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Abstract

This work addresses the problem of creating a real time surveillance system to provide early detection

warning related to forest fires that is based on an uncertainty map. The dissertation begins by motivating

the reader regarding the need to monitor natural events that can have catastrophic consequences for

daily life. Following a logic of prevention and timely action, the creation of a real-time surveillance system

for wildfires is proposed, aiming to maximize the useful information collected by an autonomous aerial

vehicle.

In a first chapter, we tackle the problem of optimizing non-convex functions by proposing a novel

hybrid iterative algorithm that is able to adapt its behavior to have fast convergence to a neighborhood of

a local solution and reduced oscillation around the maximizer. The algorithm is extensively tested with

results illustrating its ability to converge to a local maximum at a faster rate than state-of-the-art methods

present in the literature.

The proposal of this thesis is to use an algorithm to generate waypoints and address the problem of

surveillance under the mild assumption of an aerial vehicle capable of taking local measurements with

onboard sensors. Modeling the uncertainty map with Gaussian mixtures allows for a general solution

that can cope with any type of utility function. Resorting to the optimization algorithm proposed herein

to generate the waypoints, it is then generated a smooth path using B-spline. In order to create a

control law for tracking this path, a path following algorithm is also studied, which should function as an

outer loop for the vehicle in question. The performance of the proposed solution is evaluated using the

simulation software Gazebo which incorporates the dynamics of the drone, demonstrating the ability of
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the proposed solution to guide the vehicle through surveillance areas of high uncertainty.
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Resumo

Este trabalho aborda a criação de um sistema de vigilância em tempo real para fornecer alertas pre-

coces relacionados com incêndios florestais baseado num mapa de incertezas. A dissertação começa

por motivar o leitor em relação à necessidade de monitorizar eventos naturais com consequências

catastróficas para o quotidiano. Seguindo uma lógica de prevenção e ação atempada, é proposta a

criação de um sistema de vigilância de incêndios florestais, que tem como objetivo a maximização da

informação útil recolhida por um veı́culo aéreo autónomo.

Numa primeira fase, abordamos o problema de otimizar funções não-convexas, propondo um novo

algoritmo hı́brido iterativo capaz de adaptar o seu comportamento de modo a apresentar convergência

rápida para a vizinhança de uma solução local e reduzir oscilações em tordo do maximizante. O algo-

ritmo é extensivamente testado, apresentando resultados que mostram a sua habilidade em convergir

para máximos locais com uma taxa superior à de algoritmos de estado-da-arte apresentados na liter-

atura.

A proposta desta tese é a de utilizar um algoritmo capaz de gerar pontos de referência e abordar o

problema de vigilância sob o prossuposto de existir um veı́culo aéreo capaz de obter medições locais

recorrendo a sensores a bordo. Modelar o mapa de incerteza como uma mistura de Gaussianas permite

recorrer a uma solução geral que pode lidar com qualquer função objetivo. Recorrendo ao algoritmo de

otimização proposto nesta dissertação para a geração de pontos de referência, é posteriormente gerado

um caminho suave utilizando uma B-spline. De modo a criar uma lei de controlo para o seguimento do

caminho, um algoritmo de path following que deverá funcionar como um ”outer loop” para o veı́culo

em causa, é também abordado. A solução proposta é avaliada recorrendo ao software de simulação

Gazebo que incorpora de forma pormenorizada a dinâmica do drone, demonstrando a capacidade de
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guiar o veı́culo pelas áreas de vigilâncias de grande incerteza.

Palavras Chave
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caminhos;
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1.1 Motivation

In nature, some events such as wildfires, radiological threats, or floods are occasional, unpredictable,

and cause severe consequences on the normal functioning of populations. In the human quotidian, some

activities might need monitoring in a very similar fashion as natural phenomenon. For example, criminal

behaviors like robbery or private property trespassing are often unpredictable, reduce safety and disrupt

social order. Events with mass gatherings are an example where, although usually anticipated, the high

density of people can make it difficult for authorities to detect, locate and help in emergencies. In all

such instances, there is a clear benefit of having a robust surveillance system that can accelerate early

detection while decreasing possible consequences. At their core, surveillance must be a combination of

one or many technologies able to continuously gather data regarding the target in each application.

1.1.1 Wildfires

During the last decades, the effects of wildfires have been a major problem all over the world. According

to an European Commission’s publication [2, Super Case Study 4], just in 2017, Portugal reported 21

000 wildfires, resulting in 539 920 Hectares (ha) of burned area (almost 6% of the total area of Portugal),

claiming 117 human lives, including firefighters. The damages were estimated at approximately 1.5

billion euros. These events cause huge losses to populations, either directly, due to the destruction of

agricultural resources and private properties, or indirectly due to effects on public infrastructures such

as energy networks, roads, and telecommunications.

In Portugal, the wildfire dynamics follow a critical concentration of multiple events in a short period

of time [2]: almost two-thirds of the burned area in Portugal in 2016 is the result of fires that occurred in

the space of only 10 days. This fact raises two important aspects: i) the solution to this problem must

follow a philosophy of prevention, lowering the probability of having a critical concentration of events; ii)

when prevention measures are not sufficient, early detection increases the odds of having an efficient

extinction of wildfires.

The search for solutions in the scientific community has been a field of interest for governments and

authorities. The Portuguese state has been promoting scientific research and innovation to improve the

national forest defense system against wildfires, opening calls for research and development projects on

topics such as behaviors towards wildfire prevention and fighting, and land management [3].

1.1.2 Chemical, Biological, Radiological and Nuclear threats

Chemical, Biological, Radiological and Nuclear (CBRN) threats, created either by natural processes

or human activity, are one of the major challenges of the 21st century. In 2011, a tsunami caused a

complete station blackout on the Fukushima Daiichi nuclear power plant in Japan. As a result, hydrogen
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explosions were produced, large amounts of radionuclide were released into the atmosphere, and highly

radioactive water was directly drained into the sea [2, Super Case Study 2]. The amount of released

radioactive products and the area of contamination in CBRN disasters need to be continuously analyzed

in the following months or years to evaluate the need of evacuating populations and to further understand

the effect of radiation on both humans on non-human species. Such a scenario poses threats to the

health of humans when the operations are performed by people. Therefore, an autonomous surveillance

system would also benefit in this type of accidents.

Also on this topic, governments and authorities have been searching for solutions in the scientific

community. The European Union launched the European Atomic Energy Community (EURATOM) Treaty

which declares that “each Member State shall establish the facilities necessary to carry out continuous

monitoring of the level of radioactivity in the air, water, and soil and to ensure compliance with the basic

standards.” [4, Article 35]. Portugal has a network of sensors capable of detecting an abnormal increase

of radioactive elements in the environment, called Alert Radiological Monitoring Network (RADNET) (see

Figure 1.1(c)). Additionally to RADNET, the Portuguese Environment Agency performs regular analysis

of samples of aerosols, surface waters, and food chain components.

1.1.3 Human activity monitoring

Closed-Circuit Television (CCTV) systems are possibly the main surveillance technology for human ac-

tivities. Over the last decades, CCTV systems coverage has rapidly grown with the first system reported

in 1985 in the United Kingdom. First generation CCTV lacked automation since they rely almost solely

on human monitoring, which may lead to data swamping, human error, deliberated profiling, and privacy

issues. Although these limitations and the absence of a large number of valid studies about its effec-

tiveness, first-generation systems were effective in certain crime reduction. In [5], the author concluded

that there was a statistically significant three-percent crime reduction when studying 12 city center and

2 public housing in comparison with a 45 percent reduction in car parks when compared against the

control areas. The results were not so satisfactory when looking for 4 public transport cases, concluding

that there was no reduction in this crime typology supported by statistical data.

In 2004, Ray Surette [6] suggested that the effectiveness in reducing crime seems to depend on

the emotional nature of the crime, the quality of the monitoring staff, and the offender’s perception of

increased risk of getting caught (which is directly related to the quality and robustness of the surveillance

system). Given these limitations, Surette suggests the advantages of using second-generation systems,

characterized by automatic digital image processing. While second-generation systems cannot resolve

all previously mentioned issues, they can reduce data swamping and other human limitations.

Information extracted from digital images can be combined with information gathered by other tech-

nological systems (sensors, emotion analysis of social media publications, crowd reports using mobile
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applications) or with human-based monitoring approaches (for instance face to face surveys or traditional

security guard surveillance). This way, robustness and redundancy are improved, offering authorities fil-

tered and refined information.

This kind of complex systems are already in use to increase community safety. A Portuguese news-

paper [7] collected and compared the number of public cameras authorized by the state to be installed

in cities: while in 2013 there were only 38 authorized cameras, in 2021 there were more than 850. Since

2021, the United States Custom and Border Protection has autonomous surveillance towers for West

Texas and New Mexico border patrol [8] (see Figures 1.1(a) and 1.1(b)). Finally, the European Commis-

sion is searching for companies to develop semi-autonomous vessels, naval collaborative surveillance,

and space-related assets in intelligence, surveillance, and reconnaissance [9].

(a) Autonomous surveillance
tower used by U.S Custom
and Border Protection

(b) Surveillance tower made
by Anduril Company, sim-
ilar to the one used on the
U.S border

(c) Sensor network distribution asso-
ciated with RADNET

Figure 1.1: Examples of surveillance systems

1.2 State of the Art on Surveillance Systems

Creating a surveillance system can be seen as a puzzle challenge. To select the pieces required to

assemble, i.e, which technological or non-technological method(s) should be used to gather information,

one needs to define the goal and purpose of the surveillance and find suitable methods. Then, to choose

the best architecture for those pieces (i.e., how to make them work together), one needs to account for

the specification of each method - its reliability, advantages and constraints. The data fusion algorithms

defined for the particular architecture will have correlate, integrate and recognize a vast quantity of data

in order to obtain useful information. The last milestone is to specify the protocols in place to react to

new events either automatically using event-triggered strategies or relegating that task to human users
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that assess a high-level summary of the environment. Thus, there can be a symbiotic work of several

sub-systems to acquire, process, and manage relevant data from heterogeneous sources.

Any surveillance system based on one technology alone will lack robustness because due to the

specific limitations associated with that acquisition method causing uncertainty in its measurements.

Table 1.1 summarizes various surveillance methods highlighting limitations and advantages. We remark

that some techniques can be viewed as equivalent but we separate them given the different levels of

interest from the scientific community. As as example, Social Media Monitoring can be categorized

as a crowdsensing system based on the source of information. Moreover, crowdsensing and robot

surveillance methods can be seen as a sensor network where each node moves dynamically within

the surveilled space. Distinguishing static and dynamics sensor networks paints a finer picture of the

literature with specific research examples.

1.2.1 Wildfires Surveillance Systems

Wildfire surveillance systems started as a human-centered method in its early stages. However, covering

a large area with often limited accessibility in deep forests is quite difficult to implement resorting to forest

rangers alone. A next step has been in implementing observation towers to increase the field of view,

which increases the area that each human is responsible to monitor, decreasing detection resolution.

Cameras installation in these towers minimizes these issues, either by assisting humans (first generation

CCTVs) or by replacing them with second generation CCTVs) [10]. Resorting solely to optical and

infrared cameras can hinder detection due to i) not combining it with humidity and pressure variations;

and ii), object occlusion and lighting conditions.

A network of several sensors deployed in a forest can refine the detection and early ignition local-

ization [11, 12] by measuring heat signatures. However, sensor networks bring back a coverage issue

since they can be extremely difficult and expensive to deploy over large areas due to the sheer number

of sensors required in operation even in a small country like Portugal.

The aforementioned techniques have different profiles in terms of accuracy, resolution, cost and

availability. Therefore, combining information from different sources allows the generation of interest

maps that can be used by firefighting authorities. A valid interest map in wildfire detection is, for exam-

ple, the risk measurement based on the social-economic damage that a wildfire can create, weighted

by a probability of ignition in a given area. Specific examples of interest maps can be found in the liter-

ature. The work in [13] suggests using a regression model with four input variables: population density,

land cover (urban-rural, agriculture, shrublands, sparsely vegetated or forest), elevation, and distance to

roads, which results in an ignition probability map for the entire Portuguese mainland. Another approach

in [14] weights the probability of fire with terrain susceptibility to create a hazard map. In Portugal, the

official agency Instituto Português do Mar e da Atmosfera (IPMA) posts the Conjunctural and Meteoro-
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Table 1.1: Most used Surveillance Methods

Method Definition Pros Cons Technological Challenges References

Human-based
Surveillance

and
Crowdsensing

Surveillance is performed by
professionals or by civil citizens on a
voluntary base. Data may come from
reports or from sensors located on
crowd’s devices

Voluntary-based reports are
highly scalable and cost-effective

Humans can adapt and interpret
unpredicted cases

Faulty or late alarms

Prone to human limitations

Efficient communication

Filtering false information
possibly injected by some
nodes

[17,18]

Sensors
Network

Set of (static) sensors capable of
converting a physical phenomenon
to an electrical signal. Usually, the
sensors work within a network, where
each node is placed in a previously
defined location.

Low cost of a single sensor

Small size

A sensor doesn’t need a direct
line of sight to the phenomenon

Low measurement range of a
single unit. Need for exploiting
several units.

Sensors need to be close to the
phenomenon, which can lead to
sensor and batteries destruction

Network architecture

Bandwidth occupancy when
the network is wireless

Power consumption

[11,12,19]

Cameras and
CCTVs

Observation of an environment using
analog cameras watched by humans
(first generation) or automated image
processing of digital cameras (second
generation).

Can get a lot of information from
static and dynamic environments.

Extensive research area.

Can use a combination of many
types of cameras, such as optical,
infrared, depth

Complex algorithms with a
high computational burden

Prone to environmental
conditions (light, obstacle, etc)

Privacy issues

Image processing
algorithms’ efficiency

Define the best places to
deploy cameras

[19,20]

Satellite
Systems

Geostationary or low earth orbit
satellites equipped with optical or
infrared cameras

Large field of view

Can be used in isolated locations
(open waters, forests, deserts)

Lack of continuous
measurements, low resolution
and possible cloud obstruction

High cost of deployment and
operated by skilled workers

Algorithm’s efficiency

Bandwith occupancy
[21,22]

Social Media
Monitoring

Analysis of social media content
(photos, interactions, publications)
using automatic algorithms.
For example, emotion analysis and
imagelabeling

The emergence of social media

Doesn’t require deploying or
operating any equipment

Some delays between the event
and publications

Is still a relatively recent
research area

Some emotions, such as
irony, are difficult to extract

[18,23]

Robot
Surveillance

Aerial, ground, or marine robots can
carry a collection of the previously
mentioned systems, processing
computers, and power supplies to
make surveillance systems more
autonomous.

Can adapt and overcome
environmental difficulties, such
as obstacles or lighting occlusion.

Robots can autonomously choose
what to do or follow instructions
from human users

Need skilled workers for some
tasks

Robots’ guidance,
navigation and control

Task allocation

[24–26]
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logical Index [15] that is calculated daily using the Canadian Fire Weather Index (FWI) [16] and the Rural

Fire Hazard Index. The former combines temperature, wind speed, and relative humidity measured at

solar noon along with rain precipitation during the previous 24 hours. This data is combined to get a

fuel moisture distribution and effective available fuel over the space and calculate the Initial Speed Index

expressing how fast a fire may move. Therefore, the FWI provides a general fire intensity potential index.

Illustrative examples of the maps produced by each approach are presented in Figure 1.2.

J. C. Verde and J. L. Ẑezere: Assessment and validation of wildfire susceptibility and hazard 493

Fig. 10. Modelling and Validation wildfire data subsets.
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Fig. 11.Success rate and Prediction rate curves for the CDP model.

Next, to evaluate the impact of rainfall on susceptibility
assessment, the rainfall layer was added to the model. The
five variable model, ACDPR, shows the worse behaviour
(Fig. 13). The prediction rate is similar to the previous model
(ACDP), but the success rate is worse.

To complete this series of model runs, temperature was
added to the model (Fig. 14). The six variable model, ACD-
PRT, has less satisfactory results, as both success and predic-
tion rates are worse than any other previous model, as can be
visually perceived in Fig. 14.

Although the general good quality of the wildfire suscepti-
bility assessment, we wanted to evaluate the models response
if burnt areas in the past (as mentioned earlier, transformed
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Fig. 12. Success rate and Prediction rate curves for the ACDP
model.
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Fig. 13. Success and prediction curves for the ACDPR model.
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Fig. 14. Success rate and prediction rate curves for the ACDPRT
model.

www.nat-hazards-earth-syst-sci.net/10/485/2010/ Nat. Hazards Earth Syst. Sci., 10, 485–497, 2010

(a) Ignition probability map from [13]
in both training and validation
sets.
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Fig. 3. Fire ignition risk map produced for the entire Portuguese mainland.

variables. The simplest model presented a global accuracy of
77.1% with both the training and the validation datasets. The
omission error of ignition events was 23.2% and the commission
error was 22.7%.TheAUC was 0.847 (s.e. = ±0.001, P < 0.001)
with the training dataset, and 0.849 (s.e. = ±0.001, P < 0.001)
with the validation dataset.

The new model obtained is represented by the following
equation:

P2 = 1/(1 + e−(−5.890+0.875Pop_D−0.214D_Roads+0.473Elev))

In order to evaluate model stability during the study period,
we compared the coefficient values and the model performance

(b) Hazard Risk map from
[14]

(c) Conjunctural and Meteo-
rological Index used by
IPMA in [15]

Figure 1.2: Examples of interest maps generated by measurement models on wildfires

Although extremely useful for firefighting authorities to plan their actions, it is relevant to remark

that these methods generate almost static maps, which may not suit the goal of creating a real-time

surveillance system. The work presented in [13], like all machine learning techniques, needs a lot of data

to train, validate and update its model. Moreover, citing the authors of [14], “we did not consider variables

that could be best used in dynamic mapping (e.g., wind speed and direction), mostly when fire is already

progressing, as our purpose was to map susceptibility in the long term, as a property of the territory”.

Finally, [15] is updated daily and is not updated with the latest available data. Nevertheless, real-time

surveillance systems may complement these indices by interpreting them as a priori knowledge. New

information from other sources can be fused to update the map providing the posterior view after the

measurements.

The most common approach for a formulation that combines a priori knowledge and real-time evi-

dence are variations of Bayesian Filters, like Kalman Filter [27, 28] or Particle Filter [29]. Several maps

may result from this configuration, such that ignition probability, currently active fire probability or prob-
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ability of an undetected map, depending on the objectives set forth by the designer of the surveillance

system.

1.3 Envisioned Surveillance Architecture

Based on the discussion in the previous sections, it is evident that designing a real-time solution to mon-

itor events can offer significant advantages. This work aims to develop an algorithm that can generate

an optimal path for an unmanned aerial vehicle (UAV) in real-time based on a dynamic uncertainty map.

This map represents the relevance of a particular position at a given time for drone inspection to detect

wildfire ignition early.

The proposed algorithm can be viewed as an overlay layer that complements any pre-existing surveil-

lance system. It takes into account the technological and operational constraints of drones to maximize

the inspection process. For the purpose of this document, it is assumed that a previously developed

surveillance system using an a priori map, such as the one shown in Figure 1.2, is responsible for

maintaining the uncertainty map.

There are two possible sources of uncertainty that shape the uncertainty map, namely:

• Noisy measurements and technological constraints can lead to inaccuracies in the data collected

by the surveillance system;

• The uncertain dynamics that govern how the risk in each area evolves in-between the update of

the map using the availability of fuel, temperature, wind, etc.

Due to the inability of having an exact evolution of the map, the current thesis proposes the use of UAVs

equipped with sensors, such as cameras or smoke detectors that can inspect high-risk zones that would

be inaccessible using patrols on the ground. Such a vehicle has to have a control algorithm to generate

a path through the areas with the highest uncertainty levels, enabling the onboard sensors to infer the

existence of a fire. This process adds new information to update the uncertainty map. The framework

is illustrated in Figure 1.3, where the drone flight creates a closed feedback surveillance system that

continuously gathers new information. Our work will primarily focus on the green boxes. We will assume

the availability of an uncertainty map and develop a solution to analyze this map. The goal is to propose

an optimal path for the aerial vehicle to follow. Additionally, we will study a path-following algorithm to

enhance the vehicle’s ability to accurately track the desired path.
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Prior Knowledge

Probability of fire, given geographical and
meteorological data or records of past events

   Real-time Evidence
1) Crowd-sourced data
2) Vehicle's measurements
3) Satellite measurements
4) Others

+ Uncertainty MapEstimation Filter

Vehicle

New measurements
 from onboard sensors Map evaluation

Path

Figure 1.3: Architecture of the Envisioned Surveillance. The green boxes represents the main contributions of this
thesis

The proposed framework can have a significant and positive impact on firefighting operations. By

reducing uncertainty levels in a given area, the system can help coordinate firefighting authorities from

an operational perspective, allowing resources to be concentrated in strategic positions. With more

accurate and timely information firefighting teams can more effectively allocate resources to contain

and extinguish fires. Early detection of wildfires also increases the likelihood of successful firefighting

operations and minimizes damage to property and the environment.

1.3.1 Mathematical Definition

Assuming that the estimation filter provides a new uncertainty map to the path planner at a given fre-

quency rate, the map received at time k by the planner can be viewed as a function hk(x) : ℜ2 → ℜ,

where x ∈ X where X represents the surveilled space, and k ∈ 0, 1, ...,K − 1 represents the number of

maps received until the instant k.

Using hk(x), the path planner generates a discrete path φ[k] ∈ ℜ2×N , composed of N discrete way-

points φ[k]
1 , ..., φ

[k]
N ⊂ X . We also pose the assumption that at each position x ∈ X , a drone possesses

a circular measurement area centered at x with radius r, denoted by C(x, r).

An optimal path obtained from K sequential maps can be represented as a set of waypoints φ ∈

ℜ2×K·N in the form

φ = [φ
[0]
1 , ..., φ

[0]
N , ..., φ

[k]
1 , ..., φ

[k]
N , ..., φK−1

N ]. (1.1)

This path can be obtained by solving the optimization problem presented in Equation (1.2). In this

equation, the drone is modeled as a non-linear system f(s), with state s and actuated by a control signal

u. The function g(s, u) represents the constraints imposed on the state and/or control signal of the drone.
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maximize
φ

K−1∑
k=0

∫
γ(φ[k])

hk(x)dx , where γ(φ[k]) =

N⋃
n=1

C(φ[k]
n , r).

subject to ṡ = f(s)
g(s, u) ≤ 0

φ
[k]
n ∈ X

(1.2)

The function γ(φk) : ℜ2×N → ℜ2 is essential in preventing the drone from stopping at a local uncer-

tainty maximizer. Refer to Figure 1.4(b) to understand how the integration area is acquired using this

union of neighborhoods. This function ensures that overlapping regions are only considered once during

the uncertainty integration process for each new map.

However, it is possible that the drone may not be able to reduce the uncertainty of a location during

its first visit. To address this, the neighborhood’s union, γ(φk), has to be reset whenever a new map is

received. This allows for repeated integration of a position across different maps while still avoiding the

risk of getting stuck in local maximizers of the current map.

The proposed formulation enables the planner to compute an optimal path on-the-fly using only

the most recently received map. To better understand this on-the-fly property, we can decompose the

original problem from Equation (1.2) into K separate sub-problems:

Sub-problem 0 - while only the first map has been received, k = 0:

maximize
φ[0]

∫
γ(φ[0])

h0(x)dx , where γ(φ[0]) =

N⋃
n=1

C(φ[0]
n , r).

subject to ṡ = f(s, u)
g(s, u) ≤ 0

φ
[0]
n ∈ X , ∀n ∈ {1, 2, ..., N}

(1.3)

Sub-problem 1 up to K-1 - change from problem k − 1 to problem k when a new map arrives. Here

k starts in 1 and is a constant for each problem:

maximize
φ[k]

∫
γ(φ[k])

hk(x)dx , where γ(φ[k]) =

N⋃
n=1

C(φ[k]
n , r).

subject to ṡ = f(s)
g(s, u) ≤ 0

φ
[k]
n ∈ X , ∀n ∈ {1, 2, ..., N}

φ
[k]
1 = φ

[k−1]
N

(1.4)

In Equation (1.4) the blue constraint is added to guarantee concordance between problems.

Despite the separation of the problem into K sub-problems, each sub-problem still requires solving

a non-convex optimization function with non-convex constraints. Additionally, the cost function involves
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an integral computation that does not have a closed-form solution in the general case. Therefore, the

computation of this optimal path may require significant processing power and time resources.

In conclusion, a potential solution to address this problem must be able to compute close to optimal

trajectories for each of the received maps since this is a vital feature for the envisioned application of

wildfire detection. Figure 1.4 shows an example path for a generic map k with N = 4.

(a) 3 dimensional view (b) Top view

Figure 1.4: Example of a path for a generic map k and N = 4

1.4 Thesis Outline

The present document is divided in 4 chapters:

• Chapter 2 (Non Convex Function Optimization): proposes a hybrid optimization algorithm ca-

pable of converging to local maxima of non-convex functions, particularly when these functions are

modeled as Gaussian mixture. The algorithm has shown convergence in all conducted tests.

• Chapter 3 (UAV Path Planning and Path Following): develops a real-time solution for monitoring

wildfire events, based on an empirical observation of the expected uncertainty map, and making

use of the hybrid optimization algorithm developed in the second chapter. The proposed algo-

rithm derives a path following control scheme to allow a quadrotor to track the desired path. The

complete approach is tested and analyzed, using a powerful simulation tool to emulate the vehicle

dynamics.

• Chapter 4 (Conclusions): provides a summary of the work developed in this thesis, and high-

lights the most important aspects to be retained from this work. A discussion of future work and

suggestions is given that highlights additional points that can improve the efficacy of the method.
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“People optimize. Investors seek to create portfolios that avoid excessive risk while

achieving a high rate of return. Manufacturers aim for maximum efficiency in the design and

operation of their production processes. Engineers adjust parameters to optimize the

performance of their designs.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules in

an isolated chemical system react with each other until the total potential energy of their

electrons is minimized. Rays of light follow paths that minimize their travel time.” [30]

Jorge Nocedal

Stephen J. Wright

The primary objective of this chapter is to assess the efficacy of different algorithms in locating

local maxima of non-convex functions. Such an algorithm is the primary building block required for the

development of a solution to the problem described in Chapter 1.

To establish the necessary theoretical foundation for the subsequent chapters, Section 2.1 provides

an overview of the relevant background theory and introduces the notation used throughout the chapter.

In Section 2.2, a summary of commonly used first-order optimization algorithms from the literature is

presented. This section provides an understanding of the existing approaches and their strengths and

limitations. Moving on to Section 2.3, the problem we aim to solve is formally stated, and an illustrative

example is provided to demonstrate the challenges posed by Gaussian Mixture (GM) functions. To

address these challenges, we propose a new hybrid algorithm in Section 2.4. Finally, in Section 2.5, the

performance of the proposed solution is evaluated. This includes experimental results and analysis that

demonstrate the effectiveness and potential of the proposed algorithm.

2.1 Background Theory

Optimization is a mathematical tool widely used in a broad spectrum of scientific areas. Formulating

a controller as the solution of an optimization problem requires some steps such as: i) modelling the

system, i.e, creating a set of equations that govern the evolution of the variables affecting the process;

ii) define a criteria to quantify the optimality of the solutions; iii) finally, identify constraints to the decision

variables that need to be respected.

In this chapter, we are focusing on addressing unconstrained problems of the form:

minimize
x

f(x) (2.1)

where x stands for the decision variable belogingng to the set Rn. The objective function f(x) reflects the

specific goals or criteria associated with the problem. A solution x∗ to the optimization can be classified
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as a global minimizer if f(x∗) is smaller or equal than all the remaining points in the feasible set. On

the other hand, if x∗ only satisfies that property locally, it is called a local minimizer. Both definitions are

relevant to the study at hand and are presented in Definitions 1 and 2.

Definition 1. A point x∗ is a global solution for Equation (2.1), also called a global minimizer, if and only

if

f(x∗) ≤ f(x) ∀x ∈ S. (2.2)

Definition 2. A point x∗ is a local solution for Equation (2.1), also called a local minimizer, if and only if

there exist an ϵ > 0 such that

f(x∗) ≤ f(x) ∀x ∈ S, ||x− x∗|| < ϵ. (2.3)

In the context of unconstrained optimization problems, when the objective function f(x) is differen-

tiable, a necessary condition to be satisfied by any x∗ is given by

∇f(x∗) = 0n, (2.4)

where ∇f(x∗) ∈ ℜn×1 stands for the gradient of f(x) evaluated at x∗, and 0n is a zero vector of size

n. For a constrained problem, Equation (2.4) evolves into the Karush-Kuhn-Tucker (KKT) conditions (for

further details, the reader is directed to [30]).

Another useful classification is with respect to the convexity of the objective function and the feasibility

set as presented in the following definitions, and illustrated in Figure 2.1

Definition 3. A set S ∈ ℜn is convex if any straight line connecting any two points in S lies entirely

inside S, see Figure 2.1(a). This is equivalent to say that, for any pair x, y ∈ S, the following inclusion is

verified:

αx+ (1− α)y ∈ S, ∀α ∈ [0, 1]. (2.5)

Definition 4. A function f is convex if its domain S is convex and for any two points x and y in S, the

following property is verified (see Figure 2.1(b)):

f (αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1]. (2.6)

The importance of this classification is that convexity of f in Equation (2.1) implies that any local

minimizer is also a global minimizer.
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(a) Left set is convex, but right convex is non-
convex

(b) f1(x) is a convex function, but f2(x) is a non-
convex

Figure 2.1: Examples of convex and non-convex sets and functions

2.1.1 Optimization algorithms

In most practical cases, solving optimization problems analytically is not feasible. Even using com-

putational tools to help with algebraic manipulation may be too burdensome. Consequently, the most

valuable approaches are numerical algorithms of first and second order. The distinction lies in whether

they rely solely on the first gradient or also utilize the second gradient of the objective function, known as

the Hessian matrix. Computing the Hessian matrix may require significant computational resources and

may not always justify the additional complexity. For that reason, we focus on first-order optimization

methods. A typical format of first order algorithms is

xk+1 = xk + αkdk. (2.7)

where xk denotes the current estimate, αk is the step size and dk the search direction. The difference

between each first-order algorithm is the philosophy behind the choice of the search direction dk and the

step size αk.

Definition 5. dk is a valid search direction to minimize a function f(x), if it respects

dTk∇f(x) < 0 (2.8)

such that there always exists a ᾱ > 0 that makes

f(xk + αdk) < f(xk) for all 0 < α ≤ ᾱ. (2.9)

To understand Definition 5, let us define an auxiliary function for the current iteration, ϕ(α) = f(xk +

17



αdk). Recall that this function assumes that: i) we fixed the current iteration, xk, and ii) a descent

direction is already chosen. We can improve our current estimate if we impose that ϕ̇(0) < 0. Using the

chain rule we have

ϕ̇(0) = dTk∇f(xk) < 0, (2.10)

which leads to Equation (2.8). Therefore, there exits infinite possibilities for dk with their correspondent

α to improve the current estimate.

The backtracking subroutine is a possible solution to chose the step size αk. It searches for a step

size that improves the current estimate, at least, on a given quantity defined by

γ∇f(xk)T (αkdk) = γϕ(0)αk < 0. (2.11)

Algorithm 2.1 shows the procedure: β is the step-size update for each backtracking iteration, α̂ is the

initial step-size value, and γ is a tunable parameter on how much improvement one wants to guarantee.

Algorithm 2.1: Backtracking subroutine to compute the step size αk > 0

begin
Choose backtracking parameters α̂ > 0, 0 < γ < 0.5 and 0 < β < 1
αk ←− α̂

while f(xk + αkdk) ≥ f(xk) + γ∇f(xk)T (αkdk) do
αk ←− βαk

Other options include setting a constant step size and letting the gradient norm determine both the

direction and the magnitude of the estimate’s movement. This fixed value may depend on a compromise

for the convergence rate over all possible initializations. We can then summarize a general first-order as

given in Algorithm 2.2 where a stopping criteria ||∇f(xk)|| < ϵ was used with ϵ > 0.

Algorithm 2.2: Template for a first-order algorithm
begin

Choose initial estimate x0
k ←− 0

while Stopping criterion is not met do
Compute ∇f(xk)
Set descent direction dk using ∇f(xk)
Select αk

Update xk+1 ←− xk + αkdk
k ←− k + 1

This work focuses on algorithms that do not utilize the backtracking subroutine as this entails addi-
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tional function evaluations to verify the decreasing condition from Equation (2.11). For the problem at

hand, the reduction in the number of iterations is not expected to compensate for the increased com-

putational overhead. Moreover, backtracking requires the tuning of additional parameters, making the

algorithm sensitive to these choices.

2.2 State of the Art on Gradient Search Algorithms

2.2.1 Gradient Descent

Among various first-order optimization algorithms, the gradient descent version is the most popular one.

This version uses an intuitive conclusion from Equation (2.10): if we want to use a descent direction so

that ϕ̇(0) is maximized, we may look for a solution to

cos (∠(dk,∇f(xk))) = −1⇐⇒ dk = −∇f(xk). (2.12)

This comes from the fact that Equation (2.10) is the same as the inner product ⟨dk,∇f(xk)⟩ = ||dk|| ·

||∇f(xk)|| cos (∠(dk,∇f(xk))). Another intuitive reason is that the gradient of an n-dimensional function

is a vector pointing to the direction of its greatest increase. Therefore, the best direction (assuming no

other knowledge) is to move xk for the greatest decrease of f .

Due to its easy implementation and low computational cost, the gradient descent algorithm has been

widely used in various fields, including neural network training [31] and control of sensor networks [32].

However, it exhibits two primary challenges:

• Slow convergence in certain cases, even when the step size is determined based on prior knowl-

edge of the objective function. Moreover, a poor specification of this parameter can lead to a

divergence of the estimation from the true solution.

• Relying solely on the gradient value at the current iteration provides limited information localized

around the current point, which may delay the discovery of the global solution. To address these

limitations and improve convergence rates, enhanced versions of gradient descent have been

developed, including stochastic gradient descent and momentum gradient descent.

2.2.2 Adaptive Step

To mitigate the reliance on prior knowledge of the objective function, various techniques have been

introduced in the literature to update the step size α at each iteration. These methods aim to enhance

the performance of fixed step sizes while avoiding the need for backtracking algorithms.
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One of these approaches is proposed by Almeida & Silva [33]. They start by considering a single-

dimensional function f(θ) : ℜ → ℜ and conjecture that the sign of the gradient provides information about

the direction of steepest ascent or descent, which can be used to guide a step size updating process.

Specifically, it is proposed that if two consecutive iterations have opposite directions for the gradient, it

means that the method already jumped over a minimum. On the other hand, if two consecutive iterations

have the same direction, then the minimum has not been reached. In the first case, the step size should

decrease, and in the second case, the step size can increase to accelerate the convergence rate. This

approach can be summed up as

αk =

{
u · αk−1 if df

dx (xk−1) · dfdx (xk) > 0

d · αk−1 otherwise
, (2.13)

where 0 < d < 1 and u > 1 are respectively the ”up” and ”down” update constants. For multidimensional

functions, Almeida & Silva apply the update individually to each dimension.

In this work, we will be using a normalized version of the gradient when applying the adaptive step

algorithm. Normalizing the gradient ensures that the step size is independent of the magnitude of the

gradient, making the algorithm more robust and less sensitive to changes in the objective function’s

scale. This is a valid approach for this algorithm because the value of the parameter α can be adapted

along the run.

2.2.3 Momentum Algorithms

This last approach opens the possibility to use information gathered in the last iterations, instead of

resorting only to instantaneous information. Polyak proposes an extra term to Equation (2.7), in [34],

which adds an inertia or momentum contribution to the current estimation. This momentum term “will

lead to motion along the essential direction” creating a method inspired by the movement of a Heavy Ball.

Nesterov’s Accelerated method extends the Heavy Ball momentum concept to the gradient’s computing

point. It can be seen as a second momentum term. A third momentum is proposed in [35], where the

authors extend the last two momenta to the overall estimation.

These three methods are summarized in Equations (2.14) to (2.16). The terms x̃k and xk represent

respectively the first and second momentum terms. The Triple Momentum can be seen as an inertial

movement applied to the Nesterov acceleration method, with momentum constant δ.

xk+1 = x̃k − α∇f(xk) , where x̃k = xk + β(xk − xk−1) (Heavy Ball) (2.14)

xk+1 = x̃k − α∇f(xk) , where xk = xk + β(xk − xk−1) (Nesterov’s) (2.15)

xk+1 = xNk+1 + δ(xNk+1 − xNk ) , where xNk is Nesterov estimate (Triple Momentum) (2.16)
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2.2.4 Optimal Parameters

The authors of [36] define a procedure to find optimal parameters for the gradient method, the Heavy

Ball method, and Nesterov’s method. This methodology has also been followed to find parameters for

various algorithms devoted to optimization and solution of linear equations as reported in [37]. Optimal

parameters are defined as guaranteeing a minimal worst-case convergence rate ρworst, as in Defini-

tion 6.

Definition 6. A sequence xk is converging with convergence rate 0 < ρ < 1 if there exists a positive

constant C > 0 such that

||xk+1 − x∗|| ≤ Cρk||x0 − x∗|| (2.17)

Definition 7. A linear dynamical system represented by n state variables and influenced by d inputs

can be represented by a state vector ξk ∈ ℜn, that can be iteratively updated by a set of recursive linear

equations of the form

ξk+1 = Aξk +Buk, where uk ∈ ℜd

xk = Cξk +Duk, where yk ∈ ℜm
(2.18)

We will represent state space systems as
[
A B
C D

]
.

A first-order optimization algorithm can be modeled as a linear dynamic system as in Equation (2.18),

where xk represents the current estimate, ξk denotes an internal state of the algorithm, and uk =

∇f(xk). In doing so, it is possible to unify the convergence study using the techniques for linear systems

where each algorithm in Equations (2.14) to (2.16) is represented as:

[
In −αIn
In 0n

]
Gradient

 (1 + β)In −βIn −αIn
In 0n 0n
In 0n 0n


HeavyBall (1 + β)In −βIn −αIn

In 0n 0n
(1 + β)In −βIn 0n


Nesterov′s

(2.19)

Please recall that the Heavy Ball and Nesterov algorithms have two internal states, corresponding to

the current and previous estimates. In denotes an n-by-n identity matrix, and 0n represents an n-by-n

matrix of zeros.

Suppose the objective function is a quadratic function given by f(x) = 1
2x

TQx − pTx + r, with

Q ∈ ℜn×n symmetric, mIn ⪯ Q ⪯ LIn in the positive definite ordering and 0 < m < L. The gradient of

the objective function is ∇f(x) = Qx− p and the optimal solution is x∗ = Q−1p. In this context, the input

uk can expressed as

uk = ∇f(xk) = Qxk − p = Q(xk − x∗) = QC(ξk − ξ∗). (2.20)
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Please note that once the system converges to the optimal solution x∗, the state equations from Equa-

tion (2.18) become x∗ = Cξ∗, and ξ∗ = Aξ∗.

By substituting Equation (2.20) in Equation (2.18), one gets

ξk+1 = Aξk +BQC(ξk − ξ∗)⇔ ξk+1 − ξ∗ = (A+BQC)(ξk − ξ∗), (2.21)

meaning that the error evolves with the state transition matrix T := A+BQC. A necessary and sufficient

condition for ξk to converge to ξ∗ is that the spectral radius of T is strictly less than 1. Thus, the worst-

case convergence rate for a first-order optimization algorithm applied to a quadratic function is given

as

ρworst = maximize
mIn⪯Q⪯LIn

ρ(T ), where T = A+BQC. (2.22)

The analysis of the spectral radius of T has been conducted in [36] for the Gradient descent, Heavy-ball

Nesterov’s accelerated methods with the corresponding optimal parameters. A similar analysis has also

been conducted for the case of Nesterov’s method with time-varying parameters as in [38] and the case

of quadratic functions with m = 0 and an infinite number of minimizers [39].

For the Triple Momentum method, the work in [35] does a similar framework to get optimal parameters

for a more general type of functions: m-strongly convex functions with L-Lipschitz continuous gradient

for a given 0 < m < L. In other words, the optimal parameters for Triple Momentum are computed for a

function f : ℜn → ℜ that satisfies Equation (2.23)

m||x− y||2 ≤ (∇f(x)−∇f(y))T (x− y) ≤ L||x− y||2, ∀x, y ∈ ℜn. (2.23)

Please note that a quadratic function, with the previously defined Q matrix, is an example of an m-

strongly convex function with L-Lipschitz continuous gradient. Table 2.1 shows the expressions for the

optimal parameters.

Table 2.1: Optimal parameter for each method and correspondent worst-case convergence rate. κ = L/m repre-
sents the condition number.

Method Optimal
Parameters

Convergence
Rate

Gradient Descent α = 2
L+m ρmax = κ−1

κ+1

Nesterov’s α = 4
3L+m β =

√
κ+1−2√
3κ+1+2

ρmax = 1− 2√
3κ+1

Heavy Ball α = 4
(
√
L+

√
m)2

β =
(√

κ−1√
κ+1

)2
ρmax =

√
κ−1√
κ+1

Triple Momentum α = 2−1/
√
κ

L β = (1−1/
√
κ)2

1+1/
√
κ ρmax = 1− 1√

κ
γ = (1−1/

√
κ)2

(2−1/
√
κ)(1+1/

√
κ)

δ = (1−1/
√
κ)2

1−(1−1/
√
κ)2
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The optimal parameters derived from the worst-case analysis enable us to select appropriate values

for each algorithm, taking into account the L-Lipschitz and m-strongly convex constants and ensuring

convergence for strongly convex functions. However, it is important to note that these constants, L and

m, describe the behavior of the function across its entire domain, which may not accurately reflect local

behaviors of the function in some regions where these constants can differ significantly from their global

counterparts. Therefore, it is essential to develop hybrid algorithms that can dynamically adapt the algo-

rithm’s parameters based on the current estimation, allowing for better performance and convergence in

various regions of the optimization domain.

2.2.5 Hybrid Algorithm

The authors of [40] propose the use of a hybrid algorithm for optimizing convex functions, which aims

to achieve fast convergence, reduced oscillations, and robustness. The algorithm utilizes two versions

of a heavy ball method, each characterized by a specific set of parameters: (α1, β1) and (α2, β2). The

algorithm can be defined as follows:

xk+1 = xk − ασ(k)∇f(xk) + βσ(k)(xk − xk−1), where σ(k) ∈ {1, 2}. (2.24)

The function σ(k) is updated in every iteration and takes values from the set {1, 2} based on a

supervisor. The paper suggest two supervisors, one using both the objective function and its gradient,

and another using only its gradient.

The choice of parameters is key for the algorithm performance. The first set of parameters is tuned to

guarantee fast convergence when the estimation is far from the solution, whereas closer to the minimizer,

the authors are selecting values adjusted to prevent oscillation. This work focused on the case of

convex functions suing 2 versions of the Heavy ball. In this thesis, since the optimization function is

nonconvex, we draw inspiration in this type of hybrid algorithms and propose a different version for

nonconvex functions after testing different combinations and formulations for the supervisor.

2.3 Problem Statement

In the previous section, we have reviewed first-order methods with the analysis concluding the need for

hybrid algorithms algorithms even for the case of strongly convex functions. In this section, we will be

overviewing the characteristics of the tackled problem that will shape the design of the proposed method.

Given that the objective function for the wildfire detection is going to be the result of an estimation related

to different characteristics related to the weather, terrain, etc., the cost function h(x) : R2 → R will be

nonconvex and we pose the assumption of being represented as a GM model. In this chapter, since
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we have stripped the constraints from the optimization, we recover the same formulation as in the past

section:

maximize
x

h(x). (2.25)

However, given the nonconvex nature of h, it may possess multiple local maximizers and exhibit

zones with very asymmetric values for the Lipschitz constant. In the next subsections, we highlight

specific characteristics that will shape the proposed algorithm.

2.3.1 Gaussian mixture as a non-convex function

Given that our original problem (as shown in Equation 1.2) involves an objective function that relies on

an uncertainty map obtained from sensor data, in this chapter, we employ GM models as the objective

function h(x). GM functions are extensively utilized in various domains, including statistics, machine

learning, and signal processing, due to their inherent flexibility and capability to represent complex func-

tions. Moreover, in theory, any function can be approximated by a GM model provided a sufficient

number of Gaussian components are used, and their weights and parameters are appropriately chosen.

Specifically, GMs prove to be particularly useful when modeling real-world data obtained from sensors.

A GM model consists of a weighted sum of K Gaussian distributions, where the weights wk indicates

the contribution of each Gaussian to the overall function, i.e.,

h(x) =

K∑
k=1

wkNk(x), (2.26)

where
K∑

k=1

wk = 1 Nk(x) =
1

2π
√
|Σk|

e−1/2(x−µk)
TΣ−1

k (x−µk).

The function Nk(x) represents the Gaussian probability density function for component k with mean µk

and covariance Σk.

Figure 2.2 exemplifies a possible instance of h(x) with 6 Gaussians. Please note that 2 of the

Gaussians are very close to each other, almost overlapping, which creates a large peak around x =

(−5, 6).

2.3.2 Discrete Objective Function

The surveillance problem described in Chapter 1 motivated the formulation in Equation (2.25) and posed

the assumption of a continuous map. However, if we are resorting to fire hazard indices, these values

will be given as a discrete map. This is motivated because the surveillance-gathering filter is not able
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(a) 3 dimensional view (b) 2 dimensional view

Figure 2.2: Example of an GM function with 6 Gaussians, generated using Equation (2.26)

to generate a continuous function h(x) as the measurements are taken in squares of territory. Such

motivates the use of discretized functions following the next definition.

Definition 8. A discrete function h(d)(n1, n2) : N2 → ℜ is obtained from a continuous function h(x) :

ℜ2 → ℜ by dividing the domain into a grid of cells with resolution ∆. Specifically, we have:

h(d)(n1, n2) = h([n1∆, n2∆]). (2.27)

Given that continuous gradient values cannot be used in this context, an alternative pseudo-gradient,

denoted as ∇(d), will be used instead. This is achieved by means of a finite difference gradient, defined

as:

∇(d) =
1

2∆

[
h(d) (n1 + 1, n2)− h(d) (n1 − 1, n2)) , h

(d)(n1, n2 + 1)− h(d)(n1, n2 − 1))
]
. (2.28)

When using this pseudo-gradient to obtain the next estimate, it is highly probable that the result may

fall outside a discretized position. This will also require the method to perform a selection of the nearest

discretized position.

2.3.3 Illustrative example

In order to gather intuition related to the use of GM models and the challenges arising from plateau

regions in the search space that produce negligible gradients, we present an illustrative example that

will guide the design in the remaining of this chapter. We start by comparing three groups of algo-
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rithms: gradient descent (Section 2.2.1), momentum algorithms (Section 2.2.3), and gradient descent

with adaptive step (Section 2.2.2). These algorithms will be evaluated using fixed parameters obtained

through manual tuning using several runs to improve their values. We will also assume access to the

continuous functions.

The experiments were conducted using a GM with K = 1, µ =
[
0 0

]T and Σ =

[
1 0
0 5

]
, as shown

in Figure 2.3. Two initial points are tested for each algorithm: x0 =
[
−1.5 2

]T and x0 =
[
−5 −5

]T .

The first initial point was chosen to represent the behavior of each algorithm when initialized near a

maximum, where the gradient is meaningful whereas the second point starts far away in a plateau

region. The stopping criteria was defined as the k value such that

||xk−1 − xk|| ≤ 10−4. (2.29)

(a) GM used as objective function (b) Each algorithm was tested using 2 different
initialization

Figure 2.3: Objective function and algorithms initialization

The final parameter values used for each algorithm are listed in Table 2.2. Manual tuning is not an

ideal option when dealing with complex and unpredictable objective functions. For this reason, one of

the goals of the upcoming sections is to reduce human intervention in the parameter selection process.

Regarding the adaptive step, these parameters mean that the first iteration uses α = 0.5 in both x1 and

x2 directions. Then, after each iteration cycle, α is updated independently for each direction using the

updating factors d and u, as defined in Equation (2.13).
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Table 2.2: Parameters used in each simulation for both initialization 1 and 2

Method Initialization 1 Initialization 2
Gradient

Descent (GD) α = 20 α = 50000

Nesterov’s (NE) α = 15 β = 0.25 α = 50000 β = 0.25
Heavy Ball (HB) α = 20 β = 0.1 α = 60000 β = 0.1

Triple
Momentum (TM)

α = 19 β = 0.15
α = 60000

β = 0.15
γ = 0.1 δ = 0.3 δ = 0.3

Adaptive α0 = 0.5 u = 1.05 α0 = 0.5 u = 1.05
d = 0.8 Normalized gradient d = 0.8 Normalized gradient

Figure 2.4: Distance to the maximum in each iteration using initialization point 1

For the first initial point, x0 =
[
−1.5 2

]T , the performance can be seen in Figure 2.4. All algorithms

were able to find the maximum of the Gaussian function and converge to it. However, the gradient

descent algorithm and its momentum versions showed better overall performance, reaching the stopping

criteria after around 40 iterations. On the other hand, the adaptive step algorithm required nearly 90

iterations due to the time needed to reduce the α parameter while the estimate oscillated around x∗.

Regarding gradient descent and its momentum version, the Heavy Ball and Nesterov seem to show

better performance when compared to the gradient descent and Triple Momentum.

The trajectory created by the gradient descent and the adaptive step with the first initialization is

shown in Figure 2.5. We omit the remaining algorithms since the trajectories are very similar and the

major difference is the adaptive step oscillation near the maximum.
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(a) Gradient descent trajectory (b) Adaptive step trajectory

Figure 2.5: Trajectory created by the estimations of 2 optimization algorithm with initialization 1

For the second initial point, x0 =
[
−5 −5

]T , the performance can be seen in Figure 2.6, while

the trajectory of the gradient descent and the adaptive step algorithms are shown in Figure 2.7. This

example highlights the already expected challenge regarding plateau regions, where the algorithms

need high α parameters to be able to move its estimate in such a low gradient magnitude area. However,

a problem may arise when the estimate gets near the non-plateau regions. There, the algorithm may

become unstable using too large steps for the magnitude of the gradient in this region. The adaptive step

algorithm is an exception to this problem because it uses normalized gradients, making the algorithm

robust to variations in the gradient’s magnitude.

Figure 2.6: Distance to the maximum in each iteration using initialization point 2
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(a) Gradient descent trajectory (b) Adaptive step trajectory

Figure 2.7: Trajectory created by the estimations of 2 optimization algorithm with initialization 2

2.3.4 Conclusion from the illustrative example

In conclusion, GM functions pose a significant challenge for optimization algorithms due to the presence

of plateau regions in the search space, as shown in 2.8. These regions correspond to areas where the

magnitude of the gradient of the objective function becomes very small. Even when algorithm parame-

ters are tuned to address these regions, there is no guarantee of good performance in regions near the

maximum where the gradient increases.

The results of the illustrative example clearly emphasize these facts, highlighting the need to employ

an algorithm that can adapt its behavior while optimizing a GM objective function. It is evident that such

a tool is essential for overcoming the challenges posed by plateau and non-plateau regions.

Taking into account these considerations, Section 2.4 presents a hybrid algorithm capable of effec-

tively converging to local maximums of GM functions, even when the functions contain multiple Gaus-

sians and the initial estimate resides in a plateau region.

2.4 Proposed solution

This section presents a solution to address the problem defined in Section 2.3. Taking into account

the challenges identified during the maximization of GM functions discussed in the previous section, we

propose a hybrid algorithm that effectively tackles these issues. The hybrid algorithm aims to combine

the strengths of two optimization algorithms: a global strategy and a local strategy. The global strategy

is designed to show fast convergence in plateau regions, while the local strategy focuses on reducing

oscillations in non-plateau regions. To enable this hybrid approach, the algorithm relies on information
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Figure 2.8: Gradient norm of h(x) example shown in Figure 2.2

about the L-Lipschitz and m strongly convex constants, which are assumed to be supplied by an oracle.

The relevance of knowing these constants is related to the usage of the optimal parameters explained

on Section 2.2.4. This way, the parameters of each gradient descent algorithm can be automatically

tuned, minimizing the need for human intervention and increasing the adaptability to different optimiza-

tion environments.

In Section 2.4.1, we propose an oracle capable of providing these parameters to the hybrid algorithm.

However, it is worth noting that the hybrid algorithm can be used with any other source of information

that can supply these parameters. In Section 2.4.2, we provide a detailed description of the proposed

algorithm.

2.4.1 Gaussian mixture Oracle design

Oracles are a popular tool in optimization as they allow access to information about the objective func-

tion, representing an idealized resource for solving problems. However, oracles can sometimes be

computationally expensive.

This work develops an oracle for estimating the L-Lipschitz constant of a given GM. Additionally,

it also estimates the m-convexity constant of the non-plateau regions around the local maxima. To do

so, it employs an accuracy versus complexity trade-off approach to avoid the excessive computational

burden.

In this chapter, without loss of generality, we go through the design assuming diagonal covariance

matrices in the form
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Σk =

[
σ2
1 0
0 σ2

2

]
. (2.30)

In doing so, the Gaussian probability density on Equation (2.26) turns into

Nk(x) =
1

2πσ1σ2
e

(
−(x1−µ1)2

2σ1
+

−(x2−µ2)2

2σ2

)
. (2.31)

Our oracle employs a second-order Taylor approximation for each Gaussian in the GM function. Each

expansion is centered in a Gaussian mean as:

N (x) ≈ N (µ) + (x1 − µ1)
∂N
∂x1

(µ) + (x2 − µ2)
∂N
∂x2

(µ) +
(x1 − µ1)

2

2

∂2N
∂x21

(µ)

+ (x1 − µ1)(x2 − µ2)
∂2N
∂x1x2

(µ) +
(x2 − µ2)

2

2

∂2N
∂x22

(µ).

(2.32)

Since the Gaussian distribution has a null gradient at x = µ, and given the diagonal covariance

matrix assumed in Equation (2.30), the following terms vanish:

∂N
∂x1

(µ) = 0,

∂N
∂x2

(µ) = 0,

∂2N
∂x1x2

(µ) = 0.

(2.33)

This results in a function that reasonably approximates the Gaussian distribution around its mean

point, as shown in Figure 2.9.

At this point, our oracle applies the definition of the constants L and m, as given in Equation (2.23)

to each quadratic function obtained from the second-order Taylor’s expansions. Specifically, for 2-

dimensional quadratic functions, the definition implies that L and m correspond, respectively, to the

eigenvalues of maximum and minimum absolute value of the Hessian matrix:

H =
1

2πσ1σ2

[
1/σ2

1 0
0 1/σ2

2

]
, (2.34)

associated with each quadratic term. Since Equation (2.34) is a 2 × 2 diagonal matrix, its eigenvalues

can be obtained directly from the non-zero entries of the matrix.

From the set of K pairs (Lk,mk), we now can choose the largest Lk and the smallest mk as the out-

put of our oracle. Another option would be to choose the output as the biggest Lk and the corresponding

mk value. However, the tests conducted in this work did not demonstrate a considerable advantage in
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(a) 1 dimensional Gaussian (b) 2 dimensional Gaussian

Figure 2.9: Example of Gaussian functions and respective second-order Taylor’s approximations, as Equa-
tion (2.32)

using this latter option.

Algorithm 2.3 provides a summary of the described algorithm. By using the output of this oracle,

it is possible to use the optimal parameters expression, explained in Section 2.2.4, to run the gradient

descent and its momentum versions without requiring human intervention for tuning the algorithms to a

specific objective function. However, the user must consider two important points:

• The L and m parameters computed by this oracle do not necessarily correspond to the true L-

Lipschitz and m-convexity constants of the objective function. In fact, the m-convexity constant of

a Gaussian function is 0, due to the flatness of the plateau region;

• The computations used in this oracle only take into account the regions near the center of each

individual Gaussian, so the usage of these L and m parameters may only be appropriate near or

inside the non-plateau regions of the complete function.

Despite these remarks, this oracle remains a useful tool for finding local maxima of non-convex

functions, as will be demonstrated later. To accomplish this, we will use a hybrid algorithm based on the

one from [40], which is explained in the following section.

2.4.2 Hybrid Algorithm for Gaussian mixture functions

As concluded from Section 2.3.3, finding local maximums of GM functions requires an algorithm capable

of adapting its parameters to overcome the challenges posed by plateau regions. This is because the

suitable parameters for these regions are not suitable for the rest of the function near the maxima, where

the algorithm should prevent oscillations. This section describes such an algorithm, inspired by the work

from [40].
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Algorithm 2.3: GM Oracle
begin

Set m← 0, L← 0
for all K Gaussians do

Σ← Σk

secondGradient← ωk

2π

[
(σ3

xx · σyy)−1, (σ3
yy · σxx)−1

]
Lk ← max(secondGradient)
mk ← min(secondGradient)
if Lk > L then

L = Lk

if mk < m then
m = mk

The intuitive idea behind the algorithm is to divide its behavior based on the proximity to a maxi-

mum or a plateau region. At each iteration, this decision is made using a finite differences second-

order gradient of the objective function, computed for each dimension. It is worth noting that the algo-

rithm does not compute the full Hessian matrix, but only the second-order derivatives with respect to

each dimension. For the current iteration xk =
[
xk1 xk2

]T , the second-order derivative approximations,

∇̃2nd(xk) =
[
∇̃k2nd

1 ∇̃k2nd

2

]T
are given by:

∇̃k2nd

1 =
f(xk1 + δx)− 2f(xk1) + f(xk1 − δx)

δ2x
, (2.35)

∇̃k2nd

2 =
f(xk2 + δx)− 2f(xk2) + f(xk2 − δx)

δ2x
, (2.36)

where δx represents the step size for the finite difference approximation. The step size can be specified

by the user if the optimization algorithm has access to a continuous objective function. However, if only

a discrete version is available (see Section 2.3.2), the better option is to use a step size equal to the

domain resolution, i.e, δx = ∆.

Our oracle is able to characterize reasonably well the non-plateau regions. Furthermore, the L-

Lipschitz and m-convexity constant of a function can be used as the upper and lower bounds of the

eigenvalues of its Hessian matrix, which are related to the second-order derivatives of the function.

Thus, the hybrid algorithm compares the minimum value of the finite differences second-order derivative

approximation with the m constant obtained from our oracle. This comparison is based on the fact that

the m-convexity condition implies that the curvature of non-plateau regions is greater than or equal to

m, which in turn is greater than the curvature of plateau regions. This condition enables the algorithm

to use the second-order derivative approximation to determine whether the current estimation is in a

plateau or non-plateau region.

The subroutine responsible for performing these computations serves as a supervisor that triggers

a global algorithm (designed for fast convergence) or a local algorithm (tailored to avoid oscillations).
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Figure 2.10 formalizes the state machine used.

Global Algorithm Active

Local Algorithm Not Active

Global Algorithm Not Active

Local Algorithm Active
Otherwise Otherwise

Figure 2.10: Hybrid algorithm supervisor decision

The introduction steps of the algorithm have left out the selection of both the local and global algo-

rithms. Before advancing to that selection, we introduce an extra step required for the case of discrete

functions.

2.4.2.A Supervisor’s extra step for discrete functions

For discrete functions, the supervisor has to perform extra computations since the current estimate may

not lie in a discrete point of the domain. Rounding the estimate to the nearest existing domain position

can be a quick solution, but it may lead to large roundings and introduce errors in the estimation.

To address this situation, our algorithm applies a bilinear interpolation method. This method assumes

that the values in the discrete domain vary linearly across each row and column. Although this is a

rough approximation of what happens with the second gradient of a GM function, if a sufficiently fine

discretization is used, bilinear interpolation can be a useful technique for estimating the second gradient

of a GM function using finite difference equations.

To apply bilinear interpolation to estimate the second gradient of a GM function, we start by com-

puting the finite difference approximation at each of the four nearest points in the discrete domain. In

Figure 2.11, these points are denoted as p00, p01, p10, and p11. The bilinear interpolation process starts

by applying linear interpolation to the values at p00 and p10 to create an intermediate point Q1, and linear

interpolation to the values at p01 and p11 to create another intermediate point Q2. That is:

∇̃2(Q0) =
xk1 − n1∆

(n1 + 1)∆− n1∆
∇̃2(p10) +

(n1 + 1)∆− xk1
(n1 + 1)∆− n1∆

∇̃2(p00), (2.37)

∇̃2(Q1) =
xk1 − n1∆

(n1 + 1)∆− n1∆
∇̃2(p11) +

(n1 + 1)∆− xk1
(n1 + 1)∆− n1∆

∇̃2(p01). (2.38)

Finally, it applies linear interpolation to the values at Q1 and Q2 to estimate the value of the second

gradient at the desired point, xk:
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∇̃2(xk) =
xk2 − n2∆

(n2 + 1)∆− n2∆
∇̃2(Q1) +

(n2 + 1)∆− xk2
(n2 + 1)∆− n2∆

∇̃2(Q0). (2.39)

Figure 2.11: Bilinear interpolation

2.5 Results

As seen in Section 2.3.3, among the tested non-hybrid algorithms, only the adaptive algorithm was able

to converge to a local maximum regardless of whether the initial estimate is in a plateau or non-plateau

region. Therefore, this section focuses on evaluating the performance of our hybrid algorithm using a

range of local and global methods against the adaptive step by measuring the distance to the closest

local maximum of the GM function. The following options were considered:

• Adaptive step as the global algorithm and gradient descent with parameters defined using the

oracle output and Table 2.1 as the local algorithm - Identified as ”A+GD”.

• Adaptive step as the global algorithm and Heavy Ball with parameters defined using the oracle

output and Table 2.1 as the local algorithm - Identified as ”A+HB”.

• Adaptive step as the global algorithm and Nesterov’s with parameters defined using the oracle

output and Table 2.1 as the local algorithm - Identified as ”A+TM”.

• Adaptive step as the global algorithm and Triple Momentum algorithm with parameters defined

using the oracle output and Table 2.1 as the local algorithm - Identified as ”Adaptive”.
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2.5.1 Test 1: GM with K = 1

The first set of tests is similar to the one presented in Section 2.3.3, i.e, with K = 1, µ =
[
0 0

]T and

Σ =

[
1 0
0 5

]
, as shown in Figure 2.3. Two initial points are tested for each algorithm: x0 =

[
−1.5 2

]T
and x0 =

[
−5 −5

]T . The algorithm parameters for each optimization method are listed in Table 2.3

Table 2.3: Test 1 - Parameters generated using the oracle L and m constants and Table 2.1

Method Parameters
Gradient Descent (GD) α = 20.1062

Nesterov’s (NE) α = 15.4663 β = 0.2864
Heavy Ball (HB) α = 20.1062 β = 0.1111

Triple Momentum (TM) α = 18.8496 β = 0.1667
γ = 0.1111 δ = 0.3333

Adaptive α0 = 0.5 u = 1.05
d = 0.8 Normalized gradient

For the first initial point, x0 =
[
−1.5 2

]T , the performance can be seen in Figure 2.12. As in the pre-

liminary results from Section 2.3.3, all algorithms were able to converge to a local maximum. However,

the gradient descent algorithm and its momentum versions required fewer iterations to meet the stopping

criteria compared to the adaptive algorithm. It is noteworthy that, when compared to the similar test in

Figure 2.14, the hybrid algorithms required fewer iterations (around 25 iterations compared to around 40

iterations) than their non-hybrid counterparts. This improvement is due to the hybrid algorithm’s ability to

use the initial faster convergence rates from the adaptive algorithm, as well as the automatic adjustment

of algorithm parameters using the oracle information. In fact, one of the objectives of designing the

hybrid algorithm was to transition from the global to the local algorithm (i.e., from the adaptive - ”A” - to

a gradient descent algorithm - ”GD”, ”HB”, ”NE”, ”TM”) when the adaptive algorithm started oscillating

around the local maximum. The trajectory of the gradient descent algorithm throughout its iterations

is illustrated in Figure 2.14(a), which is similar for all the tested algorithms. It is important to highlight

that the transition from the global to the local algorithm occurs very close to the local maximum of the

Gaussian function.
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Figure 2.12: Test 1 - Distance to the maximum in each iteration using initialization 1

Regarding initialization 2, x0 =
[
−5 −5

]T , an important improvement can be observed in Fig-

ure 2.13. The gradient descent algorithm and its momentum versions are now able to converge to a

local maximum when used as local strategies of the hybrid algorithm. This improvement can be at-

tributed to the use of the adaptive step to overcome the plateau region and the oracle parameters to

properly converge to the local maximum when in close proximity.

Figure 2.13: Test 1 - Distance to the maximum in each iteration using initialization 2
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(a) Initialization 1 (b) Initialization 2

Figure 2.14: Test 1 - Trajectory created by the hybrid algorithm with gradient descent with initialization 1 and initial-
ization 2

2.5.2 Test 2: Gaussian mixture with K = 5 far Gaussians

In this experiment, we evaluate the performance of each algorithm using a GM function with five non-

overlapping Gaussians. As shown in Figure 2.15, the four local maximums of this function are separated

and its non-plateau regions do not overlap. We use this function to assess whether our oracle can

suggest appropriate L and m constants for each algorithm to adapt and converge regardless of the

initial position.

(a) 3 dimensional view (b) 2 dimensional view

Figure 2.15: GM function used in Test 2

To achieve this, we employ four different initial positions, illustrated in Figure 2.16. The first three

38



initializations are used to observe how the iteration typically converges to local maxima, which usually is

in the direction of the Gaussian valley. The fourth initialization is used to force the iteration to approach a

local maximum via the most challenging path, which is perpendicular to the direction of the valley where

the gradients have the highest magnitude.

The algorithm parameters shown in Table 2.4 were obtained using the oracle, which outputted the L

constant from the Gaussian centered at µ =
[
8 0

]T and the m constant from the Gaussian centered at

µ =
[
0 −7

]T . Since the values of L and m for the other Gaussians fall within this range, the algorithms

can successfully converge to all local maxima without diverging, as opposed to the preliminary results

discussed in Section 2.3.3.

Table 2.4: Test 2 - Parameters generated using the oracle L and m constants and Table 2.1

Method Parameters
Gradient Descent (GD) α = 113.4159

Nesterov’s (NE) α = 80.8649 β = 0.4569
Heavy Ball (HB) α = 142.3769 β = 0.2554

Triple Momentum (TM) α = 105.0160 β = 0.3393
γ = 0.2030 δ = 0.8207

Adaptive α0 = 0.5 u = 1.05
d = 0.8 Normalized gradient

Figures 2.17 and 2.18 show the results for initialization 2 and initialization 4, respectively. In both

cases, the momentum versions of the gradient descent algorithm (i.e, ”A+HB”, ”A+NE”, and ”A+TM”)

outperform the gradient descent (i.e, ”A+GD”) and the adaptive algorithm (i.e., ”Adaptive”). For initial-

ization 4, some algorithms exhibit oscillation around the local maximum, which could be due to the

parameters not being fully adjusted to this particular Gaussian.
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(a) Initialization 1 (b) Initialization 2

(c) Initialization 3 (d) Initialization 4

Figure 2.16: Test 2 - Trajectory created by the hybrid algorithm with gradient descent with four initializations
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Figure 2.17: Test 2 - Distance to the maximum in each iteration using initialization 2

Figure 2.18: Test 2 - Distance to the maximum in each iteration using initialization 4

2.5.3 Test 3: Gaussian mixture with K = 6 near Gaussians

In this experiment, we evaluate the performance of each algorithm using a GM function with 6 over-

lapping Gaussians, which has already been introduced in Figures 2.2 and 2.8. We use this function

to assess whether our local algorithms can converge to local maxima when the individual Gaussians

overlap. This test is interesting because the oracle computes the L and m constants using the individ-

ual Gaussians without considering their proximity. The parameters for each algorithm are provided in

Table 2.5.

41



Table 2.5: Test 3 - Parameters generated using the oracle L and m constants and Table 2.1

Method Parameters
Gradient

Descent (GD) α = 216.7547

Nesterov’s (NE) α = 153.8259 β = 0.4714
Heavy Ball (HB) α = 275.2511 β = 0.2699

Triple
Momentum (TM)

α = 200.7310 β = 0.3552
γ = 0.2110 δ = 0.8781

Adaptive α0 = 0.5 u = 1.05
d = 0.8 Normalized gradient

In this set of experiments, we evaluated the performance of each algorithm using 50 random initial-

izations, as shown in Figure 2.20. Each algorithm was run for every initialization, and we recorded the

number of iterations required to meet the stopping criteria for each initialization. A cumulative average

is reported in Figure 2.19. In addition to successfully converging to a local maximum in each initial-

ization, the results indicate that the hybrid algorithm with gradient descent and its momentum versions

outperform the adaptive algorithm. Among the gradient descent algorithms, the momentum versions

also outperform the gradient descent. On average, the Heavy Ball algorithm appears to meet the stop-

ping criteria earlier than the Nesterov and Triple Momentum versions, although more tests are needed

for a definitive conclusion.

Overall, these tests confirm the effectiveness of our hybrid algorithm in converging to a local maxi-

mum, even when multiple Gaussians in the GM function overlap.

Figure 2.19: Test 3 - Cumulative average of iterations required by each algorithm to meet the stopping criteria
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Figure 2.20: Test 3 - Initial estimate and hybrid algorithm with gradient descent trajectories for each one of the 50
random initializations

2.5.4 Test 4: Random Gaussian mixture with K = 15 Gaussians

In this experiment, the performance of each algorithm is evaluated using 10 randomly generated GM

functions. Each map contains 15 random Gaussians with centers generated using µk =
[
µx1

µx2

]T ,

where µx1 , µx2 ∈ [−10, 10]. The covariance matrices for the Gaussians are generated using Σk =[
σ2
1 0
0 σ2

2

]
, where σ1, σ2 ∈ [1, 21], with an example of 2 of the 10 generated maps being shown in Fig-

ure 2.21 and Figure 2.22.

For each of the 10 generated maps, we generated 25 random initial conditions satisfying ∥x0∥∞ ≤ 15

and ran each algorithm, counting the number of iterations required to meet the stopping criteria. We

report in Table 2.6 the average number of iterations for each algorithm on each map, as well as the

overall average across all maps.

From this simulation, hybrid algorithm with momentum terms is a better solution since they can cope

with almost plateau regions in some maps when several Gaussians accumulate within a given area, as

is evident in map 6. This particular map has its Gaussians grouped in 4 groups that when mixed, create

4 main areas with local maximums located at x =
[
6.9 8.9

]T , x =
[
6.1 −0.9

]T , x =
[
−0.5 −1.8

]T ,

x =
[
−2.8 7

]T and x =
[
−6 5.8

]T (refer to Figures 2.21(a) and 2.21(b)). The addition of an isolated

Gaussian centered at µk =
[
−8.4 −3.1

]T between these non-plateau areas with higher values leads

to the formation of the almost plateau region or a saddle point. In a situation like this, momentum

algorithms are able to use the momentum generated for previous iterations, for example, the momentum
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acquired during the transition from the plateau to the almost plateau region, to overcome the decreased

gradients.

Table 2.6: Test 4 - Average iterations to meet stopping criteria for the hybrid algorithm using different local methods.
The last column shows the overall algorithm average

Method Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 Map 10 Average
Gradient
Descent 181 85 97 97 191 125 71 175 66 49 113.7

Nesterov’s 62 53 54 59 60 60 39 58 30 34 50.9
Heavy Ball 81 57 61 64 75 67 40 74 37 35 59.1

Triple
Momentum 74 55 58 64 67 64 39 66 33 33 55.3

Adaptive 71 81 75 85 72 74 75 71 78 77 75.9
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(a) 2 dimensional upper view (b) Locations of the 15 random Gaussians’ means and
location of the local maximums of the GM function

(c) Initial estimate and hybrid algorithm with Heavy Ball trajectories for each
one of the 25 random initializations

Figure 2.21: Test 4 - Random map 6
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(a) 2 dimensional upper view (b) Locations of the 15 random Gaussians’ means
and location of the local maximums of the GM
function

(c) Initial estimate and hybrid algorithm with Heavy Ball trajectories for
each one of the 25 random initializations

Figure 2.22: Test 4 - Random map 7
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2.5.5 Test 5: Hybrid algorithm with adaptive parameters

To fully explore the possibilities for the proposed Hybrid algorithm in the selection of a local method,

we follow a strategy suggested by Almeida and Silva in their work [33]. In this experiment, we use

the same protocol described in the previous section, where we generated 10 random maps and used

25 initial estimations for each map. However, we now incorporate adaptive steps and automatically

tuned algorithms simultaneously into the algorithm. To achieve this, we apply an updated term to the α

parameter after each iteration, as defined in Equation (2.13), for both the gradient descent and the three

momentum versions. The initial value of α is still the one obtained using the oracle’s output and Table 2.1.

By incorporating this strategy, the local algorithms can easily overcome almost plateau regions, which

are areas where the gradient always points in the same direction, leading to increasing steps. However,

this approach also has a disadvantage. The increased step size may result in oscillations when the

estimate approaches the local maximum, thereby requiring more iterations to meet the stopping criteria.

The red trajectory in Figure 2.23 represents a pathological case of this behavior. In fact, for all 10

randomly generated maps, this trajectory had the highest oscillations recorded.

The results presented in Table 2.7 demonstrate an overall improvement in the performance of all

hybrid algorithms using ”GD”, ”HB”, ”NE” and ”TM” as local algorithms, particularly for the gradient

descent ”GD”. Moreover, the momentum algorithms, particularly the Heavy Ball algorithm, exhibited

a significant improvement in the average number of iterations required for convergence, despite the

expected oscillation effects. Although the decrease in the number of iterations observed for the Nesterov

algorithm may be due to statistical variations, we can conclude that the introduction of the adaptive α in

this chapter does not negatively impact the performance of the hybrid algorithms.

Table 2.7: Test 5 - Average iterations to meet stopping criteria for the hybrid algorithm using different local methods.
The last column shows the overall algorithm average

Local method Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 Map 10 Average
Gradient
Descent 49 48 47 54 40 42 60 63 46 44 49.3

Nesterov’s 45 55 49 53 42 45 57 58 57 42 50.3
Heavy Ball 48 52 51 55 44 46 57 59 54 49 51.5

Triple
Momentum 48 57 50 56 44 47 59 61 58 48 52.8

Adaptive 79 78 82 78 81 79 73 78 76 78 78.2
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(a) 2 dimensional upper view (b) Locations of the 15 random Gaussians’ means
and location of the local maximums of the GM
function

(c) Initial estimate and hybrid algorithm with Heavy Ball trajectories for
each one of the 25 random initializations

Figure 2.23: Test 1 - Random map 7

2.6 Conclusion

In conclusion, this chapter provided a comprehensive analysis and investigation of optimization tech-

niques for non-convex functions modeled by a GM function. The main contribution of this study was the
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proposal of a hybrid algorithm that effectively combines the strengths of two distinct optimization algo-

rithms. By leveraging the unique characteristics of each algorithm, the hybrid approach offers improved

performance and adaptability throughout the optimization process.

In Section 2.3 we defined the optimization problem and the objective function, and in Section 2.3.3

we provided an illustrative example to demonstrate the challenges posed by a GM function. Particularly,

this example revealed:

• Presence of plateau regions: The search space for GM functions often contains plateau regions,

which present a significant obstacle for optimization algorithms with static parameters. These

plateaus create a flat landscape where traditional optimization methods struggle to progress. Over-

coming plateau regions require higher parameters then the ones selectede for good convergence.

• Difficulty of manual tuning: Manual parameter tuning is a laborious and time-consuming pro-

cess. The presence of plateau regions and the wide range of Gaussian functions that can be

incorporated into a GM model, pose significant challenges in achieving effective manual tuning of

algorithm parameters. Consequently, there is a need for a systematic approach that can select the

parameters.

Our hybrid algorithm, proposed in Section 2.4 is able to overcome these challenges. To assess

its performance, we conducted a series of five tests, comparing four variations of the hybrid algorithm

against the gradient descent with adaptive step, since it was the only capable of converging with some

hybrid behavior.

In the first test (Section 2.5.1), we replicated the setup used in the illustrative example. All four

versions of the hybrid algorithm successfully converged to a local maximum, demonstrating the effec-

tiveness of our oracle in providing valid L-Lipschitz and m-strongly convex constants for a function with

a single Gaussian. Furthermore, the hybrid algorithm was able to switch from the global to the local

algorithm at the right time to avoid oscillation or divergence.

In the second test (Section 2.5.2) we created a function with 5 Gaussian with different shapes. The

objective of this test was to illustrate that our hybrid algorithm is able to converge by switching to the

local algorithm even with several Gaussians. This example highlighted that when the oracle provides

valid L and m constants for the function being optimized, our algorithm is able to adapt its parameters

effectively, regardless of the presence of multiple Gaussians.

In the third test (Section 2.5.3) we designed a function composed of 6 Gaussians whith overlap-

ing non-plateau regions. The overlapping regions could pose difficulties as the parameters have been

computed assuming separation of the Gaussians. Despite this challenge, our algorithm successfully

switched to the local algorithm and converged to a local maximum of the function when initialized at 50

distinct random locations. Moreover, all the hybrid algorithms versions required fewer than 50% of the

iterations compared to the adaptive gradient descent.
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The fourth and fifth tests (Sections 2.5.4 and 2.5.5) serve to present the behavior for random setups

and used 10 random GM functions, each consisting of 15 Gaussians, and initialized the algorithms in

25 random location. Regarding test 4, the hybrid algorithm ”A+GD” performed the worst, followed by the

”Adaptive” algorithm. The hybrid algorithms ”A+HB”, ”A+NE”, and ”A*TM” showed the best performance,

with similar results among them. After identifying the possible reasons for the poor performance of

the ”A+GD” approach, we conducted test number 5, where the local algorithm used the adaptive step

principle. This strategy proved to be advantageous for the gradient descent algorithm and did not worsen

the performance of the momentum term version. However, further tests should be performed to assess

the oscillation effect introduced by the adaptive step principle in the local algorithm with momentum

terms.
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In this chapter, we explore an approach for solving the problem of optimal path generation from

multiple uncertainty maps, as discussed in Section 1.3. Due to the significant computational resources

and time required to solve this complex problem, we propose an alternative sub-optimal solution that is

based on an empirical intuition. The system is divided into two distinct but interconnected component

to drive the autonomous vehicle trough the most uncertainty areas of the map to conduct a surveillance

mission in order to reduce the uncertainty regarding a possible wildfire in that region.

Additionally, this chapter focuses on path planning and path following strategies for a quadrotor

Unmanned Aerial Vehicle (UAV), which are essential components for effective surveillance and data

collection. We evaluate these strategies in a simulated environment provided by Gazebo and Robot

Operating System (ROS) tools.

For that, Section 3.1 provides a review of relevant background theory to facilitate understanding the

described solution in following sections. The crucial role of aerial vehicle and the growing interest in

the development of flight arenas for testing such vehicle will be discussed. Section 3.2 outlines our

specific problem statement as a particular case of the original problem, while Section 3.3 proposes

several approaches that enables out system to reach its goal. Finnaly, Section 3.4 analyze our complete

system, proving that the autonomous vehicle is able to follow the desired path with a low magnitude

tracking error, while flying trough the most pertinent areas.

3.1 Background Theory

This section provides essential background theory that is useful for understanding both the problem

statement and the proposed solution. We will start by discussing the fundamental role of UAVs and the

increasing interest in creating flight arenas for UAV testing purposes. Next, we explore the concept of

UAV control, emphasizing the common challenges faced and the strategies employed, with a particular

focus on the problem of path following. Lastly, we study the parametrization of curves using B-splines

and spiral curves, which serves as a key component in guiding the UAV along its intended path. We

draw special attention on uniform cubic B-splines and Constant Linear Velocity spirals.

3.1.1 Unmanned Aerial Vehicles

UAVs are aircraft that can operate without a human pilot on board. They can be controlled remotely or

through autonomous algorithms, making them useful for a wide range of applications, including surveil-

lance, reconnaissance, and delivery. There are various types of UAVs available, such as fixed-wing

aircraft, rotary-wing aircraft, and hybrid aircraft. However, in recent years, rotary-wing quadrotors have

become increasingly popular among researchers due to their agility, versatility, and ease of maintenance.

For further details on UAVs classificaton refer to [41].
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One of the most significant advantages of quadrotors is their maneuverability. Unlike fixed-wing

aircraft, which require a runway for takeoff and landing, quadrotors can take off and land vertically and

hover in place. This makes them ideal for operations in confined spaces or areas where a runway is not

available.

Despite their benefits, quadrotors do have some limitations, including their limited flight time and

limited payload capacity. Due to their small size and the power requirements of the rotors, the flight time

of a quadrotor is usually limited to a few minutes. This can make them unsuitable for applications that

require long-duration flights, such as forest fire surveillance.

The use of quadrotor UAVs in this work was due to their simplicity and the availability of existing tools

already developed for the Institute for Systems and Robotics (ISR)’s flight arena. While long-duration

flights may be necessary for forest fire surveillance, the agility and ease of maintenance offered by

quadrotors can be beneficial in other aspects of the project, mainly during the prototype phase. More-

over, utilizing the ISR’s flight arena tools can facilitate the simulation and real testing of the developed

algorithms.

3.1.2 Flight Arena Technologies

Recently, there has been an increasing interest in developing flight arenas for UAV) that provide a con-

trolled environment for testing UAVs and their algorithms. The ISR has designed its own flight arena

that is tailored for quadrotor UAVs, which includes an optical motion capture system to provide accurate

vehicle position and attitude ground-truth, and a set of offboard computers to manage communication

between systems and run user programs. Oliveira’s work in [1, 42] details the complete design and im-

plementation of the IST flight arena architecture, which follows a modular approach combining the PX4

autopilot, a vehicle, a motion capture system, and a ground computer module.

The figures shown in Figures 3.1 and 3.2 illustrate the architecture of the system for both real and

simulated flight scenarios, respectively. This architecture adopts a modular approach that combines the

following components:

• PX4 Autopilot: This is an open-source autopilot system specifically designed for UAVs. It provides

flight control algorithms, sensor drivers, and estimation algorithms for different types of UAVs, and

acts as an interface between the drone and higher level algorithms. PX4 can run on a real drone

using its Hardware In The Loop capabilities or communicate with a vehicle simulator using the

Software In The Loop mode.

• Vehicle: Depending on the simulation type, the vehicle can either be a real quadrotor or a simula-

tion. To simulate the vehicle’s behavior, the system uses the Gazebo simulator, an open-source 3D

robot simulation software that allows developers to create and test complex robotic systems in a
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virtual environment, including its dynamic and kinematics. Gazebo models the behavior of sensors

and actuators using plugins. Furthermore, the MAVROS package is used to interface Gazebo with

PX4, acting as a bridge between the two systems by translating messages between the lightweight

MAVLink protocol used by PX4 and the ROS messaging format used by Gazebo.

• Motion capture system - In the fligth arena, the motion capture is done by an Optitrack sysyem,

equiped with 8 infrared cameras to track the position and orientation of objects. For the simulation

environment, Almeida developed a software program using the capabilities of the ROS middleware

capable of listening to the Gazebo simulation’s outputs and mimic the Optitrack system, deliveryng

the pose of the vehicle to the user (in the ground computer model) and to the PX4.

• Ground computer module: This module consists of three models, two of which were developed

in the base architecture of the flight arena using the MAVROS and MAVSDK libraries. The work

presented in this chapter is included in the third module, referred to as ”User code” in the figures.

The input/telemetry module subscribes to the information published by the PX4 and the motion

capture system, making this information available to the user in the ROS framework. The out-

put/offboard module offers several methods that the user can call to send offboard commands and

control references to the PX4.

Figure 3.1: Architecture for the real environment of the ISR Flying Arena (Oliveira [1], 2021, Figure 2.3)
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Figure 3.2: Architecture for the simulation environment of the ISR Flying Arena (Oliveira [1], 2021, Figure 2.4)

Almeida based the fundamental design and operational mechanism of its architecture in other testbeds,

as the MIT RAVEN [43] and the ETH Zurich’s Flying Machine Arena [44].

3.1.3 Quadrotor Control

Controlling a quadrotor requires using feedback control algorithms that adjust the vehicle’s orientation,

position, and velocity based on sensor measurements and control commands to achieve the desired

actions. However, before designing the control algorithm, it is essential to create a mathematical model

that accurately describes the quadrotor’s dynamics and kinematics, using physical properties such as

mass, moments of inertia, and aerodynamic coefficients. This model predicts how the vehicle behaves

under different conditions and provides a basis for designing control algorithms that can stabilize it in

various flight regimes such as hovering, altitude control, or trajectory tracking. Accurately modeling the

quadrotor’s dynamics may be crucial for effective control design, and many works have led to models

that capture the vehicle’s behavior accurately. For example, the models presented in [45,46] define the

quadrotor as a rigid body with six degrees of freedom and four control inputs. However these models can

precisely describe the quadrotor’s dynamics, they can be mathematically challenging and expensive to

develop control laws. In practice, they are primarily useful for state estimation, where sensor data from

devices like inertial measurement units or cameras is used to estimate the quadrotor’s real position and

attitude, and for inner-loops controllers, responsible for increasing the drone’s stability while acting on the

rotors of the vehicle and generating a set of forces and torques. Controllers for attitude and positioning

are usually implemented in these inner-loops.

However, even these important tasks of estimation and low-level control can be designed using

linearized models. These models involve approximating the nonlinear equations of motion using linear

equations valid for small deviations from a nominal operating point, usually chosen to be the hover. Many
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works have demonstrated that it is possible to control the quadrotor using linear control techniques

such as Proportional Integrative Derivative controller (PID) [47] or Linear Quadratic Regulator (LQR)

(LQR) strategies [48]. These linear control techniques are easier to design and implement compared to

nonlinear controllers and have been shown to achieve satisfactory control performance for quadrotors.

One of the key advantages of PX4 is that it already comes equipped with a set of low-level controllers

and estimators, including attitude and velocity controllers, as well as state estimators based on sensor

fusion algorithms. These controllers and estimators have been developed and tested extensively, and

they have been shown to work well in a wide range of conditions. As a result, this work focus its research

in higher level controllers strategies and on creating outer loops for the quadrotor. Specifically, we aim

to create a path following strategy that can run after the path planning algorithm, ensuring that the drone

follows the desired route. As an outer-loop controller, our algorithm will generate references for the PX4

inner-loop controllers.

3.1.4 Path following

Path following can be summarized as a set of techniques that allow a vehicle to navigate along a pre-

defined path with accuracy and smoothness. Unlike trajectory tracking techniques, which rely on time

parameterization of the path, path following does not impose any specific timing constraints [49]. In-

stead, it focuses on accurately following a path defined by a series of waypoints, curves, or even complex

geometric shapes without any time restriction.

Designing path following controllers encompasses various approaches that differ in complexity and

the level of detail in the considered vehicle model. One approach involves utilizing a detailed model of

the vehicle. By incorporating these specific characteristics, the algorithm can achieve precise control.

Techniques following this approach often leverage concepts from Lyapunov theory [50] or employ model

predictive control (MPC) [51]. Lyapunov-based approaches utilize the Lyapunov stability concept, aiming

to establish the stability of the system by constructing a Lyapunov function that guarantees convergence

to the desired path. While Lyapunov-based methods offer theoretical guarantees and robustness, they

can involve complex control theory and advanced mathematical computations. Model predictive control

(MPC) is another approach that utilizes the dynamic model of the vehicle to optimize future control

inputs based on a cost function. By considering the vehicle’s detailed model, MPC can generate control

commands that explicitly account for the system’s dynamics and constraints. However, MPC may also

pose computational challenges due to the need for extensive numerical computations and real-time

optimization.

In the context of this work, we develop within a framework that employs PX4 as an autopilot for inner-

loop controllers. PX4 utilizes sophisticated control algorithms to stabilize the quadrotor. Therefore, for

the design of the outer-loop controller, we will adopt a linear model. Linearized solutions approximate the
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quadrotor’s nonlinear dynamics by linearizing the system around a specific operating point or trajectory.

One commonly used linearized model is the double integrator model, which considers the quadrotor’s

position and velocity as the only relevant states. By focusing on position and velocity control, the design

process becomes more straightforward and computationally efficient.

3.1.5 Path parametrization

In the literature there are two main strategies to define and parameterize a curve or path:

• Implicit equations describe a relationship between variables without explicitly expressing one vari-

able in terms of the others. They express this relationship between variables through an equation.

For example, a curve C lying on xy plane has the form f(x, y) = 0. Implicit equations can repre-

sent a wide range of curves, surfaces, or higher-dimensional shapes. However, they do not provide

explicit representations of the variables in terms of a parameter.

• Parametric equations define variables as functions of a parameter or set of parameters. Each

variable is expressed independently in terms of a parameterizing variable γ. For example, in the

context of a curve lying on the xy plane, a parametric equation has the form

C =

[
x(γ)
y(γ)

]
, with γ ∈ [a, b], (3.1)

where a, b ∈ ℜ, and C ∈ ℜ2.

The use of parametric equations is particularly beneficial when generating a path for a quadrotor or

any other robotic system. Parametric equations enable the generation of smooth and continuous paths,

which are crucial for quadrotor motion planning. Additionally, they allow for the expression of bounds

on the curve segments by defining bounds on the path parameter interval. Furthermore, extending

a parametric curve to an N -dimensional space is easy, requiring only the addition of an extra set of

coordinates that depend on the path parameter γ.

3.1.5.A B-Splines Curves

This work utilizes Bézier curves to generate a smooth and continuous path for the quadrotor. Bézier

curves are a widely used type of parametric curve in computer graphics, computer-aided design (CAD),

and other fields. They are defined by a set of control points that determine their shape and degree.

By combining multiple Bézier curves, a B-spline can be formed. This approach allows for the creation

of complex paths by joining together multiple low-degree Bézier curves instead of using a single high-

degree curve.
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A unidimensional order k + 1 B-spline is a piecewise polynomial function, formed by joining several

pieces of polynomials of degree k. A general B-spline curve of order k + 1 and defined by n+ 1 control

points is formed by joining several pieces of polynomials of degree k and consists of n − k + 1 Bézier

curves. It can be interpreted as a linear combination of each control by:

C(γ) =

n∑
i=0

Bi,k(γ)Pi (3.2)

where Pi, i = 0, 1, ..., n are the set of control points and Bi,k(γ) the basis functions of fixed degree.

The basis functions are generated recursively using

Bi,0 =

{
1 if γi ≤ γ ≤ γi+1

0 otherwise
(3.3)

where

Bi,k(γ) =
γ − γi
γi+j − γi

Bi,j−1(γ) +
γi+j+1 − γ
γi+j+1 − γi+1

Bi+1,j−1(γ) (3.4)

The values γi belong to a knot vector defined as Γ = [γ0, ..., γm], such that γ ∈ [γ0, γm]. The number

of knots depends on the degree of the curve and the number of control points, such that m = k + n+ 1.

Apart from the control points, the knot vector plays a crucial role in defining the shape and behavior of a

B-spline curve or surface. For that, one can define its multiplicity and spacing:

• The multiplicity of a knot refers to the number of times it is repeated in the knot vector. Higher

multiplicities indicate that the corresponding control points have a stronger influence on the shape

of the B-spline in that region. Increasing the multiplicity of a knot reduces the continuity of the

curve at that knot. Specifically, the curve is (k − p) times continuously differentiable (has Ck−p

continuity) at a knot with multiplicity p, with (p ≤ (k + 1)) [52].

A B-spline is said to be clamped if the multiplicity of the first and last values of the knot vector is

(k + 1). That is:

Γ = [ γ0, γ1, ..., γk︸ ︷︷ ︸
k + 1 repeated knots

, γk+1, ..., γn︸ ︷︷ ︸
n − k internal knots

, γn+1, ..., γn+k+1︸ ︷︷ ︸
k + 1 repeated knots

] (3.5)

A first and last positions of a clamped B-spline coincide with its first and last control points.

• The spacing between adjacent knots determines the influence of the corresponding control points.

Closer knots result in a more localized effect, while widely spaced knots lead to a smoother, more

gradual influence. A B-spline is said to be uniform if its knots are equidistant, i.e, the knots are

given by

γi = (i− 1)∆, i = 1, ...,m (3.6)
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3.1.5.B Uniform Cubic B-Spline Curves

In this section we explore the application of the previous section to a specific case: a uniform cubic

B-spline, i.e., with k = 3. Every point of a uniform B-spline has multiplicity 1, therefore, the curve has C2

continuity. Specifically:

• Each segment (i.e., each Bezier curve) is continuous. Furthermore, the final point of the segment

i has the same coordinates as the first point of the segment i+ 1 - C0 continuity

• The first derivative of each segment is continuous. Furthermore, the first derivative at the end of

segment i is the same as the first derivative at the first point of segment i+1. In other words, there

is no abrupt change in slope - C1 continuity

• The final point of segment i has the same coordinates as the first point of segment i+ 1. In other

words, there are no abrupt changes of polarity - C2 continuity

Let’s now consider that the uniform cubic B-spline is composed only of 4 control points (n=3), there-

fore with only 1 segment. The knot vector is therefore defined as:

Γ = [0, 1, 2, 3, 4, 5, 6, 7]T (3.7)

Using Equations (3.2) to (3.4) we can now define a unidimensional, uniform cubic spline as:

C(γ) = B0,3(γ)P0 +B1,3(γ)P1 +B2,3(γ)P2 +B3,3(γ)P3 (3.8)

=
1

6
[(1− γ)3P0 + (3γ3 − 6γ2 + 4)P1 + (−3γ3 + 3γ2 + 3γ + 1)P2 + γ3P3] (3.9)

=
1

6
[(−γ3 + 3γ2 − 3γ + 1)P0 + (3γ3 − 6γ2 + 4)P1 + (−3γ3 + 3γ2 + 3γ + 1)P2 + γ3P3] (3.10)

where γ ∈ [0, 1[. Equation (3.10) can be rearranged in the following matrix form:

C(γ) =
1

6

[
γ3 γ2 γ 1

] 
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0



P0

P1

P2

P3

 (3.11)

Using this notation, it is possible to extend it to a general case of n+1 points and n−k+1 segments.

For that, let’s assume γ ∈ [0, n − k + 1], and define i := ⌊x⌋, such that γ − i ∈ [0, 1[. To compute the

current curve position:

C(γ) =
1

6

[
(γ − i)3 (γ − i)2 (γ − i) 1

] 
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0



Pi

Pi+1

Pi+2

Pi+3

 (3.12)
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This representation offers significant advantages by allowing us to store only the essential information

required for computing the current segment. It eliminates the need to expand the knot vector to include

n + k + 2 knot values and removes the need to retain the previous control points that are no longer

needed. Moreover, it facilitates the pre-computation of the required basis functions, eliminating the need

for recursive computation when drawing a new segment. Appendix A provides a detailed explanation of

the computations presented above.

When dealing with 2-dimensional paths, like the ones in this work,Equation (3.12) can be applied to

each dimension independently.

Equation (3.12) is also a useful approach to compute the first derivative of the path in order to the

parametrized variable. The only part of the definition of the B-spline that depends on γ is the vector[
(γ − i)3 (γ − i)2 (γ − i) 1

]
which has trivial derivatives.

∂C

∂γ
(γ) =

1

6

[
3(γ − i)2 2(γ − i) 1 0

] 
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0



Pi

Pi+1

Pi+2

Pi+3

 (3.13)

The same process can lead us to the second derivative of the path in order to the parametrized

variable:

∂2C

∂γ2
(γ) =

1

6

[
6(γ − i) 2 0 0

] 
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0



Pi

Pi+1

Pi+2

Pi+3

 (3.14)

Figure 3.3 presents an example of a bi-dimensional uniform cubic B-spline, with 13 control points. A

uniform B-spline is not a clamped B-spline, i.e., the first and last positions of the curve do not necessarily

coincide with its first and last control points. Although, in this example, we have repeated the first and

last control points 4 times, forcing the curve to be clamped. Figure 3.4 shows the first and second

derivatives in each dimension, providing additional insights into the behavior of the curve.
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Figure 3.3: Example of a bi-dimensional uniform cubic B-spline

(a) First derivative (b) Second derivative

Figure 3.4: First and second derivatives of the bi-dimensional uniform cubic B-spline from Figure 3.3

3.1.5.C Spiral curves

To enhance the quadrotor’s surveillance mission, our proposed solution involves guiding it along a two-

dimensional spiral trajectory. This trajectory is generated through a discretization process of a spiral

curve. Therefore, it is crucial to establish a parametrization for the spiral curve. One possible approach

is to utilize parametric equations, which can be expressed as follows:

x = rx(γ) cos(θ(γ)),

y = ry(γ) sin(θ(γ)).
(3.15)

Here, γ represents the parametric variable, θ(γ) determines the angular variation of the curve, while the

functions rx,y(γ) can be selected to control the rate at which the spiral’s radius grows.
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Let’s consider a simple case from Equation (3.15):

rx(γ) = ry(γ) = γ,

θ(γ) = γ.
(3.16)

To calculate the angular velocity, is defined by:

ω =
∂θ(γ)

∂γ
= 1. (3.17)

To find the linear speed, v, we differentiate x and y with respect to γ and then compute the magnitude

of the resulting derivative vector. For the given example, it becomes:

v(γ) =

∣∣∣∣∣∣∣∣∂C(γ)

∂γ

∣∣∣∣∣∣∣∣ =
√(

dx

dγ

)2

+

(
dy

dγ

)2

= ω(γ)r(γ) = γ. (3.18)

From this example we can conclude that Equation (3.16) would lead to an incremental linear speed

of the discretization process. That is, if we increment the variable γ in regular intervals, the distance

between two consecutive discretized points increases with each step. This pattern is not desirable for

our application, where a consistent spacing between the discretized points is advantageous.

We follow the result from [53] which suggest a valid choice for rx(γ), ry(γ) and θ(γ) that lead to a

constant linear velocity (CLV) spiral. Defining VCLV as the linear velocity along the spiral and ∆r as

the spiral pitch or sampling pitch along the radial dimension (a measurement for the growth rate of the

radius), the chosen parametrization becomes:

rx(γ) = ry(γ) =

√
∆rVCLV

π
γ,

θ(γ) =

√
VCLV 4π

∆r
γ.

(3.19)

Figure 3.5 illustrate spiral curves generated from Equation (3.16) and Equation (3.19). In both cases,

the discretization was obtained by assigning uniformly spaced values to γ. However, there is a notable

difference between the two discretizations. With Equation (3.16), the discretization results in irregular

intervals between each discretized point. The distance between consecutive waypoints starts at a very

small value and grows to infinity. On the other hand, Equation (3.19) yields positions that are equally

distributed along the spiral, maintaining a consistent distance between waypoints.
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(a) Using Equation (3.16) (b) Using Equation (3.19)

Figure 3.5: Two examples of spiral parametrization and respective discretization

3.2 Problem statement

We aim to develop a real-time solution for early detection of wildfire events. To achieve this, we will utilize

an uncertainty map that captures the importance of specific positions for drone inspection at different

times. The proposed algorithm should be able to maximize the efficiency of the drone’s inspection by

directing it to the most relevant positions in the surveillance area. By utilizing sensors such as cameras

or smoke detectors, the algorithm will gather new information to infer the presence of a fire and to update

the uncertainty map.

We will also assume that the quadrotor has limited access to the map. This limitation may arise from

communication constraints between the vehicle and the ground computer responsible for generating

the complete map. It can also arise from onboard resource limitations, such as limited computational

resources or memory capacity, which affect the quadrotor’s ability to store and process extensive uncer-

tainty maps or perform complex computations in real-time.

A complete formulation for the ideal surveillance algorithm was already introduced in Section 1.3. In

this chapter, we will focus on a specific case of that original problem, presented in Equation 1.2. This

approach allows us to consider certain simplifications while still achieving effective solutions. We will:

• Narrow our scope to a single map problem, where K = 1

• Adopt an empirical approach to determine the set of waypoints φ that will be utilized by the path

planner, instead of directly addressing the sub-problem outlined in Equation 1.3

• Consider that the uncertainty map h(x) is modeled as a discrete GM function, as explained in Sec-

tion 2.3.1. Furthermore, we assume that a previously developed surveillance system is responsible

for maintaining the uncertainty map.
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We have opted to focus on the case where K = 1 because the sub-problems exhibit a high degree

of independence from each other. By narrowing our attention to a single map, we can dedicate our

research efforts to a specific instance and develop an algorithm that can be consistently applied to the

remaining sub-problems.

Regarding the second consideration, our decision is driven by a trade-off between accuracy and

complexity. Solving the original problem using integral calculations and area unions would be computa-

tionally expensive. Instead, by leveraging our intuition regarding the map’s structure we aim to find an

effective solution to the problem at hand.

3.3 Proposed solution

Our proposed algorithm is based on the observation that the uncertainty map is likely to contain multiple

local maxima, which correspond to areas of higher uncertainty where the quadrotor needs to conduct

detailed surveillance. Intuitively, the vehicle should navigate towards one of these local maxima, allowing

it to gather new measurements and reduce uncertainty in those specific areas. Hence, each local

maximum will serve as a target location for the quadrotor to reach.

To guide the vehicle towards this target location, we employ the hybrid algorithm described in Section

2.4.2. This algorithm has demonstrated efficient convergence to local maxima of GM functions within a

limited number of iterations. Once it arrives at the target location, it carries out a surveillance mission

using a spiral path to systematically scan the region.

Figure 3.6 provides a visual representation of the entire process. The path that must be followed by

the quadrotor is parametrized as a two-dimensional uniform cubic B-spline. The vehicle is controlled

by a path following contoller designed to ensure that the quadrotor’s position p(t) converges to a tube

around the desired position pd(γ) (corresponding to the variable C(γ of the B-spline computations). This

convergence can be made arbitrarily small, effectively making ||p(t)− pd(γ)|| approach a neighborhood

of the origin. Our path following algorithm generates a set of angular references, which then need to be

converted into thrust and angular references to be tracked by the quadrotor’s inner loop controllers.
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Figure 3.6: Diagram of the proposed solution. Each module is further explored in the following section

We will be developing our algorithms within the existing framework of the ISR’s flight arena. There-

fore, the purple input and output modules from Figure 3.6 should be interpreted as the correspondent

modules from Figures 3.1 and 3.2, which are responsible for communication with the motion capture

system and the PX4 autopilot. The gray module representing the generation of the uncertainty map is

assumed to be already developed, and we will consider the map to be generated as a GM function. The

white modules are the ones to be developed and will be explained in the following sections.

All modules have been developed using ROS and C++. Additionally, the waypoint generation has

been implemented as a separate ROS package. This design decision was made to enhance the inde-

pendence of the proposed strategies. By decoupling the waypoint generation from the path following

algorithm, it becomes possible to change any of them for improvements in the future.

3.3.1 Waypoint generation

The generation of waypoints could follow a technique based on flocking with a gradient term as in [54,55].

However, given the development of an optimization algorithm in Definition 1, our proposal resorts to

using the sequence of estimations for the maximum in tandem with the following state machine depicted

in Figure 3.7. The waypoint generation process is performed online, at regular intervals. Whenever a
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new waypoint is computed, it is sent to the path following ROS package through a ROS publication. The

waypoint generation state machine is divided into two main parts.

3.3.1.A States 1 and 2: Hybrid algorithm

In the first part, corresponding to states 1 and 2, the state machine employs the hybrid algorithm pro-

posed in Chapter 2. The state machine initiates by computing the first waypoint using the global strategy

(state 1). Based on the results from Chapter 2, we adopt the gradient descent with adaptive step

as the global strategy. This state suggests a series of waypoints that guide the quadrotor towards a

non-plateau region of the map, where the uncertainty values increase and the drone needs to conduct

detailed surveillance.

In each iteration, the state machine computes an estimation of the second-order derivative with

respect to each dimension of the map to determine if a transition to the local strategy is required. This

approach is similar to the one employed by the supervisor in the hybrid algorithm. For further details on

this computation, please refer to Section 2.4.2.

The local strategy state can be implemented using the gradient descent algorithm or any of its vari-

ants with momentum terms. The parameters for the local strategy are computed using the L-Lipschitz

and m-strongly convex constants.

State 1: Global algorithm

Hybrid algorithm with global
strategy

State 2: Local algorithm

Hybrid algorithm with local
strategy

State 3: Computing spiral
parameters

Quadratic least squares
regression using a sample of
the uncertainty map

State 4: Spiral
discretization

Get waypoints from a spiral
discretization with computed
parameters

Stop detected

Computation finished

Spiral surveillance no
longer beneficial

Start

Figure 3.7: State machine for waypoint generation

3.3.1.B States 3 and 4: Spiral trajectory

The second part, corresponding to states 3 and 4, is activated when the state machine is in state 2 and

detects that the waypoints are not improving its estimates for a local maximum. This condition can be

identified, for instance, by setting a minimum threshold that two consecutive iterations must be distanced

one from each other.

67



States 3 and 4 are responsible for defining and discretizing a spiral path that allows the quadrotor to

enhance its inspection of the area with high uncertainty using its onboard sensors. It is important to keep

in mind that the uncertainty map comprises distinct Gaussian functions, each with different covariance

values in each dimension. In this regard, we must consider the following aspects:

1. Path Following Performance: We aim to generate waypoints in a way that ensures a consistent

distance between consecutive waypoints, thereby improving path following performance.

2. Surveillance Coverage Performance: We aim to generate a spiral path that is adapted to the

expected region/Gaussian, maximizing the surveillance coverage performance.

To address the first consideration, we adopt a parameterization approach for the spiral path based

on the suggestion from [53], as discussed in Section 3.1.5.C. This parameterization allows us to easily

generate waypoints that are uniformly distributed along the entire spiral. However, it assumes a circular

spiral with rx(γ) = ry(γ), which does not fully meet the second consideration.

To address this limitation and meet the second requirement, we employ a neighbor map based on the

current drone position. This neighborhood corresponds to the grid position where the drone is located

and the five neighboring grids in each direction, resulting in a total of (2 × 5 + 1)2 cell values. These

values are utilized to conduct a quadratic regression using the least squares principle. This approach

involves solving the following optimization problem:

minimize
β̂

∑N
i=0 e

2
i (β̂). (3.20)

Here, N represents the number of data points to be fitted, β̂ denotes the regression parameters for the

model ĥ, which can be expressed as:

ĥ =
[
x y

] [ a b/2
b/2 c

]
︸ ︷︷ ︸

Q

[
x
y

]
+
[
d e f

] xy
1

 . (3.21)

Therefore, β̂ =
[
a b c d e f

]T , and the residual ei is defined as the difference between the

observed value h and the value predicted by the model using ĥ. To solve the least square problem, we

rely on a closed form solution provided by the normal equations.

To simplify the computations, we can assume that d ≈ e ≈ 0 and, therefore, ignore them. We can

also ignore the value of f since it does not affect the quadratic shape. By neglecting these variables we

simplify the equation and focus on the main components of the quadratic form. Furthermore, to adapt

the spiral radius to the desired shape we can find the major and minor axis of the ellipse defined by

[
x y

]
Q

[
x
y

]
= 1 (3.22)
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To do so, we compute the eigenvalues, λ1,2 , and eigenvectors, v1,2, of the matrix Q, which provides

an estimate for the shape of the area around the local maximum of the uncertainty map. Defining the

major and minor axis, and rotation of the ellipse as in Figure 3.8, the correspondent values are

a =
1√
λ1
, b = 1√

λ2
, α = arctan

(
v
(2)
1

v
(1)
1

)
, (3.23)

where λ1 < λ2, and vi =
[
v
(1)
i v

(2)
i

]T
denotes the eigenvector corresponding to the eigenvalue λi.

To prevent the magnitude of the standard deviation of a Gaussian from affecting the parameters

a and b, which are intended to characterize the shape of the Gaussian rather than its magnitude, a

normalization step is performed. Specifically, the values of a and b are normalized to satisfy the condition

||a+ b|| = 1, ensuring that their magnitudes do not influence the shape of the spiral.

Figure 3.8: Characterization of an ellipse for the spiral path

Using these shaping parameters, and defining Pcenter as the waypoint where the local maximum was

detected, the spiral path is parametrized as

C(γ) = Pcenter +

[
cos (α) − sin (α)
sin (α) cos (α)

] [
a · r(t) cos(θ(γ))
b · r(t) sin(θ(γ))

]
, (3.24)

where

r(γ) =

√
∆rVCLV

π
γ,

θ(γ) =

√
VCLV 4π

∆r
γ.

(3.25)

The parametrization variable γ is incremented by one unit after each discretized point. By adopting

this strategy, the interpretation of VCLV becomes simpler: it represents the distance that the parametriza-
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tion variable travels along the spiral before the next discretization. The value of ∆r can be adjusted for

each vehicle based on its sensor’s range.

The spiral curve is discretized regularly by the waypoint generation algorithm, and each waypoint

is then sent to the path following ROS package, which is responsible for creating the final path to be

followed by the quadrotor.

The state machine switches from state 4 to state 1 if one of the following conditions is met:

• A new map was received and the quadrotor is at a position where the estimation of the second-

order derivative falls below a defined threshold

• The angle between the gradient at the current waypoint location and a vector pointing to the center

o the spiral, defined as the difference between the current waypoint and the center of the spiral ex-

ceeds a defined threshold. This threshold, such as 90°, indicates that the next waypoint computed

by the hybrid algorithm is likely to lead the vehicle to a new region with higher uncertainty.

The second condition is designed to drive the vehicle to a new non-plateau region with a distinct local

maximum, even if the next map has not been received. However, since a complete cycle of the state

machine is assumed to take longer than the refreshing period of the uncertainty map filter, the state

machine can be interrupted at any time. This allows for flexibility in responding to new information or

changes in the environment.

• If the new map is received while the state machine is in state 2: it can continue in this state if the

current location of the drone at the new map is considered near a local maximum. In the other

case, the state machine will transit to state 1, and a global search is performed.

• If the new map is received while the state machine is in state 4: the spiral path can be interrupted

if the current location of the drone no longer justified a spiral surveillance mission.

3.3.2 B-spline path

The path following ROS package receives individual waypoints and accumulates them for use in the B-

spline module. This module parameterizes the path to be followed by the vehicle using a 2-dimensional

uniform cubic B-spline. It is important to note two aspects:

• The waypoints are used as control points to construct the B-spline. Therefore, the desired path

does not necessarily pass directly over the waypoints. However, this is not a concern because the

main objective of the waypoints is to guide the quadrotor to a maximum of the uncertainty map.

Additionally, the quadrotor will still traverse through high uncertainty zones where it can gather

measurements using its sensors. This is possible because the B-spline path lies within the convex

hull created by the control points.
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• The path following ROS package is unaware of whether the current waypoints are generated by

states 1, 2, or 4 of the state machine shown in Figure 3.7. Consequently, the final path to be

tracked by the vehicle is generated in the same manner, regardless of whether the control points

are obtained from the hybrid optimization algorithm or the discretization of the spiral curve.

To ensure a smoother initial movement of the drone the first waypoint is repeated four times, like

in the example from Section 3.1.5.B. This results in the parameterized path coinciding with the first

waypoint. By doing so, the drone’s initial movement becomes less aggressive, allowing for a more

gradual transition onto the planned path.

This module also takes in the time derivative of the parametrization variable γ̇. This value will be

interpreted in the following section as the speed of a virtual target moving along the desired path gener-

ated by the B-spline module. However, the module adjusts this value based on the current position error

between the vehicle and the last computed curve position. Let us define this error as:

ep = p(t)− pd(γ). (3.26)

The idea is to slow down the progression of γ when the position error increases. This allows the

vehicle to converge to a neighborhood of the curve before the parametrized variable γ starts to follow

the desired speed profile. To achieve this, a sigmoid-like function is used as a scaling factor:

γ̇∗ = σ(ep)γ̇ (3.27)

where

σ(ep) = 1 +
1

1 + ee
2
p−c
− 1

1 + e−c
∈ ]0, 1]. (3.28)

By tuning the value of the parameter c, the user can control the level of impact that the increase in

position error has on γ̇. Figure 3.9 demonstrated an example of this function for c = 2.

Figure 3.9: Example of the function σ(ep), for c = 2, used as scaling factor for the update of γ
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To determine the current value of the parametrization variable, the module integrates the received

time derivative over the elapsed time since the previous iteration:

γ ← γ +∆tγ̇, (3.29)

where δt represents the time interval since the B-spline module’s previous iteration.

Another precaution that must be taken is to ensure that the value of γ is saturated based on the total

number of waypoints received. This saturation guarantees that the algorithm does not try to generate

more segments than the number of control points available. If the last segment is completely generated

and no further control points are received, γ is saturated to its maximum value, and this module continues

outputting the last point of that segment. Let N denote the number of waypoints received up to a given

instant. This means that:

γ ← max(γ +∆tγ̇, N). (3.30)

This module outputs the curve parametrization and it’s firsts and second derivative. These values

will be used by the path following algorithm to compute a position and velocity error that must be driven

to zero using a Proportional Derivative controller.

3.3.3 Path following

The key idea behind our path following strategy is to drive the vehicle to a virtual target that moves along

the desired path defined as a uniform cubic B-spline, denoted as pd(γ) ∈ ℜ2. Figure 3.10 illustrates this

approach.

Figure 3.10: Virtual target for path following representation

The concept of a virtual target is usually used to guide the motion of a vehicle along a specified path

by assigning a dynamic to this virtual target. Using this approach, it is possible to control the position that

the vehicle should track at each instant. For that, let’s consider that our virtual target is characterized by
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a desired speed profile given by:

vd(γ) =
Vdes

||p′d(γ)|| · (1 +K||p′′d(γ)||)
, (3.31)

where p′d(γ) and p′′d(γ) correspond to the first and second derivatives of the path with respect to γ,

respectively. The constant Vdes represents the desired constant speed for the vehicle.

This profile was suggested by Romulo et al. [56], allowing the virtual target, and consequently, the

vehicle, to reduce its velocity during sharper turns and approach the desired constant speed V in straight

lines. Furthermore, the term |p′d(γ)| enables the virtual target to slow down in larger path segments

where |p′d(γ)| increases.

Our path following algorithm aims to generate a set of desired accelerations, denoted as udes ∈

ℜ3, which latter will be converted by the next module into thrust and angular references for the PX4

autopilot’s inner loop (see Figure 3.6). Our path following rule is designed to achieve two main objectives:

• Convergence of the quadrotor’s position p(t) to a tube around the desired position pd(γ).This con-

vergence can be made arbitrarily small, effectively reducing the norm ||p(t)−pd(γ)|| to a neighbor-

hood of the origin.

• Convergence of the speed of the virtual target to the desired speed profile. In other words, ensuring

that |γ̇− vd(γ)| → 0 as t→∞. The speed of the virtual target can be seen as the progression rate

of the parametrize variable that is moving along the path.

Let us define the position and velocity errors between the vehicle, located at p(t), and the virtual

target as follows:

ep := p(t)− pd(γ) (3.32)

ev := ṗ− ∂pd

∂γ vd(γ) (3.33)

In Jacinto et al. [57], the author considered the quadrotor as a double integrator and proposes a con-

trol law based on the Lyapunov stability principle. The control law utilizes a Proportional-Derivative (PD)

controller for the vehicle’s position, along with a feed-forward term for the acceleration. The controller,

as proposed by Jacinto, can be expressed as follows:

udes = h(γ)vd(γ)−Kpep −Kvev, (3.34)

where udes represent the desired acceleration that must be verified by the vehicle, while Kp and Kv are

the control gains that need to be adjusted by the user. The function h(γ) is derived from the expression

of the path’s acceleration when the virtual target converges to the desired speed profile, i.e, when γ̇ =
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vd(γ). Therefore, we can obtain the corresponding expression for h(γ) as

d2pd
dt2

(γ) =
∂

∂t

(
∂pd
∂γ

vd(γ)

)
=

d

dt

(
∂pd
∂γ

)
vd(γ) +

∂pd
∂γ

dvd
dt

(γ)

=
∂2pd
∂γ2

γ̇vd(γ) +
∂pd
∂γ

(
∂vd
∂γ

γ̇

)
=

[
∂2pd
∂γ2

vd(γ) +
∂pd
∂γ

∂vd
∂γ

]
︸ ︷︷ ︸

h(γ)

γ̇

= h(γ)γ̇.

(3.35)

For our work, we extended the proposed control law by Jacinto and incorporated an Integral term to

further enhance the control performance. The inclusion of the Integral term allows for the integration of

the accumulated position errors over time, which helps to address steady-state errors and improve the

controller’s response to long-term deviations.

The extended controller can be expressed as follows:

udes = h(γ)vd(γ)−Kpep −Kvev −Ki

∫
ep, (3.36)

where
∫
ep represents a discrete integration process of ep, and Ki the correspondent control gain.

For controlling the speed of the virtual target γ̇ we assume that it can precisely follow the desired

speed profile, resulting in:

γ̇ = vd(γ). (3.37)

At this point, we have the capability to generate a smooth path using the waypoints provided by

the waypoint generator. Additionally, we have developed a following controller that generates a set of

accelerations for the quadrotor to follow in order to successfully converge to the desired path. In the

following section, we will introduce a module that is capable of converting these accelerations along

each axis of the vehicle into thrust and angular references. These references can then be utilized by the

inner-loop controller of the PX4 autopilot.

3.3.4 Accelerations to Trust and Angular references

Consider two frames used to characterize the dynamics of the vehicle, denoted as follows:

• Frame {B}: A body-fixed frame rigidly attached to the geometric center of mass of the quadrotor.

• Frame {U}: An inertial reference frame.

Let’s define the following notations:

• η1 = [x, y, z]T : Position of the origin of frame {B} measured in frame {U}.
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• η2 = [ϕ, θ, ψ]T : Orientation of frame {B} with respect to frame {U}, expressed in Euler angles.

• FRB = [X,Y, Z]T : External forces measured in frame {B}.

Figure 3.11: Adopted reference frames

Consider now that the quadrotor is modeled as a double integrator system given by

p̈ := η̈1 = −Z
m

U
BR(η2)e3 + ge3, (3.38)

where U
BR(η2) represents the rotation matrix from the body reference frame (see Figure 3.11) to the

inertial frame and can be defined as

U
BR(η2) = Rz(ψ)Ry(θ)Rx(ϕ) =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 (3.39)

with c and s denoting the trigonometric functions cos(.) and sin(.), respectively.

We will utilize the inner loop controller provided by the PX4 autopilot, which takes input as a set

of angular references [ϕdes, θdes, ψdes]
T and total thrust Z. Our outer loop is responsible for producing

desired accelerations udes. Hence, it is crucial to develop a subsystem capable of computing the total

thrust Z and the desired attitude using the desired accelerations. In this work, we will consider the yaw

angle reference, ψdes, as a free variable defined by the outer-loop controller. Specifically, we will not

impose any specific rules on how the yaw angle should vary. Instead, we will set ψdes to a constant

value of zero.

Expanding Equation (3.38), we get

udes = η̈1 = − 1

m
Rz(ψdes)[Ry(θ)Rx(ϕ)Z]e3 + ge3 (3.40)
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which can be further simplified by defining the auxiliary variable u∗ as

u∗ := Ry(θ)Rx(ϕ)Z. (3.41)

Once we receive the input udes from the outer-loop, it is possible to compute the value of the auxiliary

variable u∗ by replacing Equation (3.41) in Equation (3.40):

u∗ = −mRT
z (ψdes)(udes − ge3) (3.42)

which has a relationship with the required thrust by

||u∗|| = Z. (3.43)

Finally, to get the desired angular references, we can use the following relation:

u∗

||u∗||
=

cos (ϕ) sin (θ)sin (θ)
cos (ϕ) cos (θ)

 . (3.44)

By solving Equation (3.44) with respect to the attitude angles and considering that u∗ = [u∗1, u
∗
2, u

∗
3]

T , we

obtain the following expressions:

ϕdes = arcsin

(
−u

∗
2

Z

)
(3.45)

θdes = arccos

(
u∗1
u∗3

)
. (3.46)

We can now transmit the thrust and attitude references to the inner loop of the PX4 autopilot. The

PX4 autopilot then calculates the precise control signals to be sent to the quadrotor’s propellers, enabling

it to accurately follow the desired path.

3.4 Simulation results

In this section, the previously proposed solution is evaluated using a highly reliable and detailed simu-

lation environment provided by Gazebo. This powerful tool is integrated with the framework described

in Section 3.1.2, offering a simulation environment that closely resembles real-world flight arenas. The

integration ensures that all the developed modules in C++ and ROS are fully compatible and functional

within the Institute for System and Robotics’ flight arena framework. For a more comprehensive under-

standing of the framework’s technical details, please refer to Section 3.1.2.

From the solution description, some variables and constants can be tailored for the specific vehicle
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and usage case. Therefore, for the results presented in this section we defined the following:

• Global algorithm for state 1 of the state machine: Gradient descent with adaptive step

• Local algorithm for state 2 of the state machine: Heavy Ball algorithm with adaptive step

• The sigmoid-like function uses the parameter c = 2

• The spiral is discretized using VCLV = 1

• The spiral is discretized using ∆r = 2

• The desired speed profiled for the virtual target uses Vdes = 0.7 m/s

• The PID controller uses Kp = [5.5, 5.5, 4.5], Ki = [0.5, 0.5, 0.75], Kd = [2.0, 2.0, 1.0]

• The desired yaw angle is not controlled by the outer-loop. Therefore, along all fligth ψdis = 0

• The quadrotor’s altitude reference does not vary along its flight. The drone is pretended to maintain

a constant altitude of 1 meter

• The output acceleration computed by the path following algorithm was saturated to avoid agressive

manovour by the vehicle. Thefore ||udis|| ≤ 3m/s2.

The tests are structured in a constructive manner, starting with tests 1 and 2, where we evaluate the

path following ROS package using a predefined set of waypoints. This selection enables us to specif-

ically assess the performance of the B-spline generator, the path following controller, and the module

responsible for transforming the output of the outer loop controller into thrust and angular references.

Regarding tests 3 and 4, the uncertainty maps are discretized to simulate scenarios where a real

estimation filter may not be able to compute a continuous map accurately. To address this, the way-

point generation algorithms must consider the necessary adaptations, as explained in Sections 2.3.2

and 2.4.2.A.

For each test, the analysis is conducted using the estimated real position provided by the Extended

Kalman Filter of the vehicle.

3.4.1 Test 1: Path following performance

For the first test, the drone was initialized at (x, y) = (−4,−5). However, the first waypoint was defined

at (x, y) = (−3,−4). As a result, the vehicle had to overcome the initial error and converge to the desired

path. The last 5 waypoints were repeated 2 times to create an almost circular path of radius one meter.

This allowed us to test if the vehicle is able to adapt to a circular path.
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Figure 3.12 shows a top view of the desired path, defined by the B-spline module, and the actual path

of the vehicle. The figure also displays the location of each waypoint, which serves as control points for

the B-spline module, and the initial and final positions of the quadrotor.

Figure 3.12: Quadrotor test 1: Top view of the desired and performed path

From Figure 3.13(a) it can be concluded that the vehicle successfully followed the proposed path,

with the error between the desired position of the quadrotor and the actual position converging to ap-

proximately zero, despite the initial error. Furthermore, Figure 3.13(b) demonstrates that the vehicle also

achieved convergence to the desired speed of Vdes = 0.7 m/s. This speed is included in the algorithm

trough the desired speed profile of the virtual target vd(γ).
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(a) Position error

(b) Speed and desired speed

Figure 3.13: Quadrotor test 1: Performance of the path following algorithm

Figure 3.14 highlights the beginning of the quadrotor’s trajectory, showing the convergence of its

position towards the desired path. It also showcases the final part of the trajectory, where the last 5

waypoints were repeated 2 times to create an almost circular curve with a radius of one meter. These

figures provide visual evidence supporting the confidence in the performance of the system.

(a) Position error (b) Speed and desired speed

Figure 3.14: Quadrotor test 1: Trajectory highlights

3.4.2 Test 2: Path following performance for spiral curve

The second test was conducted to evaluate the performance of the following strategy when using way-

points computed from a discretization process of a spiral curve. To initiate the test, we parameterized a
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spiral with shaping parameters a = 2 and b = 1. The first 40 waypoints were then computed from this

spiral and utilized by the B-spline module to generate the desired path. Figure 3.15 shows a top view

of the desired path, defined by the B-spline module, and the actual path of the vehicle. The figure also

displays the location of each waypoint, which serves as control points for the B-spline module, and the

initial and final positions of the quadrotor.

Figure 3.15: Quadrotor test 2: Top view of the desired and performed path

Figure 3.16 demonstrates the successful convergence of the vehicle to the desired path, as evi-

denced by the tracking error approaching zero and the vehicle’s speed aligning with the desired velocity

of Vdes = 0.7 m/s. These results reaffirm the effectiveness of the proposed strategies in enabling accu-

rate path following.
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(a) Position error

(b) Speed and desired speed

Figure 3.16: Quadrotor test 2: Performance of the path following algorithm

Figure 3.17 shows a comparison between the parametrized spiral and the generated cubic B-spline.

Although they are not perfectly aligned, the B-spline effectively captures the shape and characteristics

of the spiral curve. It is noteworthy that while we could directly utilize the spiral’s parametrization for the

path following controller, this approach would deviate from the modular approach aimed for this work. By

using the B-spline representation, the path following ROS package remains agnostic to the computation

process of the waypoints, allowing the user to use another waypoint generation ROS package.

Figure 3.17: Quadrotor test 2: Comparison between the original spiral curve and the cubic B-spline generated
through a discretization process of the spiral.
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3.4.3 Test 3: Waypoint generation and path following with an uncertainty map

with 6 Gaussians

The third test aimed to assess the performance of the overall proposed algorithm, which includes the

waypoint generation module.

For this test, a discretized version of the previously introduced map consisting of 6 Gaussians, as

presented in the third test of the previous chapter (see Section 2.5.3), was utilized. In the continuous

version of this function, the hybrid algorithm successfully converged to local maximums. Therefore,

we expect the same capability in this test. However, it remains crucial to evaluate the performance of

the waypoint generation package in terms of the spiral path. The waypoint generation module should be

capable of extracting the shape of the neighborhood of each local maximum to infer how to parameterize

the spiral and enhance the surveillance task. This particular map has its Gaussians relatively separated

from each other, providing an interesting starting point to evaluate this capability.

Figure 3.18 depicts two runs of the complete algorithm with different initializations: (−9, 9) and

(9,−9). In both runs, it is evident that the waypoint generation algorithm successfully inferred the shape

of each spiral, allowing the quadrotor to adjust its flight path to measure the regions with higher un-

certainty effectively. Moreover, the generated waypoints, combined with the B-spline module, created a

smooth path that the vehicle was able to follow accurately.

(a) Top view of the desired and performed path (b) Composition of the uncertainty map with the loca-
tion of each of the 6 Gaussians and location of the
local maximums

Figure 3.18: Quadrotor test 3: Performance of the overall algorithm for two intialiatizations

Figure 3.19 illustrates the position tracking error and the speed of the vehicle during the first run

of the test, with an initial position at (−9, 9). From the graph, we can conclude that the tracking error

remained close to zero for most of the flight, with occasional peaks of around 0.5 meters in the more
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aggressive parts of the trajectory. These peaks are observed at the start of the flight when the vehicle

transitions from its initial location to the parametrized path, as well as when the vehicle hovers in a local

maximum and begins its spiral trajectory. During these instances, the quadrotor needs to accelerate

and overcome its dynamics to converge to the virtual target. An example of this behavior can be seen

around t = 90 seconds when the vehicle is at the local maximum located approximately at (−5,−5).

The speed of the quadrotor exhibits a similar pattern. It remains relatively constant at Vdis = 0.7m/s,

showing higher deviations from this value when the tracking error increases. The system’s ability to

make the drone track the desired path is demonstrated by achieving a root mean square error of the

tracking position of 0.0802 meters for the first run and 0.0977 meters for the second run.

(a) Position error

(b) Speed and desired speed

Figure 3.19: Quadrotor test 3: Performance of the path following algorithm for the first run with initial location (−9, 9)

3.4.4 Test 4: Waypoint generation and path following with a random uncertainty

map

The procedure for the fourth test is similar to the previous one. However, in this case, we used a randomly

generated map consisting of 15 random Gaussians. The centers of these Gaussians were generated

using µk =
[
µx1

µx2

]T , where µx1 , µx2 ∈ [−10, 10]. The covariance matrices for the Gaussians are

generated using Σk =

[
σ2
1 0
0 σ2

2

]
, where σ1, σ2 ∈ [1, 21].

Figure 3.20 we illustrate one run of the complete algorithm with the drone starting at (−14,−10).

The waypoint algorithm successfully suggested waypoints that guided the vehicle to three distinct local
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maxima. For each maximum, the quadratic regression using the least squares principle was able to

determine a valid parametrization for the spiral curve, considering the length of the major and minor

axes and the correct inclination angle.

This particular map poses a significant challenge due to the highly overlapping Gaussian functions.

For instance, the non-plateau region around (0,−5) has a shape that deviates significantly from a Gaus-

sian shape. Despite this, our algorithm was able to extract certain properties that directed the vehicle to

survey the area with the highest uncertainty first. In fact, during the first lap, the spiral curve successfully

traversed the entire yellow area.

(a) Top view of the desired and performed path (b) Composition of the uncertainty map with the loca-
tion of each of the 15 Gaussians and location of
the local maximums

Figure 3.20: Quadrotor test 4: Performance of the overall algorithm

Figure 3.21 depicts the position tracking error and speed of the vehicle, exhibiting a similar perfor-

mance to the previous tests. Notably, there are four prominent peaks in both the tracking error and the

vehicle’s speed. These peaks occur during the initial movement of the vehicle and at the beginning

of each spiral path. The system’s ability to make the drone track the desired path is demonstrated by

achieving a root mean square error of the tracking position of 0.062 meters.
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(a) Position error

(b) Speed and desired speed

Figure 3.21: Quadrotor test 4: Performance of the path following algorithm

3.5 Conclusion

In this chapter, we proposed a real-time surveillance system inspired by the optimization problem for-

mulation in Chapter 1. We relied on empirical intuition to develop a system capable of analyzing the

uncertainty map and suggesting a set of waypoints to navigate the vehicle through the most uncertain

areas.

After discussing relevant background theory of aerial vehicles, we progress to the control of a quadro-

tor using feedback control algorithms and the challenges of path following controllers that enable precise

and smooth navigation along predetermined paths. To explore the parametrization of these paths, we

conducted a detailed review of B-spline and spiral curve parametrization, with a particular focus on

uniform cubic B-splines and Constant Linear Velocity spirals.

Our proposed solution consists of a system divided into two distinct but interconnected components:

i) a waypoint generation package that directly maximizes the value of the uncertainty function; ii) a

path following package that incorporates smooth cubic B-spline parametrization and an outer-loop path

following PID controller. This modular design allows users to test alternative algorithms for analyzing

uncertainty and suggesting waypoints, or to integrate our approach with different path following methods.

Finally, our complete system was analyzed using a highly reliable and detailed simulation environ-

ment provided by Gazebo, integrated with ISR flight arena’s framework. This allowed our tests to repli-
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cate flight conditions and closely resemble real-world scenarios. The tests were structured in a con-

structive manner, starting by the validation of our path following package using predefined waypoints.

We then proceeding for the evaluation of the complete approach, using two uncertainty maps. The re-

sults showed a path that drove the vehicle through the most uncertain areas, with near straight lines

guiding the vehicle to local maxima and spiral curves that successfully shaped its evolution as a function

of the area where the quadrotor was located.
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In conclusion, this master’s thesis has focused on the development of a real-time surveillance system

specifically designed for wildfire monitoring. The primary objective was to design a system that utilizes

an uncertainty map to identify the most relevant location for drone inspections. Through a comparative

analysis of existing surveillance systems, this thesis proposed the idea of adding an overlay layer that

can complement other solutions with drones to inspect high-priority zones. The inspection problem is

formulated mathematically as a maximization of the uncertainty value within the measured areas along

the trajectory followed by the vehicle. Such an approach has the potential to have an early detection of

wildfire ignitions.

Chapter 2 was dedicated to the creation of a hybrid algorithm capable of converging to local max-

imums of non-convex functions. To achieve this, a comprehensive literature review on first-order opti-

mization algorithms was conducted, highlighting their respective strengths and limitations. By model-

ing non-convex functions as GMs, it was seen that an alternative algorithm was necessary to address

plateau regions with very low gradient magnitudes while avoiding divergence in regions with high gradi-

ent magnitudes. Our algorithm was tested and shown to overcome these challenges, converging to a

local maximum in every test performed. Furthermore, the presented algorithm is also able to auto tune

its parameters based solely in the estimate of two parameters to characterize the objective function.

Chapter 3 presents a real-time solution designed to guide a quadrotor through the most uncertain

areas of an uncertainty map. We begin by formulating a trade-off solution between the accuracy and

complexity of the original problem. The proposed solution relies on an empirical approach to analyze

the received uncertainty map and determine the set of waypoints to be extracted. These waypoints

can be generated using either the hybrid algorithm proposed in this study or a spiral parametrization

technique that adapts its shape to the non-plateau Gaussian region where the vehicle is located, thereby

enhancing surveillance coverage. We explore how to parametrize this adaptable spiral parametrization

using a sample from the objective function.

In the subsequent sections, we develop a path following algorithm capable of utilizing the generated

waypoints to compute a smooth cubic B-spline path. We provide a detailed description of B-spline

parametrizations and explain how we can adapt them to our problem. To follow the desired path, we

suggest the use of a PID outer-loop controller capable of computing acceleration references, which are

later translated into thrust and angular values.

To evaluate the performance of our approach, we conducted tests in a highly reliable and detailed

simulation environment provided by Gazebo. This simulation environment closely emulates real-world

flight arenas, ensuring the accuracy and fidelity of our path following algorithm. The results obtained

from these tests affirm the success of our approach, as we observed a maximum root mean square

error of the tracking position of 0.098 meters, observed in the second run of the third test. Furthermore,

the trajectory is successfully tailored to address the shape of the uncertainty region in which the drone
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was conducting surveillance. This showcases the precision and robustness of our proposed solution.

4.1 Future work

The work presented in this thesis can be further developed and tested. Namelly:

• Test the proposed hybrid algorithm in Chapter 2 with different oracles that provide estimations for

the L-Lipschitz and m-strongly convex constants. As the main contribution of the second chapter

is the hybrid algorithm, it is important to assess its independence from our oracle. Another oracle

could use, for example, evaluation of the objective function instead of evaluation of the individual

Gaussians;

• Test and adapt the behavior of the proposed hybrid algorithm to non-convex functions when they

are not modeled as GMs. Our approach may assume certain conditions verified by GM functions

but not verified by other non-convex functions. For example, it would be pertinent to evaluate the

performance in functions with several local minimizers;

• Test the surveillance algorithm from Chapter 3 with more than one map, incorporating consequent

maps generated using measurements gathered by the deployed vehicle. Our approach is designed

to react to updates in the uncertainty map. However, there could be unforeseen dynamics due

to changing conditions in the information sources used by the estimation filter that need to be

considered by our algorithms;

• Introduce sensor models of the onboard sensor in the path parametrization and following. Different

sensors may impose operational constraints, such as maximum velocities or specific attitudes

(especially for the yaw angle), in order to maximize their performance. Therefore, it would be

important to assess these characteristics in the path planning phase;

• Test the proposed architecture from Chapter 3 in a real flight arena. Although simulation tools

like Gazebo are capable of accurately emulating aerial vehicle dynamics, it is important to test the

algorithms in real flight. Real conditions introduce nonlinearities, disturbances, and noises that

cannot be predicted in simulation tools;

• The performance of our algorithm can be compared with the performance of solutions generated

using optimizers that can directly solve the optimization problem formulated in the first chapter,

such as Model Predictive Control.
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tecting tomorrow, I. Clark, K. Poljanšek, A. Casajus Valles, and M. Marı́n Ferrer, Eds. Publications

Office, 2021.

[3] Resolução do Conselho de Ministros n.º 159/2017, “Diário da república, 1.ª série-n.º 209-30 de
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A
Uniform Cubic B-Splines

This appendix provides a detailed explanation of obtaining Equation 3.12. The following properties are

important in this process:

• Non-negativity: Bi,j is always non-negative.

• Local Support: The basis function Bi,j is a non-zero polynomial for γ ∈ [γi, γi+j+1].

• Partition of unity: From the recursive relation defined in Equations (3.3) and (3.4), for any valid

γ, the non-null B-spline functions are positive and add up to 1.

Based on these properties, it can be concluded that a uniform cubic B-spline with 4 control points

(n = 3) is correctly defined only for γ ∈ [4, 5[. Beyond this range, the partition of unity property is not

satisfied.

Figure A.1 illustrates an auxiliary scheme for computing the basis functions of our B-spline. The

green functions Bij represent the functions that are non-zero within the interval γ ∈ [3, 4[, as defined in

Equation 3.3. Computing the curve as in Equation (3.2):
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B0,3 =
1

6
(4− γ)3 (A.1)

B1,3 =
1

6
(γ − 1)(4− γ)2 + 1

6
(5− γ)(γ − 2)(4− γ) + 1

6
(5− γ)2(γ − 3) (A.2)

B2,3 =
1

6
(γ − 2)2(4− γ) + 1

6
(γ − 2)(5− γ)(γ − 3) +

1

6
(6− γ)(γ − 3)2 (A.3)

B3,3 =
1

6
(γ − 3)3 (A.4)

Let us now introduce a change of variable, γ′ = γ − 3:

B0,3 =
1

6
(1− γ′)3 (A.5)

B1,3 =
1

6
(γ′ + 2)(1− γ′)2 + 1

6
(2− γ′)(γ′ + 1)(1− γ′) + 1

6
γ(2− γ′)2 (A.6)

B2,3 =
1

6
(γ′ + 1)2(1− γ′) + 1

6
γ′(γ′ + 1)(2− γ′) + 1

6
γ2(3− γ′) (A.7)

B3,3 =
1

6
γ′3 (A.8)

where γ′ ∈ [0, 1[. By performing some algebraic manipulation, we can obtain an equivalent definition to

the one given in Equation 3.10.

Figure A.1: Auxiliary scheme to compute the basis functions of a uniform cubic B-spline with 4 control points

Let’s consider the addition of a new control point, P4, which introduces a new segment in the B-spline.

This segment is defined by the points P1, P2, P3, P4, and the B-spline curve can be expressed as:

C(γ) = B1,3(γ)P1 +B2,3(γ)P2 +B3,3(γ)P3 +B4,3(γ)P4, (A.9)

where γ ∈ [4, 5[. In A.2, an auxiliary diagram is presented to visualize the computation of the basis
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functions for the second segment. By applying the same process as before and introducing the change

of variable γ′ = γ − 4, such that γ′ ∈ [0, 1[, we can observe that all the basis functions used to define

each segment remain the same as those defined in 3.10.

Figure A.2: Auxiliary scheme to compute the basis functions of the second segment of a uniform cubic B-spline
with 5 control points

In conclusion, by using a parameterized variable γ′ = γ − ⌊x⌋ within the interval [0, 1[ and employing

the same basis function, we can effectively compute the current segment of the B-spline curve for a

generic number of control points. This allows for a consistent and convenient representation of the

B-spline, regardless of the number of control points or the specific segment being evaluated.

99


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Motivation
	1.1.1 Wildfires
	1.1.2 Chemical, Biological, Radiological and Nuclear threats
	1.1.3 Human activity monitoring

	1.2 State of the Art on Surveillance Systems
	1.2.1 Wildfires Surveillance Systems

	1.3 Envisioned Surveillance Architecture
	1.3.1 Mathematical Definition

	1.4 Thesis Outline

	2 Non Convex Function Optimization
	2.1 Background Theory
	2.1.1 Optimization algorithms

	2.2 State of the Art on Gradient Search Algorithms
	2.2.1 Gradient Descent
	2.2.2 Adaptive Step
	2.2.3 Momentum Algorithms
	2.2.4 Optimal Parameters
	2.2.5 Hybrid Algorithm

	2.3 Problem Statement
	2.3.1 Gaussian mixture as a non-convex function
	2.3.2 Discrete Objective Function
	2.3.3 Illustrative example
	2.3.4 Conclusion from the illustrative example

	2.4 Proposed solution
	2.4.1 Gaussian mixture Oracle design
	2.4.2 Hybrid Algorithm for Gaussian mixture functions
	2.4.2.A Supervisor's extra step for discrete functions


	2.5 Results
	2.5.1 Test 1: GM with K=1
	2.5.2 Test 2: Gaussian mixture with K=5 far Gaussians
	2.5.3 Test 3: Gaussian mixture with K=6 near Gaussians
	2.5.4 Test 4: Random Gaussian mixture with K=15 Gaussians
	2.5.5 Test 5: Hybrid algorithm with adaptive parameters

	2.6 Conclusion

	3 UAV Path Planning and Path Following
	3.1 Background Theory
	3.1.1 Unmanned Aerial Vehicles
	3.1.2 Flight Arena Technologies
	3.1.3 Quadrotor Control
	3.1.4 Path following
	3.1.5 Path parametrization 
	3.1.5.A B-Splines Curves
	3.1.5.B Uniform Cubic B-Spline Curves
	3.1.5.C Spiral curves


	3.2 Problem statement
	3.3 Proposed solution
	3.3.1 Waypoint generation
	3.3.1.A States 1 and 2: Hybrid algorithm
	3.3.1.B States 3 and 4: Spiral trajectory

	3.3.2 B-spline path
	3.3.3 Path following
	3.3.4 Accelerations to Trust and Angular references

	3.4 Simulation results
	3.4.1 Test 1: Path following performance
	3.4.2 Test 2: Path following performance for spiral curve
	3.4.3 Test 3: Waypoint generation and path following with an uncertainty map with 6 Gaussians
	3.4.4 Test 4: Waypoint generation and path following with a random uncertainty map

	3.5 Conclusion

	4 Conclusion
	4.1 Future work
	Bibliography


	Bibliography
	Appendix A

	A Uniform Cubic B-Splines

