specifies how far into the future the controller

4

actively adjusts control inputs. In the considered case, both are considered to be N , as the control hori-
zon is always smaller or equal to the prediction horizon. The cost function, dependent on both Y and
U, serves to evaluate the performance of a provided sequence of control inputs. The following scheme
from [1] accurately represents the MPC functioning for a different continuous-time system. Since the
system considered by (2.1) is not continuous, we would find both x and u discretized in the scheme of
Fig. 2.1.

Figure 2.1: Principle of an MPC formulation for a continuous-time system, with a target set-point [1]

With the designated cost function, the state constraint set X , the control input constraint U and the
system output set Y, the MPC solves the problem, giving as output the control input sequence that
minimizes the cost function and, therefore, performs best in the defined horizon. The problem can be
formulated as such:

minimize
Y,U

J(Y,U)

s.t. xk+1 = f(xk,uk), k = 0, ..., N − 1

yk+1 = g(xk,uk), k = 0, ..., N − 1

xk ∈ X , k = 0, ..., N

yk ∈ Y, k = 0, ..., N

uk ∈ U , k = 0, ..., N − 1 .

(2.4)

The MPC will then solve the problem and apply u0 to the system, where u0 is the first control input in
the obtained control sequence. In the next time step, the state is updated, the prediction horizon shifts
forward, and this process is repeated to find the following optimal control input.

While MPC has proven effective in managing linear systems with constraints, NMPC[1][11] extends
its capabilities to address the inherently nonlinear nature of many real-world processes. NMPC can
handle nonlinearity in both the system dynamics and the objective function. This adjustment opens up
new possibilities for tackling a broader range of control problems, including those where linear approxi-
mations fall short.

5

This extension of the MPC excels in handling nonlinear dynamics, making it well-suited for control-
ling complex processes. However, it poses some implementation challenges. The initial challenge stems
directly from the nonlinearity of the plant, necessitating the real-time resolution of non-convex optimal
control problems. Failing to address this challenge significantly hampers the application of nonlinear
model predictive control. The second challenge involves the necessary task of developing robust ver-
sions of model predictive control capable of managing inherent uncertainties, which arise from either
model inaccuracies or unmeasured disturbances.

2.1.2 Linear Model Predictive Control

Due to the substantial computational complexity of NMPC, we can often consider linearizations of more
complex models, effectively reducing the complexity at the expense of some degree of precision in the
designated model dynamics. Assuming the models f and g considered in (2.1) and (2.2) are linear, the
system would then be characterized by the linear state model

xk+1 = Axk +Buk, (2.5)

yk = Cxk +Duk, (2.6)

where generally D = 0 since only for systems with instantaneous behaviours D is not null. This model
will not consider the existence of disturbances in the system.

An effective and common cost function for the optimization problem is the quadratic cost, consisting
of a sum of a quadratic cost on the state and control inputs and a terminal cost on the final state,

J(X,U) =

N−1∑
k=0

x⊺
kQxk + u⊺

kRuk + x⊺
NQfxN , (2.7)

where Q and Qf are positive semidefinite matrices, and R is a positive definite matrix. The matrices
are adjustable parameters, which makes it possible, in the considered problem, to tune the relative
importance of closely following the defined trajectory and minimizing actuation like fuel consumption.
Increasing the elements in R compared to Q in the cost function intensifies the penalization of the
control variable, leading to a constrained actuator action in the optimal solution.

Other modifications to the cost functions may be considered, including adjustments related to ref-
erence tracking (xref or yref). This is particularly relevant in the context of the problem of trajectory
generation under investigation in this study. Another approach involves formulating the problem by con-
sidering the system output instead of the state. In this scenario, the cost function becomes a function of
U ∈ Rm×N and Y ∈ Rp×(N+1). The problem would then be articulated as follows,

min
Y,U

N−1∑
k=0

(yk − yref)
⊺Q(yk − yref) + u⊺

kRuk + (yN − yref)
⊺Qf (yN − yref),

s.t. xk+1 = Axk +Buk, k = 0, ..., N − 1

yk = Cxk, k = 0, ..., N

xk ∈ X , k = 0, ..., N

yk ∈ Y, k = 0, ..., N

uk ∈ U , k = 0, ..., N − 1 .

(2.8)

where Y represents the constraint set for the system output.

6

Chapter 3

State-of-the-art

The following Chapter delves into the exploration and analysis of state-of-the-art methods in the context
of employing MPC for the secure generation of trajectories. Serving as an introduction to the state-
of-the-art, research studies will be discussed and evaluated to gain comprehensive insights into the
current landscape of trajectory generation and safety considerations. Considering the problem at hand,
ensuring the safety of the trajectory relies significantly on precise state estimation and handling unknown
disturbances. Both aspects are focal points of the following research studies.

3.1 Robust control

Robust control is a branch of control theory that deals with systems operating under uncertainty. In
real-world applications, models often contain uncertainties due to unmodeled dynamics, external distur-
bances, or parameter variations. Linearization of nonlinear models, for example, reduces the problem
complexity while frequently adding uncertainty to the system due to the model approximation. Robust
control methods focus on designing a controller to maintain proper system function, stability, and per-
formance while considering bounded uncertainties and disturbances. The main objective is to secure
robust control, ensuring the system behaves as intended.

Model predictive control can be used to implement robust control. In the work [12], MPC is presented
as a robust solution to the control of constrained, linear, discrete-time systems affected by bounded dis-
turbances. A crucial part of this study is defining a disturbance invariant set inside the state space. The
idea is that no matter the disturbances, the system trajectory will not escape the invariant set, ensuring
containment under all admissible uncertainties. Although an invariant set simplifies dealing with distur-
bances, large invariant sets can limit system performance since they could pose overly conservative
solutions. The authors incorporate a Control Lyapunov Function (CLF), valued at zero in the invariant
set, acting as the origin of the uncertain system. In the proposed solution, the initial state is not fixed
as the system’s current state, introducing it as a decision variable in the control problem to be solved.
This allows the proof of robust exponential stability of the invariant set for the controlled system. The
control output results in a “tube” of possible trajectories that account for uncertainties. An extension
for nonlinear systems was further developed in [13], and tube-based methods are discussed in [14].
The nonlinear implementation is comprised of a nominal MPC, generating a reference trajectory, and
an ancillary MPC, which maintains the system’s actual state within a tube around the reference trajec-
tory. It acts as a secondary control mechanism that complements the primary controller by providing
additional stabilization. Monte Carlo methods [15] are used to tighten the constraint sets, reducing the
conservativeness associated with the solution.

7

Another possible implementation of robust MPC is to consider sampling-based control to mitigate the
effect of uncertainties and disturbances. In [16], a solution for robust sampling-based MPC is presented,
which combines nonlinear tube MPC [13] and Model Predictive Path Integral (MPPI) control. MPPI is
the sampling-based model predictive control algorithm implemented in the referenced work, using the
principles of MPC and Path Integral theory frequently associated with stochastic optimal control. The
authors propose a framework of information-theoretic MPPI to deal with the problem of disturbances in
the control input. Considering this approach, the challenge becomes approximating the inputs to the
optimal control inputs. This is done by iterative importance sampling, as for many other sampling-based
methods. A review of different MPPI methods can be found in [17]. These methods rely on sampling
and evaluating many control sequences and respective trajectories in each optimization step, making the
process very computationally complex. Many algorithms consider reusing parts of the previous control
sequence to reduce computation time since it is closer to the optimal solution. While this can effectively
reduce computation time, the control inputs can become inappropriate for the new state, given some
significant disturbances that contradict the assumption of the system’s state and lead to undesirable
outcomes.

3.1.1 Corridor MPC

In the work [18], it is studied Corridor Model Predictive Control (CMPC) a framework for safe and optimal
trajectory tracking by combining NMPC and a Zeroing Control Barrier Function (ZCBF) formulation.
A Control Barrier Function (CBF) [19] is a mathematical tool used in control theory to enforce safety
constraints in dynamic systems by restraining the state to a designated safe set. In simple terms,
the CBF represents a function whose derivative consistently rises as it moves away from a safe set,
ensuring the invariance of the set and providing a safety bound on the system’s state set. ZCBFs
distinguish themselves from regular CBFs by having the property that the function reaches zero only at
a predefined equilibrium point in the safe set, while in CBFs, the value is zero throughout the set. This
property ensures the system converges to a desired state while satisfying safety constraints.

This novel method guarantees safety for the continuous-time system by limiting the state to a certain
corridor surrounding the reference trajectory. Aiming to surpass the results of tube-based robust MPC,
the strategy proposed by the research consists of using sampled-data ZCBFs, incorporating robustness
margins in the ZCBF framework:

sup
u∈U

[Lfch(x̃, t) + Lgch(x̃, t)u+
∂h(x̃, t)

∂t
+ α(h(x̃, t))] ≥ 0,

∀x̃ ∈ D, t ∈ R≥0,

(3.1)

where the system is defined by fc and gc, and the Lie derivatives of h along fc and gc, are Lfc and Lgc ,
respectively. α is considered to be Lipschitz continuous.

Lie derivatives describe how a tensor field changes along the flow of a vector field. In this case,
the Lie derivatives of the barrier function are analyzed, modelling the variation along the functions that
represent the system. Lipschitz continuity characterizes the behaviour of a function concerning how
much its output can change concerning changes in its input. The researchers use these parameters to
formulate and test the ZCBF.

Another aspect to note is the inclusion of a CLF in the cost function, as seen in previous implemen-
tations of robust MPC. The cost function (including the CLF) ensures that the predicted states are not
only driven toward the reference but also remain within certain constraints.

8

3.2 Simulation Methods

Dealing with uncertainties in the system’s dynamics, state uncertainty, and uncertain or dynamic envi-
ronments is a major challenge in any critical mission where safety is fundamental. This problem has
been a focus of study for many years, with multiple simulation solutions surging as a possible way to
tackle this challenge.

A standard research direction has been solutions that rely on computing collision probabilities for
different generated trajectories, frequently associated with the problem of robot motion planning. In [20]
and [21], scenario-based MPC is employed to tackle the issue of trajectory safety. Scenario-based MPC
serves as a solution to trajectory optimization affected by uncertainties, namely in the environment.
The work [20] considers an uncertainty model that represents probabilistic constraints, predicting the
movement of dynamic objects while accounting for uncertainty in their future positions and velocities.
From this model, different scenarios are generated by sampling multiple potential obstacle positions from
the probability distribution, turning the probabilistic constraints into deterministic. As such, the numerous
scenarios account for a potential future position of an obstacle at a given time step. These scenarios
represent different possible realities, which could be a very high number and computationally demanding
process. During the optimization process by the MPC, the generated trajectories are evaluated in the
different scenarios for parameters defined in the cost function and also for their collision risk in each
scenario. The trajectory evaluation can be done by constraining the collision probability of the result to
be below a defined value, as proposed in [20] where Monte Carlo [15] sampling was used to evaluate
the results. In [21], another solution is proposed where the risk of collision is present as a parameter in
the cost function, guaranteeing a feasible solution since there is no constraint value for collision risk. A
collision probability constraint could possibly be set to value zero, where the trajectory considered would
have zero risk of colliding. However, this could frequently prove to be unfeasible in these problems of
uncertain and dynamic environments. This work estimates the collision probabilities using Monte Carlo
simulation associated with a Kalman Filter. The filter reduces the statistical noise created by running the
simulations for a finite number of samples. While this approach of scenario-based MPC is a powerful
method for handling uncertainties, it comes with several challenges, such as the number of scenarios
considered, since high computational complexity is associated with solving optimization problems for
many scenarios. With fewer scenarios, the set of possibilities might not be sufficiently covered, and
some outcomes might not be portrayed in the scenarios. Another challenge to consider is the accuracy
of the uncertainty model, which could lead to unsafe behaviours when underestimating the risks or to
overly conservative solutions when considering models with more significant uncertainty.

Simulation of possible collisions to assess a trajectory’s safety is a straightforward approach which
is not only considered in scenario-based MPC. Monte Carlo methods are frequently used in these prob-
lems, as showcased in [22] for safety assessment in uncertain and dynamic environments. The work
consists of sampling using sequential Monte Carlo methods to generate control inputs for each object
in the environment, generating multiple trajectories. The collision probability of the robot trajectory is
estimated by Monte Carlo simulation, which samples the possible states and trajectories of the objects,
attributes a weight to each sample based on a goal function and defines the collision probability as the
sum of the weights of all samples that lead to a collision. As in previously analyzed works, the safety
assessment metric is based on collision risk.

A Monte Carlo approach can be used for trajectory generation and optimization, motion planning
and other topics, maintaining similar methods of generating samples from uncertain inputs, positions
or systems states, evaluating each of those samples in a deterministic computation and combining the
individual simulations to return the final result. [23] introduces variance-reduced Monte Carlo applied
to motion planning to more accurately compute collision probability, striving to achieve more reliable

9

results with fewer samples. [24] [25] refer to other use examples of Monte Carlo, this time applicable in
the safety assessment of a road environment.

3.3 State estimation

Complex operations where autonomous vehicles and other systems operate can lead to difficult state
estimation processes. Either by the sensor malfunctioning, noisy measures, or lack of available sensors,
the system’s state might not be exactly known. This leads to the definition of an uncertain state and state
estimation procedures to provide a set of possible states that includes the actual system state.

One general problem is locating an autonomous vehicle for an environment with restricted GPS avail-
ability. Estimating the state given range and bearing measurements is a common problem tackled in the
literature that develops set representations to enclose the uncertain state given by noisy measurements.

Typical solutions in the literature involve over-approximations of these sets for range only sensor
such as interval partition in [26] or using ellipsoid sets in [27]. With these approaches, the solution is
often characterized by excessive conservatism. An alternative method approximates the measurement
set by polytopes, represented using hyper-plane definitions [28] or constrained zonotopes [29]. In [30]
it is developed a novel set representation motivated by the need for unbounded set representations for
bearing measurement and mixed representations for range and bearing data.

Extensive research in the field of set representations for Linear time-variant (LTV) systems in discrete
time has introduced various methods for state estimation. Among these are interval arithmetic studied
in [31], zonotopes described in [32] [33], constrained zonotopes [29], ellipsoids [34], polytopes [35]
and more recently, CCGs in [30]. These techniques propagate and update set-valued estimates, often
approximating the nonconvex annulus, given by the noisy measurements, using convex sets. For the
problem considering nonlinear systems, these methods require linear approximations of the dynamics
as explored in the following works, [36], [37], [38], [39], and [40].

Another research direction is the problem concerning autonomous vehicles, these are often ad-
dressed through stochastic estimation using Kalman filters. The works [41] and [42] presented solutions
involving nonlinear Extended Kalman Filters for vehicle state estimation. In [43], a Kalman filter is applied
to the dynamics which are transformed to an LTV system.

10

Chapter 4

Problem Formulation

In this thesis, we consider the control problem of a unicycle with state uncertainty. The nonlinear function
of the unicycle vehicle dynamics is expressed as

ẋ = f(x,u) =

 v · cos θ
v · sin θ

ω

 , (4.1)

where x ∈ R3 : x = [x y θ]
⊤ represents the uncertain state, and u ∈ R2 denotes a certain input

composed by velocity v and angular velocity ω.
Through linearization and discretization, the objective is to find a suitable model to estimate the state

progression and impose constraints to generate passively safe trajectories based on this estimation.
The proposed solution will provide the state estimation procedure to include in the MPC formulation. At
time k, the uncertain state set is denoted by Xk, with centre xk, and the uncertainty distribution of the
state. These are estimated before constructing the optimization problem. The MPC is formulated based
on xk+j , with j denoting the time steps of the MPC formulation, from 0 to horizon N . The vector xk+j

represents then the estimates of the state used to construct the constraints and the cost function of the
optimization.

Considering then, a discretized system to represent the problem’s dynamics,

xk+j+1 = Axk+j +Buk+j , (4.2)

where xk+j is represented by the algorithm’s set estimation, and matrices A and B are the product of
computations to simplify the model in (4.1).

The general representation of the MPC optimization problem will consider a reference tracking
quadratic cost function that assumes a determined position in 2-D space pref as the vehicle reference
goal. The position pk+j represents the centre of the uncertain 2-D set and is obtained from the state as

pk+j = Cxk+j , C =

[
1 0 0

0 1 0

]
(4.3)

and the cost function to be minimized refers to the difference of the reference position and pk+j .
The prediction horizon and the control horizon have the same duration N . During this horizon, the

trajectory to be optimized must satisfy the constraints imposed by the combination of obstacles and
model uncertainties to ensure passive safety. The obstacles considered in the problem restrict the
position but not the angle of orientation, assuming the form of a wall by limiting the position state space
to

11

o ≤ p ≤ q, o =

[
ox

oy

]
,q =

[
qx

qy

]
, (4.4)

where it is important to note that p ∈ R2 denotes any position in the relevant uncertain set, effectively
limiting the whole system to progress past the obstacle.

The MPC’s optimization problem can be explicitly represented as,

min
P,U

N−1∑
j=0

(pk+j − pref)
⊤Q(pk+j − pref) + u⊤

k+jRuk+j + (pk+N − pref)
⊤Qf (pk+N − pref),

s.t. xk+j+1 = Axk+j +Buk+j , j = 0, ..., N − 1

Xk+j+1 = g(Xk+j ,xk+j ,uk+j), j = 0, ..., N − 1

pk+j = Cxk+j , j = 0, ..., N

o ≤ p ≤ q, p ∈ Xk+j , j = 0, ..., N

xk+j ∈ Xk+j , j = 0, ..., N

Xk+j ⊂ X , j = 0, ..., N

pk+j ∈ P, j = 0, ..., N

uk+j ∈ U , j = 0, ..., N − 1

(4.5)

where function g(Xk+j ,xk+j ,uk+j) refers to the proposed solution for state estimation.
The objective of this thesis is to properly define the state estimation function and the other constraints,

such as obstacle avoidance, to ensure the passive safety of the trajectories generated by the problem
stated here. This optimization problem is solved for an optimal sequence of control inputs. The first input
of the sequence, uk, is the output of the problem.

12

Chapter 5

Proposed Solution

This chapter introduces the proposed solution to address the problem described in the previous chapter,
which is associated with the unicycle model.

The first section shows the mathematical formulation associated with set estimation. In the following
section, a first approach to solve this problem, identified as set propagation algorithm, serves as a
minimal conservativeness solution to estimate the next state of an uncertain set given a certain input. In
Section 5.3, the unicycle model is properly linearized and discretized, serving as the foundation for the
proposed solution considered in Section 5.4, where the solution is defined and explained, completing
the goal of ensuring the passive safety of the generated trajectories.

5.1 Set estimation

This section introduces the set representations used in this thesis and the respective mathematic oper-
ations used for state estimation. Many different set representations are studied to tackle the problem of
state estimation with uncertainties. For the MPC control algorithm, zonotopes represent the state space,
while in the set propagation algorithm, CCG is the chosen representation for the uncertain set.

Firstly, the zonotope formulation is introduced along with the corresponding set operations, and the
following are the CCGs and associated computations. Lastly, this section comments on the state esti-
mation problem in this work.

5.1.1 Set representations

A zonotope is a convex polytope in n-dimensional space, defined as the Minkowski sum of line segments
or generators [32], where each generator represents a vector in the space. Its convex property makes
it suitable for encoding the set of possible states into the MPC formulation. Reviewing the definitions in
[44][29], the zonotope Z can be defined using a generator-representation, as

Z = {Gξ + c : ∥ξ∥∞ ≤ 1}, (5.1)

where c ∈ Rn represents the center, and G ∈ Rn×ng is composed by ng column vectors, the generators,
g1, ... , gng ∈ Rn. The set Z can be defined by the tuple Z = (G, c) ⊂ Rn.

Regarding state estimation, there are three basic set operations essential to the problem and han-
dling these set operations accurately and efficiently is critical for any set representation. These set
operations: affine map, Minkowski sum and intersection after a linear map, are shown below in (5.2),

13

(5.3), (5.4), respectively. Considering the sets Z,W ⊂ Rn, Y ⊂ Rk, matrix R ∈ Rk×n and vector t ∈ Rk,
the operations can be defined as

RZ + t ≡ {Rz+ t : z ∈ Z}, (5.2)

Z ⊕W ≡ {z+w : z ∈ Z,w ∈ W}, (5.3)

Z ∩R Y ≡ {z ∈ Z : Rz ∈ Y }, (5.4)

where the affine map and the Minkowski sum can be exactly computed through zonotopes. The inter-
section, however, generates an output that cannot be exactly reproduced in this representation. Since
zonotopes are not closed under an intersection, this operation between zonotopes does not result in a
zonotope. It requires the computation of a zonotope enclosure to approximate the result.

The affine map and the Minkowski sum can be defined as set operations involving zonotopes and
computed exactly. Let zonotopes Z,W ⊂ Rn be Z = (GZ , cZ), W = (GW , cW), matrix R ∈ Rk×n, and
vector t ∈ Rk. Applying the considered set operations, it shows,

RZ + t = (RGZ ,RcZ + t) ⊂ Rk, (5.5)

Z ⊕W = ([GZ GW] , cZ + cW) ⊂ Rn, (5.6)

efficiently representing the outcome of the affine map and Minkowski sum. Zonotopes and associated
set operations are used in the MPC algorithm of this work since they correspond to the least computa-
tionally complex set representation described here.

Given the zonotope limitations, the author provides an extension to the set representation in [29].
In the referenced work, constrained zonotopes are introduced as an expansion of zonotopes which
is able to effectively compute more complex set operations such as the intersection while maintaining
the zonotope’s computational efficiency. Based on the zonotope configuration, a constrained zonotope
differs by allowing linear equality constraints on ξ.

Considering Z ⊂ Rn, a constrained zonotope Z is characterized by a tuple (G, c,A,b) ∈ Rn×ng ×
Rn × Rnc×ng × Rnc which results in the expression,

Z = {Gξ + c : ∥ξ∥∞ ≤ 1,Aξ = b}, (5.7)

where the term Aξ = b reflects the linear equality constraints. Using this formulation, denominated by
constrained generator representation, the set operations (5.2)-(5.4) prove to be easily propagated.

Given three constrained zonotopes Z = (GZ , cZ ,AZ ,bZ) ⊂ Rn,W = (GW , cW ,AW ,bW) ⊂
Rn, Y = (GY , cY ,AY ,bY) ⊂ Rk, matrix R ∈ Rk×n, and vector t ∈ Rk, the outcome of the set oper-
ations can be computed in a constrained zonotope representation as

RZ + t = (RGZ ,RcZ + t,AZ ,bZ) ⊂ Rk, (5.8)

Z ⊕W =

(
[GZ GW], cZ + cW ,

[
AZ 0

0 AW

]
,

[
bZ

bW

])
⊂ Rn, (5.9)

14

Z ∩R Y =

[GZ 0], cZ ,

 AZ 0

0 AW

RGZ −GY

 ,

 bZ

bW

cY −RcZ


 ⊂ Rn, (5.10)

corresponding to the affine map, Minkowski sum and intersection after a linear map, respectively.
Constrained zonotopes offer greater flexibility compared to zonotopes, providing simple expressions

for propagation through these critical set operations. The better accuracy when representing the set
comes at the cost of being more complex than the zonotope representation. The dimensionality of ξ
is often increased during the set operations, which requires more complexity to be expressed but, in
turn, can lead to less conservative approximations. In both zonotopes, constrained zonotopes, and
set representations in general, processes to reduce complexity are vital to improving efficiency in the
computations.

Based on the constrained zonotope configuration, CCGs are properly defined in [30] along with the
respective set operations, which will be shortly described here. This paper addresses the problem of
estimating the state of a dynamical system described by a linear model that relies on nonlinear mea-
surements, specifically a combination of bearing and range measurements. The CCG formulation relies
on the fact that the constrained zonotopes generators must belong to a convex set, but are not restricted
to the unit ℓ∞ norm ball as ∥ξ∥∞ ≤ 1 in (5.7). This means the generators can be a part of unit ℓ∞ norm
ball, unit ℓ2 norm ball, cones and other convex sets. Consider Z ⊂ Rn, a constrained convex generator
Z can be defined as

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × ...× Cnp}, (5.11)

with G ∈ Rn×ng , c ∈ Rn, A ∈ Rnc×ng , b ∈ Rnc and {C1 × ...× Cnp
} = C that represents the convex sets

of which the generators belong to. It can be characterized in short form as a tuple, Z = (G, c,A,b,C).
By using ℓ2 norm unit balls, ℓ∞ norm balls, and cones, this representation shows to have minimum

conservatism, less than constrained zonotopes in multiple applications. Additionally, this solution can
represent more cases, namely unbounded sets, generated by cones.

Let Z,W ⊂ Rn, and Y ⊂ Rk be CCGs described by the tuples, Z = (GZ , cZ ,AZ ,bZ ,CZ), W =

(GW , cW ,AW ,bW ,CW), Y = (GY , cY ,AY ,bY ,CY), and also matrix R ∈ Rk×n, and vector t ∈ Rk. The
three set operations can be expressed as

RZ + t = (RGZ ,RcZ + t,AZ ,bZ ,CZ) ⊂ Rk, (5.12)

Z ⊕W =

(
[GZ GW], cZ + cW ,

[
AZ 0

0 AW

]
,

[
bZ

bW

]
, {CZ ,CW}

)
⊂ Rn, (5.13)

Z ∩R Y =

[GZ 0], cZ ,

 AZ 0

0 AW

RGZ −GY

 ,

 bZ

bW

cY −RcZ

 , {CZ ,CY}

 ⊂ Rn, (5.14)

in a very similar manner as the constrained zonotopes, with the difference being the specification of the
generators in each CCG, when in constrained zonotopes only the unit ℓ∞ norm ball was considered.

The introduced constrained convex generators produce tighter enclosures than constrained zono-
topes, namely in nonconvex sets. This set representation is used in the first approach of the set propa-
gation algorithm, to allow a minimum conservativeness solution. However, the additional operations and
complexity introduced by the CCGs result in a more computationally demanding task, when compared
to alternative solutions, such as zonotopes, the chosen set representation for the MPC implementation.

15

5.1.2 State estimation

Since this work involves uncertain states and/or systems with disturbances, it is important to recognize
the set-based state estimation problem which is tackled by producing enclosures using the set repre-
sentations. Considering a discrete-time linear system,

xk = Akxk−1 +Bkuk +Dwwk−1

yk = Cxk +Evvk

(5.15)

where the system state is xk ∈ Rnx , the output is yk ∈ Rny , with uk ∈ Rnu denoting a known input,
the disturbance is wk−1 ∈ Rnw and vk ∈ Rnv is the measurement error. Assuming the disturbances
and measurement errors are bounded and belong to a compact set, (wk,vk) ∈ W × V as well as the
initial state x0 ∈ X0, with X0 as a compact set. The objective is to use the set operations to compute an
enclosure of the estimated state set X̂k, which is represented as

X̂k = (AkX̂k−1 +Bkuk ⊕DwW) ∩C (yk −EvV), (5.16)

with X̂0 = X0 ∩C (y0 − EvV). The expression (5.16) describes the formula to compute an estimate
of the state set, at each time step k. In simpler form, it consists of applying the model dynamics to the
previous state set estimate and intersecting such set with the measurements yk. In most cases, it is very
challenging or impossible to compute (5.16) exactly. Therefore, set representations are used to provide
enclosures Ok which include the state set Ok ⊃ X̂k. A critical point of optimization is the tightness of
the enclosures, striving to have the least over-approximation possible of the state set to improve the
accuracy of the estimate. The enclosures Ok can replace X̂k in (5.16), leading to

Ok ⊃ (AkOk−1 +Bkuk ⊕DwW) ∩C (yk −EvV), (5.17)

with O0 ⊃ X0 ∩C (y0 − EvV). Unlike the other, this formulation can be computed using the set repre-
sentations described here. The three set operations considered critical are present in (5.16) and (5.17),
the affine map represents the evolution of the set given the system dynamics. Following, there is a
Minkowski sum with the disturbance set, and the intersection with the measurements set.

In the work of this thesis, the state set estimation does not consider measurements of the state yk,
meaning the state estimation does not consider the intersection operation, only the affine map of the
previous set according to the system dynamics and the Minkowski sum with a disturbance set. The
expression (5.17) transforms into

Ok ⊃ (AkOk−1 +Bkuk ⊕DwW), (5.18)

with O0 ⊃ X0. Given the use of zonotopes as the set representation, the exclusion of the intersection
simplifies the computations since zonotopes are not closed under this set operation. For a nonlinear
system, this problem is much more complex since reaching an expression for the system model and
state estimation must consider nonlinear dynamics. This aspect further validates the model linearization
considered in the solution proposed by this work.

5.2 Set Propagation Algorithm

The set propagation algorithm is the first method described in this thesis to solve the considered state
estimation problem. Firstly, the model choice is explained, following the algorithm description with ex-
planatory figures and the respective mathematical formulation. As described in the previous section, the

16

main objective is to use CCGs to find a less conservative solution than we would find using other less
complex set representations. The complexity added to the algorithm can bring more exact represen-
tations satisfying the minimal conservativeness goal. Based on the unicycle model dynamics in (4.1),
this solution considers an Euler method discretization process and a second-order approximation Taylor
expansion of the cosine and sine terms related to defining θ(t) = θk+ωkt. The following model is chosen
to approximate the unicycle dynamics:

xk+1 = Akxk +Bkuk = xk +

h cos θk −h2

2 vk sin θk

h sin θk
h2

2 vk cos θk

0 h

uk, (5.19)

where the inclusion of the variables θk and vk in the matrix B leads to a model with nonlinear dynamics
given by the presence of vk. The model becomes more complex since matrix B is recalculated at each
time step.

As intended by using this approximation, the model better represents the curvature of the trajectory
leading to a very accurate approximation of the unicycle model. As a validation method of the model,
Fig. 5.1 represents the model (5.19) and the unicycle model (derived by the function ode45), considering
the same initial state x = [0, 0, 0]

⊤ and subject to the same input, u =
[
2, π

4

]⊤ during 2 seconds. It is
important to note that the model considered in this section is updated at each time step.

(a) Representation of the model and MATLAB’s unicy-
cle model for h = 0.2s, the percentual error equals to
0.4115%.

(b) Representation of the model and MATLAB’s unicy-
cle model for h = 0.05s, the percentual error equals to
0.0257%.

Figure 5.1: Simulation results for u =
[
2, π

4

]⊤ considering different time step sizes h, and corresponding
percentual errors.

These graphs reveal accurate results, where the approximated model deviates just 0.0257% from the
original unicycle model in the two seconds of simulation time with h = 0.05 s. The simulations confirm
the use of this model to reach the desired solution.

Having established the model choice, what follows is the explanation of the algorithm. As described
in Chapter 4, the proposed solution provides the estimation of the state to which can be applied the
constraints that guarantee safe trajectories. The algorithm will aim to provide a tight enclosure of the set
to aid in the optimization of the generated trajectories.

Consider the problem of a unicycle with an uncertain state, a set that represents the current possible
positions and an uncertain orientation given by an interval, [θmin, θmax]. This orientation uncertainty
will also be represented as [θn − θd, θn + θd], where θn refers to the nominal value of θ and θd as the
deviation value. Since most constraints would take effect around the position set given by the uncertain
x and y, the goal is correctly predicting the position set evolution according to a certain input while

17

minimizing conservativeness. To reach these objectives, the algorithm is composed of the following
steps:

• Step 1: compute the model and position set for the next time step, for both extreme values of θ.
Where points p1 and p2 relate to the propagation with θmax and θmin, respectively;

• Step 2: record the coordinates for both points (p1 and p2) and compute the distance traveled r;

• Step 3: generate a set defined as a segment of a circle with radius r, cut by the line segment
between the extreme values in points p1 and p2;

• Step 4: compute a Minkowski sum with the original set, and another Minkowski sum to account
for the model error.

Since the distance travelled relies only on the inputs and not the initial orientation angle θ, the move-
ment can be handled in two separate parts. Firstly, the distance travelled can be defined as a movement
with amplitude r defining a circle of r radius around the initial state. Secondly, we consider the interval
of initial orientation θ which results in slicing a segment of the circle. This restricts the uncertain position
set to the range of positions between the corresponding extreme values of θ. The following Minkowski
sums return the initial position uncertainty to the generated set and add uncertainty related to the model
error. The model error can be estimated through several methods of over-approximation, in the following
demonstration of the algorithm, the error is simply obtained by considering the position difference to the
exact model (calculated with ode45 MATLAB function).

The Fig. 5.2 and Fig. 5.3 illustrate the explained steps, for an example situation comprised of a
position set of a circle with a 0.05 meters radius centred at the origin, and θ values of

[
π
5 − π

10 ,
π
5 + π

10

]
.

The inputs are u = [v, ω]
⊤

=
[
1, π

4

]⊤, the time step considered is h = 0.5 seconds and the algorithm
result is shown in Fig. 5.4.

(a) Step 1: Original set (in black) and the set evolution for
θmax and θmin (in red).

(b) Step 2: Circle of length r (red) and set evolution for
θmax and θmin (blue).

Figure 5.2: Representation of the first two steps of the set propagation algorithm

With these steps, the objective of defining a set that encloses every possible value for the uncer-
tain state of the unicycle is successfully achieved. Considering the set represented in Fig. 5.4, the
designed set tightly encloses the different possible positions, minimizing the conservativeness by over-
approximating just enough to guarantee the convexity of the set.

Another situation to be considered is the similar case of uncertainty in the angular velocity ω. This
particular situation can also be successfully tackled by separately executing the algorithm for multiple
values of ω such as ωmax, ωmin and ωn for example, and combining these sets to represent the actual

18

(a) Step 3: Green line which crosses both centers of the
sets of extreme θ values, cuts the desired green circle seg-
ment.

(b) Step 4: In green, the previous circle segment; in blue,
the result of the Minkowski sum of the green plus the orig-
inal set (in black); and in red is the result of the Minkowski
sum of the blue set with the computed error set.

Figure 5.3: Representation of the last two steps of the set propagation algorithm

Figure 5.4: Result of the algorithm, showing the evolution from the initial set (black) to the set for the
next time step (in red). The white sets, represent set propagation for different θ values in the considered
uncertain values, subject to a Minkowski sum to account for the model error.

19

uncertain set given uncertainty in ω. Although this method is not fault-proof, it would require larger step
sizes h and unusually large ω uncertainties to prove that it is not able to complete the objective. In that
unlikely case, at some point, the sets of different ω values will be too far apart, and the convex hull of
the sets does not include possible positions. This could be fixed, since more sets with more values for ω
can be implemented.

A simulation was performed to test the evolution of the system under uncertain angular velocity, as
shown in the following Fig. 5.5. As expected, the uncertainty of ω leads to a consistently expanding
state set, leading away from the initial orientation into a funnel-like geometry.

Figure 5.5: Result of the algorithm for uncertain ω, the different colours represent the corresponding set
for the consecutive iterations of the set propagation. Considering an interval for ω ∈

[
−π

8 ,
π
8

]
, and a

smaller step size of h = 0.05 s.

The algorithm is able to consistently design tight enclosures for the uncertain set. The mathematical
formulation related to the set generation for this solution will be presented in the next paragraphs. For
the sake of simplicity, the indexes k of the state and input variables are omitted since the computations
always refer to the current time step k.

The sets are represented by CCG, which is described in Subsection 5.1.1 as well as the correspond-
ing set operations used in this algorithm. As detailed previously in step 3, the enclosure set is generated
based on the distance travelled r and two interest points, p1 and p2, obtained by considering the extreme
values of θ.

Firstly, it is required to obtain an expression for the distance traveled by the unicycle. According to
(5.19), the distance is obtained by the first two rows of the term Bu that determine the variation of the
position (x and y). The distance is therefore obtained by the norm of those values as,

r =

∥∥∥∥∥
[
hv cos θ − h2

2 vω sin θ

hv sin θ + h2

2 vω cos θ

]∥∥∥∥∥ = hv

√
1 + ω2

h2

4
, (5.20)

where an important note is that the result does not rely on the angle θ as expected since the angle will
define the orientation of the movement and not the distance.

Considering S a CCG that represents a set of possible positions in the 2-D state space, as the tuple
S = (GS , cS ,AS ,bS ,CS) ⊂ R2. Step 3 references the generation of S which initially considers GS

as 2x2 identity matrix multiplied by the value r, centre cS as 02×1 and unit ℓ2 norm ball in CS for the

20

two generators. This implementation leads to the circle of radius r around the origin, to represent the
movement around the initial state. The next step is to define AS and bS to correctly restrain the set to
the desired circle segment. To accurately define the constraint, the computation relies on the geometric
properties of the problem and the definition of some auxiliary variables to describe the constraint. Firstly,
we formalize the expressions to find p1, p2 and also another point of interest pn for θ = θn, representing
the expected movement without uncertainty d. The points can be expressed as follows,

p1 = (xP1, yP1) = (hv(cos (θ + d)− h

2
ω sin (θ + d)) , hv(sin (θ + d) +

h

2
ω cos (θ + d)))

p2 = (xP2, yP2) = (hv(cos (θ − d)− h

2
ω sin (θ − d)) , hv(sin (θ − d) +

h

2
ω cos (θ − d)))

pn = (xn, yn) = (hv(cos θ − h

2
ω sin θ) , hv(sin θ +

h

2
ω cos θ))

(5.21)

describing the position difference from the initial state, which is the reason why the CCG’s centre is
placed at the origin in this step. These points are shown in Fig. 5.6, and help define the constraint of the
CCG.

Figure 5.6: Representation of the points of interest, where points p1 and p2 represent the centre of the
respective blue sets, and the white segment represents the desired circle segment defined by AS and
bS .

As depicted in the figure, the line between points p1 and p2 marks the limit of the wanted circle
segment. As such, the constraint should only accept the set points present between the line and pn.
The key idea, then, is to represent the line which crosses p1 and p2 and the parallel line crossing pn

and define an inequality constraint to consider only the points between the lines that belong to the set.
Since the set representation only allows linear constraints, we introduce a slack variable to convert the
inequality to equality and implement the constraint.

Considering a cartesian representation of the lines with y as a function of x, the slack variable’s value
will range from 0 to the difference between the lines for a given x. Associating the slack variable to the
interval [0, s], the lines can be expressed as

21

y1 = ax+ b

y2 = ax+ b+ s
(5.22)

which leads to the representation in Fig. 5.7.

Figure 5.7: Representation of the auxiliary variables to define the inequality constraint, s represent the
maximum of the slack variable value

Analyzing the figure, the parameters of both lines are trivially reached by noticing the lines are per-
pendicular to the movement of pn and thus the slope a can be defined as

a = − yn
xn

=
h
2ω sin (θ)− cos (θ)

sin (θ) + h
2ω cos (θ)

(5.23)

leading to b when considering the point p1 or p2

b = yP1 − axP1 = yP2 − axP2 (5.24)

which allows the computation of s. Since pn belongs to y2, s can be described as

s = yn − axn − b (5.25)

concluding the description of the variables required to define AS and bS and successfully implement
the constraint of the CCG. The constraint relies on a slack variable c and is defined as

y = ax+ b+ c, 0 ≤ c ≤ s (5.26)

where x and y belong to the set.
Considering the CCG formulation in (5.11), Aξ = b, we can define x and y to be associated with the

two previous generators of GS and add another generator related to the slack variable, of unit ℓ∞ norm
ball. In this way, c represents a range of values that can be specified to fit the desired interval. Modifying
the representation from x, y and c to auxiliary variables ξx, ξy and ξc respectively, the matrices AS and

22

bS can be defined based on the following equality

rξy = a(rξx) + b+ ξc, −1 ≤ ξc ≤ 1

⇔ −a(rξx) + rξy −
s

2
ξc = b+

s

2
, 0 ≤ s

2
(ξc + 1) ≤ s

(5.27)

where the coefficients of the auxiliary variables characterize AS and the right side of the equation defines
bS . The coefficient r refers to the operation GSξ + cS that describes the set. The intervals on the right
show the transformation of the slack variable to accurately represent the desired interval [0, s].

The generated set S can then be updated with AS and bS that impose the constraint. This constraint
represents an increase of dimension of ξ to three, and so the matrix GS should also reflect this change.
The set is represented by the tuple S = (GS , cS ,AS ,bS ,CS) ⊂ R2, which can be explicitly described as

S =

([
r 0 0

0 r 0

]
, 02×1 ,

[
−ar, r,−s

2

]
, b+

s

2
, CS

)
⊂ R2 (5.28)

where a column of zeroes is added to GS to have the correct dimension and the convex sets of the
generators, CS are comprised by two unit ℓ2 norm balls and a unit ℓ∞ norm ball.

As explained in the algorithm steps, the final computation consists of two consecutive Minkowski
sums of CCGs. Defining the final solution set as T = (GT , cT ,AT ,bT ,CT) ⊂ R2, the initial state set as
Z = (GZ , cZ ,AZ ,bZ ,CZ) ⊂ R2 and another CCG, L = (GL, cL,AL,bL,CL) ⊂ R2, that accounts for
the errors of the chosen unicycle model, the final equation to reach the set is

T = S ⊕ Z ⊕ L (5.29)

where only the formulation of Z is unknown, and L can be characterized as

L =

([
ex 0

0 ey

]
, 02×1 , 01×2 , 0 , CL

)
⊂ R2 (5.30)

with ex and ey refering to the computed error in the x and y direction, respectively, and AL and bL as
blank matrices since no constraint is required. Both these ex and ey parameters and the convex sets
CL are tunable and vary when considering different methods of approximating the model error. For the
demonstrations, this error was computed as the position difference to the exact unicycle model using
the ode45 function for the nominal θ.

The result of the set propagation algorithm is then the CCG T , which accurately represents the
propagation of the initial state set Z for a given input u. The CCG has this general formulation of
Minkowski sums between three CCGs,

T =

[GS GZ GL

]
, cS + cZ + cL , diag (AS , AZ , AL) ,

bS

bZ

bL

 , {CS ,CZ ,CL}

 ⊂ R2 (5.31)

where AT is represented by the diagonal blocks of the other CCGs matrices.
By switching the specific generator matrices as well as the constraints, for their expressions, the final

CCG formulation is found,

T =

([
r 0 0 GZ [1] ex 0

0 r 0 GZ [2] 0 ey

]
, cZ ,

[
−ar r − s

2 0 01×2

0 0 0 AZ 01×2

]
,

[
b+ s

2

bZ

]
, {CS ,CZ ,CL}

)
⊂ R2

(5.32)
where GZ [i] represents the i-th line of the matrix GZ and the last line of AT and bT is omitted as it

23

would be represented by zeroes since the CCG L does not define a constraint.
The set propagation algorithm is finalized, successfully representing the evolution of the set for a

given input. It provides a tight enclosure of the uncertain position set with minimal conservativeness, as
was desired. However, this formulation poses some challenges, given it represents a high-complexity
approach to the problem.

To define the desired MPC constraints one initial set must be consecutively propagated N times,
which corresponds to the MPC horizon. The state xk and input uk are present in the set propagation
computations, and the resulting set is defined in (5.32). As a note, the set in (5.32) shows only the vari-
ation of the position uncertainty set, since θk evolves from the interval [θmin, θmax] to [ωkθmin, ωkθmax].
The propagation of a set in the MPC is then dependent on both xk and uk, which are optimization
variables, and the previous CCG set which is also expressed by optimization variables. This leads to
complicated nonlinearities that the solvers used with the MPC problem struggle to solve. Furthermore,
to accurately define constraints we must obtain the limits of the CCG, with the representation in (5.11).
This operation is based on YALMIP, a MATLAB toolbox, which cannot perform the representation since
the CCG is composed of complex relations between optimization variables.

The nonlinearities in the model contribute to this problem since the set propagation algorithm uses
the model to define the elements of the CCG that represents the state in the following time step. Although
it is not suitable for this problem, this algorithm proves to be very valuable in assessing the progression
of a unicycle uncertain set for a given input. Also, the interpretation of separating the movement into the
travelled distance and orientation of the movement can be relevant in unicycle model state estimation
computations.

5.3 Model Linearization

This section provides a detailed description of the linearization and discretization processes considered
to compute the model that can be used in the MPC formulation. The first approach employs a nonlinear
model which is not ideal to solve the problem, given its high complexity. The model presented here will
be used for the proposed solution algorithm. With this model, it is possible to develop a control system
that can predict the state-set evolution and, therefore, accomplish the objectives of this thesis.

The unicycle vehicle model used considers the following function f(x) which depicts the evolution of
the system by providing an equation for the derivative of each component of x = [x y θ]

⊤. The function,
also represented in (4.1), is presented here in more detail as, ẋ

ẏ

θ̇

 = f(x,u) ⇐⇒

 ẋ

ẏ

θ̇

 =

 v · cos θ
v · sin θ

ω

⇐⇒

 ẋ

ẏ

θ̇

 =

cos θ 0

sin θ 0

0 1

[v

ω

]
, (5.33)

where x and y denote the position of the vehicle and θ, the corresponding vehicle heading. The input u
is a vector composed of v, the vehicle speed, and ω, the vehicle heading angular velocity. The system
is characterized by this nonlinear function, represented in continuous time.

Using Taylor’s first-order polynomial results in a linear approximation of the system, which is ade-
quately discretized next. Firstly we consider the following linear approximation,

f(x,u) ≈ P1(x,u), (5.34)

at a determined state x∗ and input u∗ which define the linearization point. The first-order Taylor series
is represented by P1. The state derivative ẋ can then be approximated as such

24

ẋ ≈ P1(x,u) = f(x∗,u∗) +
∂f

∂(x)i
(x∗,u∗)(x− x∗) +

∂f

∂(u)j
(x∗,u∗)(u− u∗), (5.35)

where the gradient of f , ∇f , is given by the partial derivatives of f in regards to x and u, which can be
represented as

∂f

∂(x)i
(x∗,u∗)(x−x∗)+

∂f

∂(u)j
(x∗,u∗)(u−u∗) =

0 0 −v∗ · sin θ∗

0 0 v∗ · cos θ∗

0 0 0


δxδy
δθ

+
cos θ

∗ 0

sin θ∗ 0

0 1

[δv
δω

]
, (5.36)

with δx = x − x∗ and δu = u − u∗. Combining with (5.35), and considering the following relation
ẋ = ẋ∗ + δẋ. The expression develops as

ẋ∗ + δẋ ≈

v
∗ · cos θ∗

v∗ · sin θ∗

ω∗

+

0 0 −v∗ · sin θ∗

0 0 v∗ · cos θ∗

0 0 0


δxδy
δθ

+

cos θ
∗ 0

sin θ∗ 0

0 1

[δv
δω

]
, (5.37)

where the first term of the right hand side of the equation, corresponding to f(x∗,u∗), cancels out the
term ẋ∗, as both represent the derivative of the state around the linearization point.

The final linearized model describes the derivative of δx as,

δẋ ≈ A(x∗,u∗)

δxδy
δθ

+B(x∗)

[
δv

δω

]
=

0 0 −v∗ · sin θ∗

0 0 v∗ · cos θ∗

0 0 0


δxδy
δθ

+

cos θ
∗ 0

sin θ∗ 0

0 1

[δv
δω

]
, (5.38)

with this model represented as a function of δx and δu. The dynamics are linearized around a certain
state x∗ and input u∗, which introduces some degree of simplification error due to the difference of δx
and δu and the linearization point.

The next required step is the discretization of the linearized model. The equation (5.38), represents
the continuous-time linearized system. It is possible to discretize such a system, considering zero-order
hold for the input u and computing the discretized matrices Ak and Bk from the continuous-time system
matrices A(x∗,u∗) and B(x∗). Firstly this model can be represented by the system,[

δẋ

δu̇

]
=

[
A(x∗,u∗) B(x∗)

0 0

][
δx

δu

]
(5.39)

which represents an alternate configuration of (5.38).
Since the following homogeneous ODE,

ż = Mz, z(t0) = z0 (5.40)

has a known solution,

z(t) = eM(t−t0)z0 (5.41)

which can be transformed into discrete-time, by considering h as the time step size given by t−t0, where
z(t) and z0 correspond to zk+1 and zk, respectively.

The solution would then be,

25

zk+1 = eMhzk (5.42)

where, given the problem context, z can be defined as the vector combination of the state and input
variables, as z⊤ =

[
δx⊤, δu⊤].

Considering M as the matrix in (5.39), leads to this formulation,

M =


0 0 −v∗ · sin θ∗ cos θ∗ 0

0 0 v∗ · cos θ∗ sin θ∗ 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

 , (5.43)

and to the discretized system model below,[
δxk+1

δuk+1

]
= eMh

[
δxk

δuk

]
⇐⇒

[
δxk+1

δuk+1

]
=

[
Ak Bk

0 I

][
δxk

δuk

]
, (5.44)

where I is the identity matrix with the appropriate dimensions, and the exponential of the matrix M must
be computed by combining (5.44) and (5.43). This is done through the following equation,

eMh = L−1{(sI−M)−1}t=h, (5.45)

which leads to the discretized model matrices Ak and Bk:

eMh =

[
Ak Bk

0 I

]
=


1 0 −hv∗ · sin θ∗ h cos θ∗ −h2

2 v∗ sin θ∗

0 1 hv∗ · cos θ∗ h sin θ∗ h2

2 v∗ cos θ∗

0 0 1 0 h

0 0 0 1 0

0 0 0 0 1

 , (5.46)

where the matrices Ak and Bk, define an expression for δxk+1 based on the previous state δxk and a
given input δuk.

The final linearized and discretized model F (δxk, δuk,x
∗,u∗) is complete and describes the evolution

of the state variation from the operating point. This variation δxk+1 is defined as

δxk+1 = F (δxk, δuk,x
∗,u∗) = Ak

δxk

δyk

δθk

+Bk

[
δvk

δωk

]

δxk+1 =

1 0 −hv∗ · sin θ∗

0 1 hv∗ · cos θ∗

0 0 1


δxk

δyk

δθk

+

h cos θ
∗ −h2

2 v∗ sin θ∗

h sin θ∗ h2

2 v∗ cos θ∗

0 h

[δvk
δωk

]
,

(5.47)

which can also serve as a model to compute the next state xk+1 by considering the important definition
of δx, as δxk+1 = xk+1 − x∗.

After the steps of linearization and discretization the nonlinear continuous time unicycle vehicle model
in (5.33) leads to the system described in (5.47). The matrices Ak and Bk, which characterize the
system, are a function of the operating point values (x∗,u∗) and the time step size h. The system can
then be defined as a Linear time-invariant (LTI) system since the nonlinearities in the original function
were eliminated by the linear approximation, and the matrices maintain their value regardless of the
particular time step. Considering a LTI system as the object of control greatly simplifies the process, as

26

nonlinear or even LTV systems add considerable complexity to the control problem, as noticed in the
previous section, where the nonlinear model leads to an overly complex MPC implementation. However,
since the model best describes small variations around a certain operating point (x∗,u∗), the accuracy
of the model decreases as the state evolves away from this point. Addressing the model error introduced
by the linear approximation is a key focus of this work, as the trajectory safety problem must also account
for model inaccuracies and uncertainties.

5.4 Solution Algorithm

In this section, we present the design of the MPC controller aimed at ensuring safe trajectory generation
in the presence of uncertainties. The primary objective is to generate trajectories that maintain safety
despite uncertainties in the system state and the presence of obstacles in the environment.

Firstly we provide an overview of the MPC control strategy. The Algorithm will generate estimates of
future states in the MPC horizon and compute the discrete model error for each of the time steps. The
model error estimation is shown on the next subsection. It will follow the construction and solving of the
MPC problem, to obtain input uk.

Similarly to other MPC strategies, the input uk returned by the optimization problem serves to esti-
mate the propagation of the uncertain state set Xk. Afterwards, the new uncertainty state set Xk+1 is
defined by the intersection with the measurement set. The state xk+1 is defined as the centre of Xk+1,
and both variables are used for the next iteration of the algorithm until the end of the simulation when
k = NT .

The MPC controller relies on a model that approximates system dynamics, introduced in the previous
section. Throughout this solution, the state xk is expressed as xk = δxk + x∗ which introduces error.
To address the challenges posed by this model approximation, the solution will account for the model
error through over-approximation techniques computed in the model error estimation Algorithm. It will
estimate the model uncertainty in a zonotope representation for a worst-case scenario for each time
step, from k to k + N , with N representing the horizon of the MPC problem. This process is explained
in the next subsection.

After estimating the model error, the following subsection will explain the integration of the over-
approximations in the MPC problem and the overall construction of the MPC control. The MPC con-
straints to ensure safe operation are defined and explained. These constraints include state constraints,
which define the system’s evolution, input constraints, and obstacle avoidance constraints. All of these
are represented in the problem formulation (4.5).

Finally, the rest of the algorithm is described, explaining the steps that use the output of the optimiza-
tion problem, uk, which lead to the estimation of the next state, xk+1.

Before describing the algorithm, it is important to clarify the variables considered to define the MPC
problem and the variables that define the actual state.

The MPC optimization problem is already defined in (4.5) with k + j defining the time steps from k

to the horizon k + N to use in the constraint formulation. In each time step j the problem will estimate
the uncertain state set Xk+j that defines the uncertainty around state xk+j , using this to formulate the
problem and solve for uk. Both Xk+j and xk+j refer to possible states and not the actual state defined
by xk and respective uncertainty set Xk. It should also be noted that the used model is a function of the
variation δxk = xk + x∗ and δuk = uk + u∗ and not the state xk or the input uk. As such, the following
consideration should be made that the state set Xk leads to the state variation set Tk by subtracting x∗

to the centre of Xk, cXk
= xk. It leads to cTk

= δxk, as Xk and Tk differ only in the centre component
of the zonotope. Given this relation, the MPC problem computations are done according to the state

27

variation δxk+j and respective set Tk+j , however, since the cost function and position reference relate
to the system’s state xk+j the final constraints are represented as a function of xk+j and Xk+j .

5.4.1 Estimation of model error

In this approach, the model error is over-approximated by the Lagrange remainder, which is represented
as a zonotope, along with the state sets under consideration. The model is an approximation based on
a first-order Taylor series, with the Lagrange remainder capturing an over-approximation of the infinite
higher-order terms of the Taylor series, as detailed in [45]. Consider the vector z as the combination of x
and u, which leads to z = [x, y, θ, v, ω]

⊤ and represents the variables of interest to define the next state.
This vector can be used to describe an approximation of the infinite Taylor series as

ẋ ∈ f(z∗) +∇zf(z)|z=z∗(z− z∗) +
1

2
(z− z∗)⊤∇2

zf(z)|ζ(z− z∗), (5.48)

where ζ ∈ {z∗ + α(z − z∗) | α ∈ [0, 1]} and z∗ denotes the linearization point. The last term of the
expression refers to the Lagrange remainder, while the rest refers to the first-order Taylor approximation,
approached in Section 5.3.

The expression for the Lagrange remainder can be written as,

(L)i =
1

2
(z− z∗)⊤Ji(ζ)(z− z∗), (5.49)

where i denotes the ith component of x that the remainder (L)i and Ji(ζ) refer to. The matrix Ji(ζ),
expressed as

Ji(ζ) = ∇2
zfi(z)|ζ , (5.50)

relates to the Hessian of fi(ζ), with i again referring to the components of x.
To determine the exact values of the Lagrange remainder, we would need to know the values of

z for the given time step, and since z represents the variables of the MPC, the values are unknown
during the calculations. We can obtain an over-approximation for the absolute values of the Lagrange
remainder by considering z ∈ Z where Z is a zonotope, with a determined centre c and generators g(j),
Z = (c,g(1), ...,g(j)) such that it represents the interval of possible values for every component of z.
To implement this method as an estimate for the linearization error, we need to compute the maximum
value of |Ji(ζ)|. Since the maximum remainder absolute values are reached through this expression,
developed in [45],

(l)i =
1

2
γ⊤max(|Ji(ζ)|)γ, (5.51)

where the max operator and absolute operator are considered as element-wise and γ is represented as,

γ = |c− z∗|+
j∑
m

|g(m)|, (5.52)

with z∗ = [x∗⊤,u∗⊤]⊤. The computed value (l)i represents an approximation of the absolute values for
the remainder, in

|(L)i| ⊆ [0, (l)i] , (5.53)

adequately defines the range of the absolute values of the Lagrange remainder. This over-approximation
relies on assuming the worst-case scenario related to the parameters’ variation, considering every pos-
sible value of z ∈ Z for the γ computations. Considering only the maximum absolute value of each

28

element in Ji(ζ) can be another source of conservativeness in the solution. However, overapproxi-
mating the error allows the definition of the safety constraints which is the ultimate objective of these
processes.

Based on the unicycle model (5.33), the general expression for Ji(ζ) is

Ji(ζ) =



∂fi
∂x2

∂fi
∂x∂y

∂fi
∂x∂θ

∂fi
∂x∂v

∂fi
∂x∂ω

∂fi
∂y∂x

∂fi
∂y2

∂fi
∂y∂θ

∂fi
∂y∂v

∂fi
∂y∂ω

∂fi
∂θ∂x

∂fi
∂θ∂y

∂fi
∂θ2

∂fi
∂θ∂v

∂fi
∂θ∂ω

∂fi
∂v∂x

∂fi
∂v∂y

∂fi
∂v∂θ

∂fi
∂v2

∂fi
∂v∂ω

∂fi
∂ω∂x

∂fi
∂ω∂y

∂fi
∂ω∂θ

∂fi
∂ω∂v

∂fi
∂ω2

 , (5.54)

where θ leads to a matrix of zeros, 05×5, for J3(ζ). In turn, for x, the matrix J1(ζ) is represented as

J1(ζ) =


0 0 0 0 0

0 0 0 0 0

0 0 −vζ cos θζ − sin θζ 0

0 0 − sin θζ 0 0

0 0 0 0 0

 , (5.55)

where θζ denotes θ∗ + α(θ − θ∗) and vζ denotes v∗ + α(v − v∗), according to the definition of ζ ∈
{z∗ + α(z− z∗) | α ∈ [0, 1]}. For y it shows J2(ζ) as

J2(ζ) =


0 0 0 0 0

0 0 0 0 0

0 0 −vζ sin θζ cos θζ 0

0 0 cos θζ 0 0

0 0 0 0 0

 , (5.56)

where the maximum absolute value of each element of both matrices is required in (5.51) to obtain the
Lagrange remainder over-approximation. Each one of these values is reached by solving an optimization
problem which considers variables α ∈ [0, 1] and θ, v, given by the generators of Z.

In (5.51), we reach the values that approximate the Lagrange remainder of the continuous model
error, the vector l, where the last component is 0. This vector defines the maximum absolute value of
the linearization error and is used to define vector l̃, that contains the error values between −l and l. It
leads to (̃l)i ∈ [−(l)i, (l)i], defining the error interval for x and y, since θ leads to no error.

We can consider the expression (5.48) for z separated back into x and u, and the Lagrange term as
a vector l̃. The Taylor series can then be represented as

ẋ ∈ f(x∗,u∗) +
∂f

∂xi
(x∗,u∗)(x− x∗) +

∂f

∂uj
(x∗,u∗)(u− u∗) + l̃, (5.57)

where l̃ ∈ R3, referring to the state error. A discretization process, similar to the previous section, leads

to the model in (5.47) and the discretized l̃k. We can consider the input of the system as
[
δu⊤, l̃⊤

]⊤
,

and represent the system similarly to (5.39) as,δẋδu̇
˙̃
l

 =

[
A(x∗,u∗) B(x∗) D

0 0 0

]δxδu
l̃

 (5.58)

where A(x∗,u∗) and B(x∗) matrices are represented in (5.38) and D = I3. Following the steps de-
scribed in (5.40)-(5.42), and the consequent matrix exponential computation we reach the desired dis-

29

cretized system with a term for the over-approximation of the Lagrange remainder. The discretization
steps are not explicitly shown here since this process is already described in Section 5.3.

The discretized version of the system in (5.57) can then be represented as the model in (5.47)
summed with the term Dk l̃k, related to l̃, that accounts for the linearization error for the discrete-time
model,

δxk+1 =

1 0 −hv∗ · sin θ∗

0 1 hv∗ · cos θ∗

0 0 1

 δxk +

h cos θ
∗ −h2

2 v∗ sin θ∗

h sin θ∗ h2

2 v∗ cos θ∗

0 h

 δuk +

h 0 −h2

2 v∗ sin θ∗

0 h h2

2 v∗ cos θ∗

0 0 h

 l̃k (5.59)

where the matrix on the right is denoted by Dk. Now we are able to define the zonotope Lk, with Dk l̃k

as,

Dk l̃k =

h 0 −h2

2 v∗ sin θ∗

0 h h2

2 v∗ cos θ∗

0 0 h


[−(lk)1, (lk)1]

[−(lk)2, (lk)2]

0

 (5.60)

it leads to generator matrix of Lk as diag(Dk l̃k) which yields

GLk
=

h(lk)1 0 0

0 h(lk)2 0

0 0 0

 (5.61)

and centre cLk
= 03×1. With this formulation of Lk the interval of l̃k is assured by the ℓ∞ norm of the

generators of Lk.
As explained in the introduction, given the dynamics rely on δxk and δuk, this algorithm will con-

sider the state variation set Tk for its computations, which is easily adjustable since Tk and Xk are
simply computed through one another. One notation change required given these considerations is
zk = [δxk, δyk, δθk, δvk, δωk]

⊤, and in a similar fashion, the equations presented will refer to δxk and δuk.
The main idea of this algorithm is to compute the zonotope Lk+j in each time step j of the considered

MPC horizon. To compute Lk+j , we obtain estimates for the next state variation set, T̃k+j+1, obtained by
applying the model dynamics to the previous set with U as input and the previous Lagrange remainder
as a disturbance. The set U denotes the set of possible inputs δu which characterizes the physical limits
of the actuators. Since the inputs at each time step are unknown until the problem resolution, the set
U is used as the input. This approximation considers the set evolution for the whole set of possible
inputs when, in the control problem, solving the optimization problem leads to a specific value of uk. As
such, it proves to be a major source of over-approximation which provides, however, important safety
guarantees. The model estimation process will result in an array of zonotopes Lk to Lk +N .

This result is then incorporated into the MPC formulation as disturbances to the computed sets,
mathematically expressed as Minkowski sums between the computed sets and the Lagrange remainder
approximation, at each time step. This approximation is represented as a zonotope set, denoted by
Lk+j . The developed set is used to define the safety constraints according to the determined obstacles.

Having explained an overview of the algorithm for the sequential estimation of Lagrange remainders,
the mathematical formulation is described in the rest of the subsection. Consider the initial state set
zonotope for j = 0 and k = 0, X0 = (GX0 , cX0) ⊂ R3 that represents the initial uncertain state. The
initial state x0 coincides with the centre of X0. The matrix GX0 contains the range of uncertainty for each
variable of the state. In the computation of the Lagrange remainders, T0 is the zonotope of interest, and
it can be expressed by the tuple T0 = (GT0 , cT0) ⊂ R3 which is closely related to X0. The affine map

30

of X0 with matrix R as the identity matrix and vector t = −x∗ leads to the formulation of T0. We can
describe X0 explicitly as

X0 =


dx 0 0

0 dy 0

0 0 dθ

 ,x0

 ⊂ R3 (5.62)

where dx, dy and dθ refer to the uncertainty of x0, y0 and θ0 respectively. The affine map leads to the
explicit formulation of T0

T0 = RX0 + t = (GX0
, cX0

− x∗) ⊂ R3

T0 =


dx 0 0

0 dy 0

0 0 dθ

 , δx0

 ⊂ R3
(5.63)

with this relation maintained for the zonotopes of the same time step.
The zonotope Tk serves as input in the considered algorithm, as well as the set U , which defines the

input limits for velocity δv ∈ [0, vmax] and the angular velocity δω ∈ [−ωmax, ωmax]. This process refers to
computing the Lagrange remainder approximation for each time step j. Here we will explain an iteration
j of the for-loop, which serves as a generalization for the rest of the iterations. The generalization does
not apply to Lk which is computed before the first cycle. The different process is explained at the end of
the subsection. The loop begins with computing the estimate of the set T̃k+j+1 by applying the dynamics
to T̃k+j for the set of inputs U . This operation can be defined as a linear map with matrix Ak from (5.47)
followed by a Minkowski sum with zonotope BkU described as

BkU = (BkGU ,BkcU) =

(
Bk

[
vmax

2 0

0 ωmax

]
,Bk

[
vmax

2

0

])
⊂ R3 (5.64)

where GU and cU define the zonotope U that encloses the possible input. The zonotope is then used
for the Minkowski sum and linear map

AkT̃k+j ⊕BkU =
([

AkGT̃k+j
BkGU

]
,AkcT̃k+j

+BkcU

)
⊂ R3 (5.65)

which represents the propagation of the system’s dynamics for the input U . Finally, the estimate T̃k+j+1

is reached by applying a Minkowski sum with the disturbance Lk+j to the previous result,

T̃k+j+1 = (AkT̃k+j ⊕BkU)⊕ Lk+j =
([

AkGT̃k+j
BkGU GLk+j

]
,AkcT̃k+j

+BkcU + cLk+j

)
⊂ R3

(5.66)
where Lk+j is a zonotope characterized by the Lagrange remainder at time step j and is defined by
(5.61). The estimate T̃k+j+1 in (5.66) considers a zonotope that represents the variation of δxk+j+1.
In the next step of updating the set Zk+j to Zk+j+1, the variation of zk+1 and its components must be
described in the zonotope Zk+j+1. Taking this into account, the set Zk+j+1 is defined as,

Zk+j+1 =

diag

(
GT̃k+j+1

,

[
vmax

2 0

0 ωmax

])
,

cT̃k+j+1

vmax

2

0


 ⊂ R5 (5.67)

effectively describing the variable variation in T̃k+j+1 where the state variation is defined by matrix
GT̃k+j+1

and cT̃k+j+1
. The interval of values of δuk+j+1 is defined by the matrix of the second diago-

31

nal block based on the zonotope U .
The next step refers to optimizing each element of matrices (5.54) for a defined interval of α ∈ [0, 1],

δθk+j , and δvk+j . The possible values of δθk can be simply calculated by considering the maximum
variation it can suffer in a given time step, which is time step size h times the maximum angular velocity,
ωmax. At a given time step j, δθk+j ∈ [δθk+j − dθk − j(hωmax), δθk+j + dθk + j(hωmax)] with dθk denoting
the uncertainty associated with δθk in the beginning of the model error estimation process. The input
δvk+j is always limited by the interval [0, vmax]. The variable intervals described here serve as input
in the optimization problem of separately computing the maximum absolute value for each element of
matrices J1(ζ) and J2(ζ).

Lastly, the over-approximation of the Lagrange remainder is calculated with (5.51), which is inserted
into the zonotope formulation of Lk+j+1 similarly to (5.61) and used for the following constraints definition
in the MPC. To end the algorithm explanation a final note needs to be made about the step of Lk. The
key difference is that the computation of Zk relies only on zonotope Tk, and not an estimate T̃k, leading
to a different process in computing Lk.

This algorithm returns the array of N zonotopes Lk+j that provide an over-approximation of the
model error at each time step k + j. The process of reaching the estimate is demonstrated, where
an over-approximation of the Lagrange remainder is based on estimates of the variation state set T̃k+j

that also introduce conservativeness in the enclosure of the model error. This means the error estimate
might frequently prove to be a great overestimation but will never be less than the actual model error,
representing the goal of ensuring safety.

In Algorithm 1 it is presented in pseudo-code the Algorithm of Sequential estimation of Lagrange
remainders. It shows concisely the steps described in this subsection.

Algorithm 1 Sequential estimation of Lagrange remainder

1: Inputs: Initial state variation zonotope set Tk, x∗, u∗ and set of possible inputs U
2: Initialization:
3: δxk = cTk

4: Obtain the linearized model in (5.47)
5: for j = 0 to horizon N do
6: Compute T̃k+j using (5.66)
7: Compute Zk+j according to T̃k+j in (5.67)
8: Obtain γ making use of (5.52)
9: Obtain max(|Ji(ζ)|) by optimizing (5.54)

10: Compute lk+j with (5.51)
11: Compute Lk+j with (5.61)
12: end for
13: return Lk+j , for j = 0, ..., N

5.4.2 MPC formulation

Now that the estimation of the model error is defined, this subsection is dedicated to the mathematical
step-by-step explanation that leads to the formulation of the optimization problem (4.5), particularly the
constraints’ definition.

The MPC optimization problem receives as input the current uncertain state zonotope Xk with state
xk ∈ Xk. We can start by defining each constraint in (4.5), for xk+j , and respective uncertain set Xk+j ,
and uk+j as optimization variables. Given the relation, xk+j = δxk+j + x∗ where x∗ is known, δxk+j is
also considered an optimization variable, as well as pk+j since both derive from xk+j . Similarly, δuk+j

is optimized, given uk+j = δuk+j + u∗.

32

Consider the state set zonotope Xk+j = (GXk+j
, cXk+j

) ⊂ R3 that represents the uncertain state
at time step j and the state variation zonotope Tk+j = (GTk+j

, cTk+j
) ⊂ R3. The expressions for both

zonotopes when k = 0 and j = 0 are found in (5.62) and (5.63), as well as the transformation between
them. The transformation can be generalized for a given time step j, from the state set Xk+j to the
variation state set Tk+j . Considering the fact that the centre of Xk+j coincides with xk+j and the centre
of Tk+j indicates δxk+j , the transformation between sets represents the change from the state xk+j to
δxk+j . It follows a generalization of this operation for zonotopes Xk+j and Tk+j as,

Tk+j = RXk+j + t =
(
GXk+j

,xk+j − x∗) ⊂ R3 (5.68)

with matrix R as the identity matrix I3, and vector t = −x∗, which leads to other possible formulation of
cTk+j

= δxk+j . The transformation from Tk+j to Xk+j simply considers the same affine map but with the
inverse sign of vector t.

Following that step, the update of Tk+j to Tk+j+1 uses an affine map that represents the system’s
evolution,

Tk+j+1 = AkTk+j +Bkδuk+j =
(
AkGXk+j

,Akδxk+j +Bkδuk+j

)
⊂ R3, (5.69)

where matrices Ak and Bk refer to the linearized model.
The state set Xk+j+1 is then obtained by considering the reverse operation of (5.68) with the resulting

set from a Minkowski sum between Tk+j+1 and disturbance Lk+j associated with the previous time step.
The state set is then represented as follows,

Xk+j+1 = R(Tk+j+1 ⊕ Lk+j) + t =
([
AkGXk+j

GLk+j

]
,Akδxk+j +Bkδuk+j + x∗) ⊂ R3, (5.70)

effectively describing function g defined in the MPC problem description (4.5).
The state progression to xk+j+1 is equivalent to the centre of the uncertain set Xk+j+1 that is prop-

agated from Xk+j through function g.
The last step to fully represent the MPC is to define the obstacle constraint, more specifically, the

condition of p ∈ Xk+j . To impose the position limitations, the constraint should reflect the uncertainty
of the state and limit the whole set to the designated position state space. To accomplish that, we can
express the position p as pk+j and shift the obstacles by the adequate uncertainty distance that char-
acterizes the set Xk+j . This distance can be approximated as the sum of the elements in the generator
matrix GXk+j

associated with the specified state component. The first row refers to the uncertainty of
xk+j and the second to the uncertainty of yk+j . The constraint can then be defined as,

o ≤ pk+j ≤ q, o =

[
ox +

∑n
i (g1i)

oy +
∑n

i (g2i)

]
, q =

[
qx −

∑n
i (g1i)

qy −
∑n

i (g2i)

]
, (5.71)

where g1i denotes the coordinate of the first row and ith column of the matrix GXk+j
, and g2i denotes

the elements of the second row. With this formulation, the constraint effectively prevents the whole set
from crossing the walls defined by elements (ox, oy, qx, qy).

Finally, the MPC optimization problem outlined in Chapter 4 is fully described. The constraints are
clearly defined, enabling the next step of solving the optimization problem.

33

5.4.3 Next state estimation

The last processes of the considered loop in Algorithm 2 refer to the state estimation problem defined
in Subsection 5.1.2. After the MPC problem is solved to return input uk, the goal is to estimate the
next state, based on the system’s dynamics and a measurement set. Considering the zonotope that
describes the state uncertainty Xk as the enclosure Ok−1 in (5.17), the computation of Xk+1 is clearly
defined. Firstly, we consider the propagation of Xk as X̂k+1 which has a very similar formulation as
Xk+j+1 in (5.70) since (5.68)-(5.70) considers a similar evolution as from Xk to X̂k+1. The sequence
can be adapted as,

X̂k+1 = R((AkTk +Bkδuk)⊕ Lk) + t = ([AkGXk
GLk

] ,Akδxk +Bkδuk + x∗) ⊂ R3, (5.72)

where Tk denotes the zonotope set related to Xk that refers to δxk instead of xk, Lk denotes the model
error disturbance applied on the dynamics and is computed in Algorithm 1 for j = 0. The matrix R

represents the identity matrix and t = x∗ that defines the affine map from T̂k+1 to X̂k+1. Matrices Ak

and Bk from the model, define the affine map that characterizes the propagation of the dynamics, along
with δxk and δuk.

The next step in the state estimation consists of numerically integrating the dynamics, given xk

and uk. This is done through the MATLAB function ode45 and it allows the algorithm to consider a
measurement set based on the result. Given the state obtained by the numerical integration, we consider
a tunable sensor noise to define it as a measurement set. Following (5.17), the update of the state set
to Xk+1 is done by considering the intersection of the estimate X̂k+1 and this measurement set.

As described in Subsection 5.1.1, the zonotope representation is not closed under the intersection
set operation, which motivates the use of an over-approximation method in the simulations to define the
result as a zonotope.

With the computation of the state uncertainty set Xk+1 and state xk+1 as the centre of the set, the
solution is now fully described. The for-cycle in Algorithm 2 generates consecutive states that target a
determined position reference and guarantee safety conditions.

The state estimation in the MPC considers disturbances L that are produced assuming the worst-
case scenario of every possible actuation. The evolution of these consecutive state estimates which
include a Minkowski sum with L, leads to a very conservative obstacle avoidance constraint in (5.71).
In the Results Chapter, we will assess the capacity of this process to ensure passive safety, since the
major overestimation of the uncertain state might ensure safety for a number of time steps, with null or
unwanted actuation that would resemble actuation failures.

As such, the solution presented here describes an algorithm that generates passively safe trajecto-
ries as were the objectives defined for this thesis.

5.4.4 Overview

An overview of the proposed method in represented in Algorithm 2, written in pseudo-code. The algo-
rithm description shows the required steps to adequately construct the MPC problem and the processes
after solving the problem that lead to the design of a safe trajectory. These steps were explained through-
out the section.

In the next chapter, the proposed solution is tested for multiple parameters to better understand the
quality of the performance and its limitations.

34

Algorithm 2 Trajectory generation Algorithm

1: Inputs: Initial uncertain state set X0 and target position pref

2: for k = 0 to simulation time NT do
3: Compute model error estimates as Lk to Lk+N (Algorithm 1)
4: Construct the MPC formulation (4.5), with safety constraints in (5.71) based on estimates devel-

oped with (5.70)
5: Solve the MPC problem, obtaining uk

6: Propagate Xk in (5.72)
7: Numerical integration of the dynamics to obtain measurement set
8: Update Xk+1 from intersection of Xk propagation and measurement set
9: end for

10: return trajectory

35

Chapter 6

Results

This chapter presents the simulation results for the previously described MPC algorithm. The chapter
will show many cases that will try to evaluate the approach given different parameter variations.

These will be assessed by performance metrics such as the ability to remain safe throughout the sim-
ulation, the accuracy of reaching the goal position, and other aspects of the generated trajectory, such as
the control effort and computational efficiency. Since the problem refers to tracking a reference position,
we could consider the simulation to be finished when the state is near the position goal. However, in the
simulations, we consider the full simulation time to better comprehend the system’s behaviour. The time
step of the minimum positional error will still be recorded as a performance metric. The elapsed time of
the algorithm is also reported, having minor significance in terms of actual values and more in terms of
relative values to other simulations. Since the code could be optimized or performed with better hard-
ware, the time elapsed is not considered a good measure of computational efficiency. We can, however,
analyze the results of different simulations to understand the time-consuming processes.

Throughout the simulation process, we will consider the use of a highly accurate sensor, and the
intersection step will only return the set of measures from ode45. This is done because methods that
approximate the intersection operation between zonotopes were not successfully implemented during
the available time. In the approximation methods tested, the uncertainty would keep increasing beyond
the measure uncertainty, which does not accurately represent the intersection operation. By updating
the state as the result of the sensor measure, the system will have a constant uncertainty value, defined
by the measurement uncertainty. In an accurate representation of the intersection operation, the uncer-
tainty associated with the state could be reduced since the intersection of the state prediction and the
sensor measure produces a set with equal or less uncertainty than the sensor measure.

Denoting the measure set as Mk+1 for each time step of the simulation, the next state Xk+1 will be
defined as just the measurement set Xk+1 = Mk+1. The measurement zonotope centre cMk+1

, is given
by the MATLAB function to measure the actual nonlinear dynamics, and it will be denoted as mk+1.
The generator matrix GMk+1

is a tunable parameter that considers the uncertainty associated with the
measure. This consideration also helps establish a constant uncertainty value for the state, defined by
GMk+1

.
When considering a simulation without obstacles, the safety constraints will consider a obstacle wall

with a very large value (in the order of 1099) to ensure the compliance with the safety constraints at
any point. Since the obstacles limit the maximum and minimum values of the position coordinates,
an obstacle at x = 1099 metres, for example, will not affect the generated trajectory since the given
parameters can not lead to a state close to the obstacle.

Furthermore, this algorithm was implemented in Matlab, and the optimization problems were solved
using Gurobi.

36

6.1 Default simulation

Firstly, we show the simulation results that will be considered the baseline for the parameter variation.
The parameter default values are presented in Table 6.1.

Table 6.1: Default simulation parameters

Parameter Value Description
GX0

0.01I3 (m, m, rad) Initial state uncertainty
x∗ [0, 0, 2π

5]⊤ (m, m, rad) Initial state
u∗ [0.05, 0]⊤ (m/s , rad/s) Initial input
δumax [1, π

4]
⊤ (m/s , rad/s) Maximum actuation values (define set U)

pref [0.15, 2]⊤ m Position reference
h 0.1 s Time step size
NT 3 s Simulation time
N 4 MPC prediction horizon
R 1000 Actuation cost
Q 104I2 Position error weight matrix
Qf 106I2 Final position error weight matrix
GM 0.01I3 (m, m, rad) Measurement uncertainty matrix
o −1099[1, 1]⊤ m Obstacle limiting the position minimum
q 0.22[1, 1099]⊤ m Obstacle limiting the position maximum

The simulation based on these parameters is a simple test where the unicycle needs to turn to avoid
the wall defined by q while trying to reach a position reference close to it. This first test aims to clearly
show the algorithm’s functioning in Fig. 6.1 and Fig. 6.2. It is important to note the difference in the x and
y axis scales. It leads to a transformation of the state set, from a square to the small rectangle observed
in Fig. 6.1. Although this change is unwanted, the axis are represented as such to better visualize the
system trajectory, as considering the same scale for both coordinates would lead to representing the
trajectory as a straight line, since the variation is much larger in the y coordinate.

Figure 6.1: Representation of the uncertain state set trajectory. Alternating in red and blue are the
consecutive representations for each time step of the simulations. The block in black shows the obstacle
at x = 0.22 meters.

The following table 6.2, shows the results where ep refers to the minimum error (∥p− pref∥) and the
time step t(ep) denotes the step on which ep is recorded.

37

Figure 6.2: Evolution of the system’s position in the given reference and obstacle conditions.

Table 6.2: Default simulation results

Time elapsed (s) ep (m) t(ep)
67.398 0.0749 25

Analyzing both figures and the table, the algorithm stays clear of the obstacle and reaches close
to the reference. While formulating the MPC optimization problem, the algorithm considers the state
estimation described in the previous chapter. As referenced in Subsection 5.4.3, it leads to a very con-
servative obstacle avoidance constraint that produces the slight movement by the end of the simulation
noticed in Fig. 6.2, despite not being close to collision in the next time step. The inputs represented in
Fig. 6.3 characterize the last movement, increasing the angular velocity for one step in the middle of
the simulation. This movement is made clear in the next sections with the comparison made later for
simulations with different obstacles.

All figures specific to a certain simulation will have the format described for this simulation and the
performance metrics as in Table 6.2. We will evaluate the system’s performance for the parameter
variations of most interest to the simulation by analyzing both the results and the figures that characterize
the simulations.

6.2 Obstacle Variation

Considering different obstacles that, similarly to the previous simulation, restrict the maximum value of
x. Tests were made for the variations in Table 6.3.

Table 6.3: Obstacle variation test parameters

Simulation index Parameter changed Value
Default q 0.22[1, 1099]⊤ m
1 q 0.15[1, 1099]⊤ m
2 q 0.19[1, 1099]⊤ m
3 q 1099[1, 1]⊤ m

Consider the plots in Fig. 6.4, where the uncertain state set trajectory is represented. In Fig. 6.5, the

38

Figure 6.3: Representation of the input v and ω, where the plots are limited to the respective maximum
actuation

state trajectory of each of the four simulations is presented.

(a) Representation of the uncertain state set trajectory
given the obstacle at x = 0.15 meters

(b) Representation of the uncertain state set trajectory
given no obstacle restriction

Figure 6.4: Uncertain state evolution for the first and third simulations

Given the values of R, Q and Qf that characterize the MPC optimization problem, the generated
trajectory behaves as in Fig. 6.4b. Also shown in Fig. 6.5, the trajectory with no obstacle sacrifices
some accuracy in the final state, leading to a smoother and less saturated actuation process than for the
default simulation. Considering a longer prediction horizon should improve final accuracy, as seen in the
following Section 6.4. Also, the definition of v∗ different than zero leads to constant small movements
forward in iterations the MPC would consider input 0.

The other simulations produce much different trajectories, impacted by the closer wall. Referring
again to the state estimation process of the MPC as the cause of considering states remotely close to
the obstacle as unsafe. It is important to note that after the intersection process, the uncertain sets
always define the same uncertainty of 0.01 meters or 0.01 radians in the position and orientation angle,
respectively. This would mean that, theoretically, the state could go close to 1 centimetre from the wall
and still be safe. The algorithm does not consider the state safe given the large disturbances associated

39

Figure 6.5: Representation of the state trajectory for the multiple simulations of different obstacle values

with the state estimation in the MPC. The robustness of the approximation in the state estimation and
consequent safety constraint act as a condition of passive safety, since it performs avoidance manoeu-
vres some time steps before it is actually necessary.

In Fig. 6.6, the input variation is represented for each simulation considered, denoting clearly the
movements of avoidance by increasing angular velocity ω, which means more effort from the actuators.
The results of the simulations are shown in Table 6.4, confirming the observations made. The accuracy
difference of the first two simulations concentrates mostly on the x value.

Table 6.4: Obstacle variation simulation results

Simulation index Time elapsed (s) ep (m) t(ep)
Default 66.509 0.00184 24

1 67.398 0.0749 25
2 66.389 0.0240 24
3 67.122 0.00991 24

6.3 MPC state estimation

In this section, we illustrate the steps of the state estimation process that lead to the safety constraints
in the MPC and its solution for the optimal control sequence. These representations are done based on
the default simulation parameters in 6.1, with the only change being the obstacle q to q = 0.15[1, 1099]⊤.

Firstly, the algorithm defines the zonotopes L that over-approximate the model error for estimates
of the state considering the evolution for the whole set of possible inputs. This process, described in
Algorithm 1, is illustrated in Fig. 6.7a, where the sequential state estimates are represented. The final
estimate of the state, with the addition of L as disturbance, is illustrated in Fig. 6.7b. Both representa-
tions are obtained for time step k = 2.

Given the time step of this simulation, k = 2 and the initial orientation angle of the system being
θ = 2π

5 , the estimates expand more in that similar direction. This is why, in Fig. 6.7a, the estimates
show a much larger interval for y than for x. Similarly, the expansion in the opposite direction towards
the origin is significantly smaller.

40

(a) Simulation 1, with x < 0.15m (b) Simulation 2, with x < 0.19m

(c) Default simulation, with x < 0.22m (d) Simulation 3, with no obstacle

Figure 6.6: Input values variation for all four simulations with different obstacles

(a) Representation of consecutive estimates. The sets in
red and blue define different time steps of fastly growing
estimates. The initial state is represented by the smallest
zonotope in the middle, which is used to compute the next
smallest estimate in blue. The rest of the estimates follow
the pattern.

(b) Representation of the final estimate used to compute
L. The blue set highlights the disturbance set added to the
previous estimate to form this final set

Figure 6.7: Representations of the process of over-approximating the model error

41

The results of this process are represented as zonotopes L for each time step k+j, with j = 0, . . . , N .
Shown in Table 6.5 are the uncertainty values of the generator matrix of L. The values are denoted as
lx, ly and lθ for the uncertainty of state components, x, y and θ, respectively.

Table 6.5: Model error estimation results

Time step k + j lx (m) ly (m) lθ (rad)
k 9.759e− 04 2.480e− 04 0

k + 1 0.00888 0.00321 0
k + 2 0.0172 0.00794 0
k + 3 0.0260 0.0144 0
k + 4 0.0352 0.0225 0

These zonotopes are inserted into the MPC formulation. We represent the control sequence result
in Fig. 6.8 for the iteration that considers the previous model error computations in Table 6.5.

Figure 6.8: Representation of the estimated uncertain state trajectory given by the optimal control input
sequence.

Table 6.6 represents the optimized control sequence, of δuk+j with j = 0, . . . , N−1. Of this sequence,
only the input uk, given by uk = δuk + u∗ is used for the consequent state measurement.

Table 6.6: MPC optimal control sequence, for iteration k = 2.

Time step k + j δv (m/s) δω (rad/s)
k 1.000 0.785

k + 1 1.000 0.785
k + 2 0.627 0.785
k + 3 2.429e− 11 0.785

Observing the results of the MPC iteration and the model error disturbances, the conservativeness
of the safety condition is clearly visible. Since the model error disturbances are increasingly larger, and
there is no update to the state with state measures, the uncertainty associated with the estimated state
rapidly grows. This leads to the low values of actuation δv in the last estimates to precisely avoid the
obstacle at x = 0.15 meters. The robustness associated with this method can serve as a condition of
passive safety since the MPC will always consider this overly conservative state progression of expo-
nential uncertainty growth. An important note to these results is that they were obtained for a small MPC

42

horizon. Increasing the horizon N by a small value will lead to a substantial increase in the uncertainty
for the already conservative solution.

6.4 MPC horizon variation

Considering now, the simulation of the situations with different obstacles in Table 6.3 for an increased
MPC horizon of 6 time steps. The previous section clearly shows the results of increased uncertainty
during the state estimation of the MPC and Fig. 6.9 represents its effects on the state trajectory gener-
ated in the default situation for horizon N = 6. Fig. 6.10 describes the state trajectory of all four of the
different obstacles considered.

Figure 6.9: Trajectory of the uncertain state set, with an obstacle x < 0.22 m

Figure 6.10: State trajectory simulation for different obstacles and increased horizon N

As expected, the generated trajectory stays much farther from the obstacle since the safety constraint

43

is based on 6 state estimates computed with the disturbances L and no updates to reduce uncertainty.
The overly conservative safety condition leads to the unwanted result of not accurately following the
reference.

The results of these simulations are shown in Table 6.7.

Table 6.7: Test results for increased horizon and different obstacles

Simulation obstacle Time elapsed (s) ep (m) t(ep)
x < 0.15 m 92.657 0.141 29
x < 0.19 m 92.244 0.101 27
x < 0.22 m 92.441 0.0706 25
x < 1099 m 97.896 0.00102 25

It is possible to notice, in the Fig. 6.10 and Table 6.7, that the position error for the simulations with
obstacles is concentrated in the x value. This happens because of the safety conditions. In fact, we
can note the difference in the minimum position error ep between the first three simulations as closely
related to the difference between the x limits given by the obstacle. The distance of obstacles of the
first two simulations is 4 centimetres as well as their difference ep. The same occurs with the other
simulations. Another aspect to note is the increase in time elapsed while running the simulation, when
compared to the other simulations with N = 4, in Table 6.2. The variation almost matches the 50%

increase in the horizon, which points to the optimization problems in computing the zonotopes L, as one
of the main sources of computational complexity. The simulation time and step size h did not change,
so the increase is based on the L calculations and MPC construction.

Using a smaller horizon is also possible, but it can limit the prediction capacity of the system to react
to obstacles and anticipate future violations of the constraints. The default simulation horizon is already
considerably small at N = 4, so lowering it could lead to many complications, especially in a real problem
and not in a simulation environment.

6.5 State uncertainty variation

One of the parameters with more implications for the algorithm’s performance is the initial uncertainty
of the state and the uncertainty of the measures. It follows the simulation results when considering the
change of the uncertainty values from the default simulation. The parameters are shown in Table 6.8.

Table 6.8: Variation of uncertainty parameters from the default simulation

Simulation id Parameter New value Parameter New value
1 GX0

0.05I3 GM 0.05I3
2 GX0

0.005I3 GM 0.005I3

The simulations in Fig. 6.11, Fig. 6.12 and Fig. 6.13 illustrate the performance of the solution for
these new uncertainty values. Table 6.9, shows the performance metrics of both simulations

Table 6.9: Test results for different uncertainty values

Uncertainty value Time elapsed (s) ep (m) t(ep)
0.05I3 68.779 0.0543 24
0.005I3 66.688 0.00991 24

The difference in the uncertainty values leads to very different system behaviour. The trajectory of
the state with larger uncertainty values resembles the trajectory of those that consider a closer obstacle.

44

(a) Uncertain state trajectory for sets with 5 cm of uncer-
tainty.

(b) Uncertain state trajectory for sets with 5 mm of uncer-
tainty

Figure 6.11: Side-by-side representations of the uncertain state trajectories for both simulations

(a) State evolution for sets with 5 cm of uncertainty. (b) State evolution for sets with 5 mm of uncertainty

Figure 6.12: Representations of the state trajectories for both simulations

(a) Input values for sets with 5 cm of uncertainty. (b) Input values for sets with 5 mm of uncertainty

Figure 6.13: Representation of the input sequence for both simulations

45

The increased state uncertainty leads to a more conservative safety constraint since the size of the
model error disturbances L are computed from the initial state, adding to its uncertainty. In turn, the
simulation with a smaller uncertainty matches the behaviour of a simulation without obstacle, comparing
Fig. 6.12b to the line of no obstacles in Fig. 6.5. The state uncertainty is small enough that the state
can be closer to the obstacle without violating the safety constraint.

6.6 Time step size variation

We can record the following simulations to infer the performance change for variations in the time step
size in Table 6.10. The goal is to keep the simulation time and the horizon N parameters, altering N to
correspond to the same fraction of simulation time NT . The simulations consider a closer obstacle than
the default simulation to increase its influence in the representation and better analyze the influence of
the time step size h.

Table 6.10: Variation of parameters from the default simulation

Simulation id Parameter New value Parameter New value Parameter New value
1 h 0.05 s N 8 x max limit (qx) 0.19 m
2 h 0.2 s N 2 x max limit (qx) 0.19 m

The figures that represent each simulation are shown side by side in Fig. 6.14, Fig. 6.15 and Fig.
6.16

(a) Uncertain state trajectory for h = 0.05 s. (b) Uncertain state trajectory for h = 0.2 s.

Figure 6.14: Side-by-side representations of the uncertain state trajectories for both simulations

Observing the figures, the algorithm successfully guarantees safety for both cases, showing again a
conservative trajectory that does not move close to the obstacle. The simulation with a larger step size
in Fig. 6.14b leads to a single extreme avoidance manoeuvre, changing considerably the orientation
angle and moving away from the reference in the x axis. The movement is expected given the longer
step size h, which leads to more aggressive actions, when compared to the results for h = 0.05 seconds,
that reveal more and smaller manoeuvres to not violate the system constraints.

6.7 Actuation variation

The final aspect of the simulation environment to be tested here is the change of actuation. A major
factor of the simulations made is the actuation, as such, the last simulations will change the parameters

46

(a) State evolution for h = 0.05 s. (b) State evolution for h = 0.2 s.

Figure 6.15: Representations of the state trajectories for both simulations

(a) Input values for h = 0.05 s. (b) Input values for h = 0.2 s.

Figure 6.16: Representation of the input sequence for both simulations

47

of maximum actuation to record the changes in the performance. It should be noted that these values
are associated with the physical limitations of the actuators.

Here we will consider the parameters change in Table 6.11, for four simulations with the different
obstacles in Table 6.12.

Table 6.11: Variation of parameters from the default simulation

Parameter New value Parameter New value Parameter New value
δvmax 0.5 m/s δωmax

π
8 rad/s NT 5 s

Table 6.12: Obstacle variation test parameters

Simulation id obstacle wall Value
1 qx 0.15 m
2 qx 0.19 m
3 qx 0.22 m
4 qx 1099 m

The representation of the uncertain state trajectory for simulation 3 is in Fig. 6.17a. Fig. 6.17b
shows the state trajectory of the same simulation, and finally, in Fig. 6.18, the comparison between
each trajectory

(a) Representation of the uncertain state set trajectory
given the obstacle at x = 0.22 meters

(b) Representation of the state trajectory given the obsta-
cle at x = 0.22 meters

Figure 6.17: Result of simulation 3, with the same obstacle as the default simulation

Fig. 6.17a and Fig. 6.17b, compared to the default simulation, show better reference following. This
is because the set of inputs U is present in the disturbances calculations, affecting the safety constraints.
With a smaller actuation, the system can move closer to the wall without violating the constraints. The
test considers a different simulation time, allowing the system with less actuation to reach the goal. With
more actuation, the constraints are more conservative, but the response is faster. The results from Table
6.13 confirm what was written, since the obstacles that previously led to an avoidance manoeuvre in 6.5
do not influence the generated trajectory. Only the simulation with x < 0.15 m does not have the same
trajectory as the one without obstacles.

6.8 Summary

Through the multiple tests made, the algorithm successfully establishes safety for the generated trajec-
tory. However, the safety constraints are overly conservative in many situations since the approach of

48

Figure 6.18: Representation of the state trajectory for the multiple simulations of different obstacle values

Table 6.13: Obstacle variation simulation results for less actuation

Simulation index Time elapsed (s) ep (m) t(ep)
1 116.017 0.00184 40
2 121.0267 0.000755 40
3 127.694 0.000755 40
4 138.122 0.000755 40

state estimation in the MPC disturbances L, which, as mentioned several times, is computed from a state
estimate set that considers the dynamics evolution for the whole set of inputs U . Throughout this chap-
ter, many simulations are made to understand the implications of changing the algorithm’s parameters.
The safety conditions the algorithm imposes are, in certain cases, very restrictive and does not allow the
system to reach its goal, which is undesirable. However, the robustness of the safety condition can serve
as a condition of passive safety, preemptively avoiding states that, given extreme disturbances, lead to
collision or unsafe states. During the tests, and in more extreme cases, the optimization problem was
either unfeasible or the algorithm was able to generate a trajectory that respected the safety conditions.
Some cases of unfeasibility consider large time step sizes and a large prediction horizon, which leads to
the explosion of state estimate of MPC considering immediately every actuation as violating the safety
constraints.

49

Chapter 7

Conclusion

The significant progress in autonomous systems in fields like aerospace, automotive, and robotics has
highlighted the need for safe, reliable, and efficient control strategies. This thesis aimed to address this
demand by developing a framework for generating passively safe trajectories using Model Predictive
Control under uncertain conditions.

The work considered the unicycle model as the dynamics of the system to be controlled. Firstly,
an approximate model was considered, which was used for an alternative contribution of this thesis:
a minimal-conservativeness estimation algorithm of the progression of a unicycle’s uncertain set for a
given input. The unicycle model was properly linearized and discretized as a LTI model, which makes
the approach considered in this thesis possible, unlike the previous approximate model in the set prop-
agation algorithm.

The proposed method combines MPC with a state estimation approach that is critical in defining
safety constraints. This state estimation, achieved through zonotopes, plays a vital role in accurately
predicting the system’s future states while accounting for control inputs and environmental uncertainties.
An algorithm was developed to define estimates of the state by overapproximating model error and other
uncertainties. The constraints derived from this state estimation consider the worst-case scenario effects
of the uncertainty on the state’s progression, which ensures safety. This integration of state estimation
allows the MPC to define constraints that characterize the problem as inherently safe. Suppose the
problem is feasible, meaning there is a possible trajectory the model can take to avoid danger. In that
case, the solution, by construction, is also safe since the trajectory generation algorithm we developed
defines the safety constraints, assuming an overapproximation of the uncertainty.

The results presented in Chapter 6 confirm the objective of the thesis of guaranteeing the safety
of the generated trajectories. Furthermore, the robustness of the safety constraint helps the passive
safety of the system by maintaining a conservative interval between the state and the obstacle. The
results are satisfactory, albeit limited. Further testing could be made to better comprehend the solution
performance.

This research contributes to advancing control strategies for autonomous systems, highlighting the
balance between computational efficiency and reliability in dynamic and unpredictable environments.

7.1 Future Work

While the proposed framework demonstrates promising results, several areas remain for further devel-
opment and optimization. Key directions for future work include:

• Improvement of the used model: The chosen model performs best for small variations around

50

a fixed operating point. Ideally, the possibility of using a more complex, more accurate model
improves the overall accuracy of this work. This would require several adaptions to the algorithm
that should reveal more positive results;

• Obstacle avoidance: The only obstacles considered in this thesis are in the form of a wall. The-
oretically, the proposed method could be designed to consider other, more diverse obstacles,
effectively validating further the performance of this framework;

• Less Conservative State Estimation: The state estimation processes defined in this work lead
to considerably conservative estimates. Implementing a less conservative approach could sig-
nificantly improve the results. Refining the CCG set propagation algorithm for real-time MPC
applications is an option and other alternative set representations could be explored. Reducing
conservativeness in the state estimation could provide more accurate constraints, minimizing the
overapproximation and better optimizing the generated trajectories;

• Computational optimization: A recurrent challenge in MPC is the computational complexity of
the strategy. Further research to reduce the computational load of the framework effectively im-
proves real-time applicability.

51

Bibliography

[1] Findeisen, R., and Allgöwer, F., “An introduction to nonlinear model predictive control,” 21st Benelux
meeting on systems and control (Vol. 11, pp. 119-141), 2002.

[2] UNOOSA, Annual number of objects launched into space – UNOOSA (with major processing by
Our World in Data), 2024.

[3] Colvin, T. J., Karcz, J., and Wusk, G., “Cost and Benefit Analysis of Orbital Debris Remediation,”
tech. rep., NASA, 2023.

[4] “World health organization - who.” https://www.who.int/news-room/fact-sheets/detail/

road-traffic-injuries. Accessed: 2024-09-18.

[5] Botelho, A., Parreira, B., Rosa, P. N., and Lemos, J. M, Predictive Control for Spacecraft Ren-
dezvous. Springer, 2021.

[6] Di Cairano, S., and Kolmanovsky, I. V., “Real-time optimization and model predictive control for
aerospace and automotive applications,” in Annual American control conference (ACC). (pp. 2392-
2409)IEEE. , 2018.

[7] Di Cairano, S., Park, H., and Kolmanovsky, I., “Model predictive control approach for guidance of
spacecraft rendezvous and proximity maneuvering,” International Journal of Robust and Nonlinear
Control, 22(12), 1398-1427, 2012.

[8] Hartley, E. N., Trodden, P. A., Richards, A. G., and Maciejowski, J. M. , “Model predictive control
system design and implementation for spacecraft rendezvous,” Control Engineering Practice, 20(7),
695-713, 2012.

[9] Frasch, J. V., Gray, A., Zanon, M., Ferreau, H. J., Sager, S., Borrelli, F., and Diehl, M., “An auto-
generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles.,” in Euro-
pean Control Conference (ECC) (pp. 4136-4141). IEEE, 2013.

[10] Klančar, G., and Škrjanc, I. , “Tracking-error model-based predictive control for mobile robots in real
time.,” Robotics and autonomous systems, 55(6), 460-469, 2007.

[11] Mayne, D., “Nonlinear Model Predictive Control: Challenges and Opportunities,” Nonlinear model
predictive control, 23-44, 2000.

[12] Mayne, D. Q., Seron, M. M., and Raković, S. V. , “Robust model predictive control of constrained
linear systems with bounded disturbances,” Automatica, 41(2), 219-224, 2005.

[13] Mayne, D. Q., Kerrigan, E. C., Van Wyk, E. J., and Falugi, P., “Tube-based robust nonlinear model
predictive control,” International journal of robust and nonlinear control, 21(11), 1341-1353, 2011.

52

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

[14] Mayne, D. Q., Kerrigan, E. C., and Falugi, P., “Robust model predictive control: advantages and
disadvantages of tube-based methods,” IFAC Proceedings Volumes, 44(1), 191-196, 2011.

[15] Rubinstein, R. Y., and Kroese, D. P., Simulation and the Monte Carlo method. John Wiley & Sons,
2016.

[16] Williams, G., Goldfain, B., Drews, P., Saigol, K., Rehg, J. M., and Theodorou, E. A., “Robust Sam-
pling Based Model Predictive Control with Sparse Objective Information,” Robotics: Science and
Systems (Vol. 14, p. 2018), 2018.

[17] Gandhi, M. S., Vlahov, B., Gibson, J., Williams, G., and Theodorou, E. A., “Robust model predic-
tive path integral control: Analysis and performance guarantees,” IEEE Robotics and Automation
Letters, 6(2), 1423-1430, 2021.

[18] Roque, P., Cortez, W. S., Lindemann, L., and Dimarogonas, D. V., “Corridor MPC: Towards optimal
and safe trajectory tracking,” 2022 American Control Conference (ACC) (pp. 2025-2032). IEEE.,
2022.

[19] Ames, A. D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., and Tabuada, P., “Control
Barrier Functions: Theory and Applications,” 2019 18th European control conference (ECC), June
2019.

[20] de Groot, O., Brito, B., Ferranti, L., Gavrila, D., and Alonso-Mora, J., “Scenario-based trajectory op-
timization in uncertain dynamic environments,” IEEE Robotics and Automation Letters, 6(3), 5389-
5396, 2021.

[21] Trym, T., Brekke, E. F., and Johansen, T. A., “On collision risk assessment for autonomous ships
using scenario-based MPC,” IFAC-PapersOnLine, 53(2), 14509-14516, 2020.

[22] Althoff, D., Kuffner, J. J., Wollherr, D., and Buss, M., “Safety assessment of robot trajectories for
navigation in uncertain and dynamic environments,” Autonomous Robots, 32, 285-302, 2012.

[23] Janson, L., Schmerling, E., and Pavone, M., Monte Carlo motion planning for robot trajectory opti-
mization under uncertainty. Springer International Publishing, 2016.

[24] Eidehall, A., and Petersson, L., “Threat assessment for general road scenes using monte carlo
sampling,” in IEEE Intelligent Transportation Systems Conference (pp. 1173-1178). IEEE, 2006.

[25] Eidehall, A., and Petersson, L., “Statistical threat assessment for general road scenes using Monte
Carlo sampling,” IEEE Transactions on intelligent transportation systems, 9(1), 137-147, 2008.

[26] Jaulin, L., “Range-only slam with occupancy maps: A set-membership approach,” IEEE Transac-
tions on Robotics, 27(5), 1004-1010, 2011.

[27] Marçal, J., Jouffroy, J., and Fossen, T. I., “An extended set-valued observer for position estimation
using single range measurements,” Proceedings International Symposium on Unmanned Unteth-
ered Submersible Technology, 2005.

[28] Silvestre, D., Rosa, P., Hespanha, J. P., and Silvestre, C., “Stochastic and deterministic fault detec-
tion for randomized gossip algorithms,” Automatica, 78, 46-60, 2017.

[29] Scott, J. K., Raimondo, D. M., Marseglia, G. R., and Braatz, R. D., “Constrained zonotopes: A new
tool for set-based estimation and fault detection,” Automatica, 69, 126-136, 2016.

53

[30] Daniel Silvestre , “Constrained Convex Generators: A Tool Suitable for Set-Based Estimation With
Range and Bearing Measurements,” IEEE Control Systems Letters, 6, 1610-1615, 2022.

[31] Thabet, R. E. H., Raissi, T., Combastel, C., Efimov, D., and Zolghadri, A., “An effective method to
interval observer design for time-varying systems,” Automatica, 50(10), 2677-2684, 2014.

[32] Kühn, W., “Rigorously computed orbits of dynamical systems without the wrapping effect,” Comput-
ing, 61, 47-67, 1998.

[33] C. Combastel, “A state bounding observer based on zonotopes,” in 2003 European control confer-
ence (ECC), pp. 2589–2594, IEEE, 2003.

[34] F. Chernousko, “Ellipsoidal state estimation for dynamical systems,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 63, no. 5-7, pp. 872–879, 2005.

[35] D. Silvestre, P. Rosa, J. Hespanha, and C. Silvestre, “Set-based fault detection and isolation for de-
tectable linear parameter-varying systems,” International Journal of Robust and Nonlinear Control,
vol. 27, no. 18, pp. 4381–4397, 2017.

[36] F. Abdallah, A. Gning, and P. Bonnifait, “Box particle filtering for nonlinear state estimation using
interval analysis,” Automatica, vol. 44, no. 3, pp. 807–815, 2008.

[37] Alamo, T., Bravo, J. M., and Camacho, E. F. , “Guaranteed state estimation by zonotopes,” Auto-
matica, 41(6), 1035-1043, 2005.

[38] A. Julius and G. Pappas, “Trajectory based verification using local finite-time invariance,” in Interna-
tional Workshop on Hybrid Systems: Computation and Control, pp. 223–236, Springer, 2009.

[39] B. Rego, D. Raimondo, and G. Raffo, “Set-based state estimation of nonlinear systems using con-
strained zonotopes and interval arithmetic,” in 2018 European Control Conference (ECC), pp. 1584–
1589, IEEE, 2018.

[40] J. Wan, S. Sharma, and R. Sutton, “Guaranteed state estimation for nonlinear discrete-time sys-
tems via indirectly implemented polytopic set computation,” IEEE Transactions on Automatic Con-
trol, vol. 63, no. 12, pp. 4317–4322, 2018.

[41] A. S. Gadre and D. J. Stilwell, “A complete solution to underwater navigation in the presence of
unknown currents based on range measurements from a single location,” in 2005 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 1420–1425, IEEE, 2005.

[42] P.-M. Lee, B.-H. Jun, K. Kim, J. Lee, T. Aoki, and T. Hyakudome, “Simulation of an inertial acous-
tic navigation system with range aiding for an autonomous underwater vehicle,” IEEE journal of
oceanic engineering, vol. 32, no. 2, pp. 327–345, 2007.

[43] P. Batista, C. Silvestre, and P. Oliveira, “Single range aided navigation and source localization:
Observability and filter design,” Systems & Control Letters, vol. 60, no. 8, pp. 665–673, 2011.

[44] Scott, J. K., Findeisen, R., Braatz, R. D., and Raimondo, D. M., “Input design for guaranteed fault
diagnosis using zonotopes,” Automatica, 50(6), 1580-1589, 2014.

[45] Althoff, M., Reachability Analysis and its Application to the Safety Assessment of Autonomous Cars.
PhD thesis, Doctoral dissertation, Technische Universität München, 2010.

54

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Objectives and Approach
	Outline
	Notation

	Theoretical Background
	Model Predictive Control
	Nonlinear Model Predictive Control
	Linear Model Predictive Control

	State-of-the-art
	Robust control
	Corridor MPC

	Simulation Methods
	State estimation

	Problem Formulation
	Proposed Solution
	Set estimation
	Set representations
	State estimation

	Set Propagation Algorithm
	Model Linearization
	Solution Algorithm
	Estimation of model error
	MPC formulation
	Next state estimation
	Overview

	Results
	Default simulation
	Obstacle Variation
	MPC state estimation
	MPC horizon variation
	State uncertainty variation
	Time step size variation
	Actuation variation
	Summary

	Conclusion
	Future Work

	Bibliography

