
Enhancing Truck Platooning Efficiency and Safety

Beatriz Baixinho Lourenço

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. Rita Maria Mendes de Almeida Correia da Cunha
Prof. Daniel de Matos Silvestre

Examination Committee
Chairperson: Prof. João Luís Da Costa Campos Gonçalves Sobrinho
Supervisor: Prof. Rita Maria Mendes de Almeida Correia da Cunha
Member of the Committee: Prof. Francisco Fernandes Castro Rego

November 2023

ii

Declaration
I declare that this document is an original work of my own authorship and that it fulfils all the requirements
of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgements

Foremost, I am greatly indebted to my thesis supervisor, Professor Daniel Silvestre, for providing me
with definite direction, guidance, and constant encouragement. To my co-supervisor Maria Charitidou,
whose insights and feedback have added depth and perspective to this research. To Pedro Roque for
his valuable suggestion and direction to accomplish this study. I feel incredibly fortunate to have had the
guidance and mentorship of such a highly respected academic.

My heartfelt appreciation goes out to my family. Especially to my parents, who surely cannot begin to
fathom the profound impact of their presence on this journey. To them, I owe not only their boundless
support but, more importantly, their endless patience.

And lastly, to Isabel Portugal, Mariana Toco, Rita Palma, Isabella Luppi, Jonne van Hasstregt, Miguel
Garcia Naude, Filip Geib and Gonçalo Silva, my former colleagues who have not only greatly encouraged
and inspired me throughout my university journey but continue to do so to this day. I could never thank
them enough.

This work was partially supported by the Portuguese Fundação para a Ciência e a Tecnologia
(FCT) through project FirePuma (https://doi.org/10.54499/PCIF/MPG/0156/2019), through Institute for
Systems and Robotics (ISR), under Laboratory for Robotics and Engineering Systems (LARSyS) project
UIDB/50009/2020, and through COPELABS, University Lusófona project UIDB/04111/2020.

v

vi

Resumo

A condução autónoma surge como uma oportunidade próspera para avanços notáveis no domínio
dos sistemas de transporte. A presente dissertação explora a área de frotas de camiões autónomos,
focando-se no desenvolvimento de uma abordagem de Controlo Preditivo Não Linear (NMPC), inserida
num enquadramento de Cruise Control Adaptativo Cooperativo (CACC). O trabalho desenvolvido aborda
alguns desafios críticos no desvio de obstáculos e nas manobras de mudança de faixas em ambiente
de estrada.

A contribuição central deste trabalho reside no desenvolvimento e implementação de um algoritmo
NMPC inovador adaptado ao controlo de frotas. A estrutura deste integra uma restrição de penalização
para garantir o desvio de obstáculos e manter a coesão da frota, otimizando simultaneamente os sinais
de controlo em tempo real. Várias experiências, incluindo cenários de desvios de obstáculos estáticos e
dinâmicos, validam a eficácia da abordagem proposta. Em todas as experiências realizadas, os veículos
seguem-se uns aos outros de perto, resultando em trajetórias suaves para todos os estados do sistema
e para os sinais de entrada. Além disso, no caso de uma travagem abrupta pelo veículo líder, a frota
de camiões mantém-se coesa. O NMPC proposto demonstra ser computacionalmente eficiente quando
comparado com o estado da arte.

Palavras-chave: Frotas de Camiões, Controlo Predictivo Não Linear (NMPC), Cruise Control Adaptativo
Cooperativo (CACC), Desvio de Obstáculos

vii

viii

Abstract

The advent of autonomous driving technologies has paved the way for notable advancements in the
realm of transportation systems. This thesis explores the dynamic field of truck platooning, focusing
on the development of a Nonlinear Model Predictive Control (NMPC) approach within a Cooperative
Adaptive Cruise Control (CACC) framework. The research tackles the critical challenges in obstacle
avoidance and lane-changing manoeuvres.

The core contribution of this work lies in the development and implementation of a novel NMPC
algorithm tailored to platoon control. This framework integrates a penalty soft constraint to guarantee
obstacle avoidance and maintain platoon coherence while optimising control inputs in real-time. Several
experiments, including static and dynamic obstacle avoidance scenarios, validate the efficacy of the
proposed approach. In all experiments, the vehicles closely follow one another, resulting in smooth
trajectories for all system states and control input signals. Even in the event of abrupt braking by the
ego vehicle, the platoon remains cohesive. Moreover, the proposed NMPC proves to be computationally
efficient when compared to the state-of-the-art.

Keywords: Truck Platooning, Nonlinear Model Predictive Control (NMPC), Cooperative Adaptive Cruise
Control (CACC), Obstacle Avoidance

ix

x

Contents

Acknowledgements . v

Resumo . vii

Abstract . ix

List of Figures . xvii

List of Tables . xix

List of Algorithms . xxi

Nomenclature . xxi

Acronyms . xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Vehicle Modelling . 5

2.1.1 Kinematic unicycle model . 6

2.1.2 Kinematic bicycle model . 7

2.1.3 Kinematic model for the general n-trailer . 8

2.2 Model Predictive Control . 10

2.2.1 Nonlinear Model Predictive Control . 11

2.2.2 Control Lyapunov Function . 13

2.2.3 Control Barrier Functions . 14

2.3 From Centralised to Distributed Predictive Control . 14

2.3.1 Graph Theory . 15

2.3.2 Multi-Agent Systems . 15

2.3.3 Leader-follower Multi-agent Systems . 17

3 State-of-the-Art 19

3.1 Safety Guarantees . 19

3.2 Cooperative Communication . 20

xi

3.2.1 The ACC Model . 20

3.2.2 The CACC Model . 21

4 Method 25

4.1 Problem Statement . 25

4.2 Proposed Algorithm . 26

4.2.1 Ego Vehicle . 26

4.2.2 Follower Vehicles . 34

4.2.3 CACC . 35

4.3 Implementation . 36

4.3.1 Localisation . 37

4.3.2 Perception . 37

4.3.3 Sensor Fusion . 38

4.3.4 Control of Vehicles . 39

4.3.5 Distributed Control . 40

5 Validation 45

5.1 Experimental Setup and Methods . 45

5.1.1 Performance Metrics . 45

5.1.2 Computational Resources . 45

5.2 Experiments . 47

5.2.1 Lane Changing Manoeuvres . 48

5.2.2 Static and Dynamic Obstacle Avoidance . 49

5.2.3 Abrupt Braking of the Ego Vehicle . 58

6 Discussion 61

6.1 Control of Nonlinear Systems . 61

6.2 Real-World Applications . 62

6.2.1 Overtaking . 62

6.2.2 Emergency Braking . 63

7 Conclusion 65

7.1 Key Findings and Contributions . 66

7.2 Future Work . 66

A Explanation of the 4th Order Runge-Kutta Method 69

B Khachiyan’s algorithm for Minimum-Volume Enclosing Ellipsoids 71

C Simulation Results 73

xii

List of Figures

2.1 Illustration of the point mass model representation. The model simplifies the vehicle’s

motion by considering it as a single point in space. 6

2.2 A schematic representation of a

kinematic unicycle model. Inspired and adapted from dandrea-novel_modelling_1991

(dandrea-novel_modelling_1991) [dandrea-novel_modelling_1991]. 7

2.3 A schematic representation of a kinematic bicycle model. Inspired and adapted from

paden_survey_2016 (paden_survey_2016) [paden_survey_2016]. 8

2.4 A schematic description of the general n-trailer with a car-like tractor. The system consists

of a leading car-like tractor that is connected to n passive trailers with a mixture of

on-axle and off-axle hitch connections. Inspired and adapted from lukassek_model_2021

(lukassek_model_2021) [lukassek_model_2021]. 9

2.5 Representation of decentralised 2.5a, distributed 2.5b and decentralised 2.5c control

architectures. P1, P2 and P3 represent plants controlled by the controller C or by the

controllers C1, C2 and C3 respectively. 16

3.1 Illustration of the Adaptive Cruise Control (ACC) framework. The upper controller

generates the desired acceleration signal, while the bottom controller maps the

acceleration to the brake or the throttle control signals. The Light Detection and Ranging

(LiDAR) sensor detects the distance between the two vehicles and predicts the obstacle

speed. Inspired and adapted from zhao_full-range_2014 (zhao_full-range_2014). . . . 21

3.2 Illustration of the Cooperative Adaptive Cruise Control (CACC) Leader-Follower Topology.

This schematic depicts the structure of a CACC-enabled vehicle platoon, including the

leader vehicle (represented in blue) and multiple follower vehicles (represented in light

grey), demonstrating the communication and coordination essential for safe and efficient

platoon operation. 22

xiii

4.1 A schematic description depicting the modelling of an obstacle and the resultant waypoint

generation in a simulated highway environment. On the left, a rectangle represents the

ego vehicle, while the rectangle on the right symbolises the obstacle ahead, while an

ellipsoid bounding it is displayed above it. The blue line illustrates the initial reference

trajectory of the ego vehicle. The red line traces the path used to determine the obstacle’s

leftmost boundary, where θ represents the line’s inclination angle. The red dot marks the

algorithm’s retrieval of the leftmost boundary. 29

4.2 Illustration of an Artificial Potential Field, featuring dimensionless and static obstacles

located at coordinates (0, 0) and (5, 5), respectively. For demonstrative purposes, the

penalty is represented by an exponential cost function. 33

4.3 Holistic view of system architecture for the ego vehicle. Illustrating the interplay between

control system, actuation, localisation, perception, sensor fusion, and obstacle detection

components. 37

4.4 Hierarchical representation of nodes and topics in the control system via the rqt graph

GUI tool. 40

4.5 Robotic Operating System (ROS) architecture and node communication illustration. The

roscore orchestrates the exchange of information among nodes, enabling collaborative

coordination and data flow. Inspired and adapted from [koubaa_coros_2015]. 40

4.6 A visual representation of the information flow in the platoon dynamics within ROS. The

ego vehicle is represented in blue and the different followers in light grey. 43

5.1 Simulated highway environment for proposed solution testing in Gazebo. 46

5.2 Visualization of LiDAR data integration. 46

5.3 Performance metrics for lane changing manoeuvres on a three trucks platoon configuration. 49

5.4 Sequential images illustrating a successful lane-changing manoeuvre. This set of four

equally spaced frames, captured from a 16-second clip, depicts the lane-changing

performance of the ego vehicle (equipped with LiDAR) and two following vehicles. 50

5.5 Performance metrics for lane changing with on a four trucks platoon configuration. 51

5.6 Snapshot from a 14-second video clip showcasing lane-changing manoeuvres . In this

frame, the ego vehicle, equipped with LiDAR, leads a platoon of three following vehicles

as they execute a coordinated lane change. 52

5.7 Performance metrics for a static obstacle avoidance scenario with a three vehicles platoon

configuration. 53

5.8 Snapshot from a 13-second video clip showcasing platoon of vehicles navigating past a

static obstacle. In this frame, the ego vehicle, equipped with LiDAR, leads a platoon of

two following vehicles as they execute a coordinated lane change. The static obstacle is

a light-grey cube placed on the rightmost lane of the highway environment. 54

5.9 Performance metrics for a dynamic obstacle avoidance scenario with a three vehicles

platoon configuration. 55

xiv

5.10 Snapshot from a 16-second video clip showcasing a platoon of vehicles navigating past

a static obstacle. In this frame, the ego vehicle, equipped with LiDAR, leads a platoon of

two following vehicles as they execute a coordinated lane change. The dynamic obstacle

being overtaken is alight-grey cube on the rightmost lane of the highway environment that

is independently controlled through a Proportional-Integral-Derivative Controller (PID). . . 56

5.11 Snapshot from a 14-second video clip showcasing platoon of vehicles navigating past

a dynamic obstacle. Here, the baseline Nonlinear Model Predictive Control (NMPC)

controller was employed. 56

5.12 Comparative analysis of the input signals magnitude for the baseline methods vs. the

novel proposed method. 57

5.13 Performance metrics for a abrupt braking of the ego vehicle scenario with platoon of three

vehicles. 59

5.14 Snapshot from a 12-second video clip showcasing platoon of vehicles. In this frame,

the ego vehicle, equipped with LiDAR, leads a platoon of two following vehicles. In this

experience the ego vehicle is disconnected from its controller leading to an abrupt brake. 60

C.1 In-depth snapshots of Figure 5.8. 74

C.2 In-depth snapshots of Figure 5.10. 75

C.3 In-depth snapshots of Figure 5.11. 76

xv

xvi

List of Tables

4.1 Specifications of the Hokuyo UTM-30LX LiDAR. 38

4.2 Initial setting of the Kalman Filter parameters. 39

5.1 Comparison of the computational time, in seconds, and iteration count between the Control

Barrier Function (CBF)s method and the Penalty method. These metrics offer insights into

the real-time capabilities of both approaches in overcoming obstacles. 57

5.2 Response times, in seconds, of following vehicles to ego vehicle’s abrupt braking. 58

xvii

xviii

List of Algorithms

1 Retrieve Leftmost Boundary Point of an Ellipse . 30

2 Dynamic Obstacle Avoidance with NMPC . 32

3 Dynamic Obstacle Penalty . 33

xix

xx

Acronyms

This document is incomplete. The external file associated with the glossary ‘symbols’ (which should be

called main.sls) hasn’t been created.

This has probably happened because there are no entries defined in this glossary. Did you forget to

use type=symbols when you defined your entries? If you tried to load entries into this glossary with

\loadglsentries did you remember to use [symbols] as the optional argument? If you did, check that

the definitions in the file you loaded all had the type set to \glsdefaulttype.

This message will be removed once the problem has been fixed.

ACC Adaptive Cruise Control

APF Artificial Potential Field

CACC Cooperative Adaptive Cruise Control

CBF Control Barrier Function

CLF Control Lyapunov Function

FoV Field of View

GPU Graphics Processing Unit

ICR Instantaneous Center of Rotation

IP Interior-Point Method

KF Kalman Filter

LCA Lane Change Assistant

LiDAR Light Detection and Ranging

LKA Lane Keeping Assistant

MPC Model Predictive Control

MVEE Minimum-Volume Enclosing Ellipsoid

NMPC Nonlinear Model Predictive Control

NLP Nonlinear Programming

ODE Ordinary Differential Equations

OCP Optimal Control Problem

PID Proportional-Integral-Derivative Controller

ROS Robotic Operating System

RK4 Runge-Kutta 4th Order

xxi

RViz ROS Visualization Tool

URDF Unified Robot Description Format

V2V Vehicle-to-Vehicle Communication

xxii

Chapter 1

Introduction

1.1 Motivation

The realm of autonomous driving has already begun to prove its potential to reshape the way we interact
with vehicles [bimbraw_autonomous_2015]. However, amidst the ongoing discourse surrounding
automation, the broader impact on transportation systems often escapes our attention.

In recent years, the transportation industry has witnessed significant advancements aimed at improving
the efficiency and safety of road-based freight transport systems. Among these advancements,
truck platooning has emerged as a promising solution. A platoon formation refers to a coordinated
and semi-autonomous convoy of vehicles travelling in close proximity [porfiri_environmental_2006].
By maintaining a short distance between the vehicles, platooning aims to leverage the benefits of
reduced aerodynamic drag, resulting in improved fuel efficiency and consequently lower emissions
[tsugawa_review_2016]. Additionally, platooning is reported to enhance safety and ease traffic
congestion [lee_impact_2021].

In 2017, the European Truck Platooning Challenge marked a pivotal initiation of efforts in this direction
[european_truck_platooning_challenge_european_nodate]. Furthermore, research stemming from
the event revealed a potential reduction of up to 15% in fuel consumption through truck platooning,
concurrently dispelling more conservative apprehensions regarding autonomous vehicle safety.
Following such, the EU truck platoon road-map [noauthor_eu_2017] envisions the deployment of
multi-brand platooning technology by 2025.

Moreover, these advancements in truck platooning hold significant relevance in the context of the freight
and distribution sector, which is increasingly grappling with the critical issue of a shortage of qualified
professional drivers [ji-hyland_what_2020]. As of 2021, approximately 10% of the total truck driver
positions in Europe, equivalent to 425,000 vacancies, remained unfilled. The situation is expected to
worsen, with a projected increase to 14% of unfilled positions by the end of 2022 [noauthor_one_2023].
In the broader context of logistics and transportation, where transportation costs often represent the
most substantial portion of overall expenses, this shortage is causing ripple effects across multiple
industries.

1

Despite its potential benefits, the implementation of truck platooning presents several challenges,
including platoon coordination and communication reliability. In the pursuit of refining existing strategies,
studies have delved into the intricacies of platoon shape, rearrangement, and formation dynamics,
as exemplified by the work of maiti_impact_2020 [maiti_impact_2020]. Furthermore, a parallel
line of research has studied communication protocols, striving to engineer seamless and reliable
mechanisms capable of addressing the challenges posed by the variable range between vehicles, as
demonstrated in the investigation by won_l-platooning_2022 [won_l-platooning_2022]. These studies
collectively highlight some of the intricate factors that must be managed to successfully deploy truck
platooning.

Additionally, one of the significant challenges in such a strategy is ensuring the safe and efficient
navigation of platoons, particularly during dynamic scenarios such as obstacle avoidance and lane-
changing manoeuvres. This underscores the critical need for the development of effective control
strategies that can pave the way for platooning deployment in real-world contexts. Notably, Model
Predictive Control (MPC) emerges as a fundamental control strategy because of its ability to handle
constrained multi-variable systems [hernandez_real-time_2016]. Using a model of the dynamics, MPC
generates solutions that minimise a cost function using both the future control actions and states.

Building upon this landscape of autonomous driving and platooning challenges, this thesis addresses
the problem of truck platooning navigation involving obstacle avoidance and lane-changing manoeuvres.
Through the lens of a NMPC approach within a CACC framework on a preceder-leader follower topology,
this work seeks to achieve safe and efficient platoon navigation.

1.2 Contributions

This thesis makes a significant impact on the field of autonomous vehicle technology and transportation
systems, particularly in the context of truck platooning. The key contributions of this work are outlined as
follows:

• Introduction of an NMPC approach for guiding trucks along predefined paths, involving lane-
changing manoeuvres with the aid of LiDAR data while adhering to formation and safety
requirements;

• The proposed method exhibits computational efficiency, making it suitable for real-time applications
in scenarios such as obstacle avoidance and overtaking;

• A comparative performance evaluation against a state-of-the-art approach for dynamic obstacle
avoidance, implemented in ROS, which demonstrates its practical applicability in real-world
situations;

• Providing insights into the real-world deployment of truck platooning by combining theoretical
exploration, advanced control strategies, and practical implementation, thereby granting valuable
information on the feasibility of deploying platooning solutions within real-world transportation
systems.

2

1.3 Thesis Outline

This dissertation is structured in seven chapters, including the present one. Chapter 1 provides an
overview of the motivation and objectives of the thesis. Chapter 2 delves into prior relevant research,
setting the foundation for the work: ranging from vehicle modelling to the introduction of control strategies
and multi-agent systems. Chapter 3 provides a comprehensive analysis of the current state-of-the-art of
existing control strategies and their implications. In Chapter 4 it is presented the methodology, including a
description of the proposed solution and details about its implementation. Chapter 5 rigorously assesses
the proposed solution by subjecting it to various scenarios. The results obtained are critically analysed
in Chapter 6, emphasising insights gained and potential implications. Lastly, Chapter 7 summarises
the findings of this dissertation, acknowledges the limitations of the methods employed, and outlines
promising directions for future research.

3

4

Chapter 2

Background

This chapter presents the mathematical and conceptual preliminaries required for the rest of the thesis,
thus providing a comprehensive and robust foundation for readers to grasp the detailed research work
that follows.

2.1 Vehicle Modelling

Understanding the motion of a vehicle is critical for developing an effective control system. While human
drivers have an intuitive understanding of how turning the steering wheel affects the vehicle’s rotation,
conveying this information to a controller requires a mathematical approach.

There are two primary approaches to represent a vehicle: dynamic and kinematic modelling
[dandrea-novel_modelling_1991]. A dynamical model evolves from force balances, while the latter
uses velocity constraints. In the case of wheeled vehicles, these velocity constraints make up a
nonholonomic model, which naturally arises when assuming the wheels of the vehicle roll without
slipping.

A nonholonomic
system can generally be represented as a nonlinear system [mcloskey_nonholonomic_1993]. This
representation can be expressed as follows:

ẋ = f(x,u). (2.1)

Here, the state vector x is typically chosen to represent the vehicle’s configuration while u represents
the various possible inputs such as steering, braking, and acceleration.

The effectiveness of model-based control is greatly influenced by the accuracy of the models employed.
While more accurate models can provide more precise predictions, they can also be computationally
expensive. One reason advanced vehicle models with higher fidelity are not commonly used for
planning is the high-dimensional state space they imply. In practical applications, efficient motion
planning modules require models with lower state dimensions, leading to the common use of kinematic
models.

5

The point mass model, as depicted in Figure 2.1, offers a simplified representation of a vehicle’s
motion.

x

y

v
θ

Figure 2.1: Illustration of the point mass model representation. The model simplifies the vehicle’s motion
by considering it as a single point in space.

This model assumes the vehicle moves without any rotational or translational motion other than along
its path. From a computational perspective, we would want a model as simple as possible. And in that
matter, the point mass model proves advantageous.

The state model captures the fundamental relationship between the vehicle’s speed, heading angle, and
its motion along the x and y directions. It can be represented mathematically as:

ẋ = f(x,u) =

 ẋ

ẏ

 =

 v cos θ

v sin θ

 (2.2)

The current model lacks the ability to account for rotation or orientation. The point mass model focuses
solely on the vehicle’s translational motion along the x and y directions, disregarding any changes in its
heading or yaw angle. To incorporate a sense of orientation into the model, we need to consider a more
sophisticated representation.

2.1.1 Kinematic unicycle model

One widely used model that introduces the notion of orientation is the kinematic unicycle model. Unlike
the point mass model, the kinematic unicycle model considers the vehicle as a rigid body with a
well-defined orientation. This model captures the essential dynamics of a vehicle’s motion, including
both translational and rotational aspects, providing a more comprehensive representation.

6

x

y

l

v θ

Figure 2.2: A schematic representation of a kinematic unicycle
model. Inspired and adapted from dandrea-novel_modelling_1991 (dandrea-novel_modelling_1991)
[dandrea-novel_modelling_1991].

A unicycle is a vehicle with a single orientable wheel [wu_lidar_2022]. Its configuration is described
by the position of the wheel contact point and the wheel orientation. In the context of a state space
model, the state vector represents the variables that define the system’s state, while the input vector
represents the control inputs that affect the system. For a unicycle model, the state vector defined as
x =

[
x y θ

]⊤
where x and y represent the position of the wheel contact point, and θ represents the

wheel orientation. The input vector can be defined as u =
[
v θ̇

]⊤
where v represents the linear velocity

of the unicycle, and θ̇ represents the angular velocity of the wheel.

To model the dynamics of the unicycle, we can write the complete state space model in matrix form:

ẋ = f(x,u) =

ẋ

ẏ

θ̇

 =

cos(θ)
sin(θ)

0

 v +

0
0
1

 θ̇ (2.3)

However, if we want our controller to be aware of the steering/tire angle, we need to introduce an additional
element to represent the tire’s movement relative to the current stick model. This introduces the concept
of a kinematic bicycle model.

2.1.2 Kinematic bicycle model

The kinematic bicycle model is an advanced representation of a vehicle’s motion, incorporating steering
behaviour [pereira_linear_2018]. This model assumes that the vehicle operates on a flat surface and
utilises front-wheel steering with perfect Ackermann steering geometry. In Ackermann steering, the
turning radius of the inner front wheel is smaller than that of the outer front wheel, resulting in a specific
relationship between the steering angles.

The Ackermann mechanism satisfies the following relation:

κ = 1/R = tan(α)/l (2.4)

7

where κ is the car-like vehicle’s curvature, α represents the steering angle of the front wheels, l denotes
the wheelbase of the vehicle, and R signifies the turning radius of the vehicle’s centre of rotation.

The concept of the Instantaneous Center of Rotation (ICR) is essential to understanding the kinematic
behaviour of the vehicle. The instantaneous centre of rotation is a virtual point around which the vehicle
appears to rotate instantaneously at a given moment. It lies at the intersection of the imaginary lines
connecting the rotation axes of the front wheels, as depicted in Figure 2.3.

x

y

α

l

v θ

ICR

Figure 2.3: A schematic representation of a kinematic bicycle model. Inspired and adapted from
paden_survey_2016 (paden_survey_2016) [paden_survey_2016].

To model the kinematic behaviour, we define the state space as follows:

ẋ = f(x,u) =

ẋ

ẏ

θ̇

α̇

 =

cos θ

sin θ
tan α

l
0

 v +

0
0
0
1

 α (2.5)

where x represents the state vector consisting of the vehicle’s position (x, y), orientation θ, and steering
angle α, and u represents the control input vector with longitudinal velocity v and α.

In the kinematic bicycle model, the vehicle’s motion is governed by the equations above, which account
for the influence of both the longitudinal and steering dynamics. This model provides a more realistic
representation of the vehicle’s behaviour compared to the simplified point mass model, making it suitable
for various trajectory planning and control applications.

2.1.3 Kinematic model for the general n-trailer

In the context of modelling trucks and heavy-duty vehicles, a kinematic model known as the general
n-trailer model is commonly employed [moradi_non-linear_2022] [ljungqvist_motion_2020-1]. This
model provides a comprehensive representation of the motion and dynamics of these vehicles, taking
into account the complex interactions between the tractor and multiple trailers.

The system consists of n + 1 vehicle segments, which include a leading car-like tractor connected to n

passive trailers. The connections between the segments can be either on-axle or signed off-axle hitch

8

connections. Each vehicle segment has a segment length li > 0 and a signed hitching offset mi. The
sign of mi is positive when the connection is located behind the preceding vehicle segment’s axle. If the
system has a mixture of hitching types, it is referred to as a general n-trailer. On the other hand, if the
hitching is either entirely on-axle or off-axle, it is called a standard n-trailer or a non-standard n-trailer,
respectively [michalek_trailer-maneuverability_2020].

The kinematic bicycle model is only capable of emulating the leading tractor, while the trailers according
to the standard unicycle kinematics when connected passively.

Let us now consider a single-track n-trailer kinematic structure comprising a tractor and an
arbitrary number of n single-axle trailers, all interconnected by passive rotary joints as depicted in
Figure 2.4.

xn

yn

βn

ln

vn θn

…

x1

y1 β2

m1

β1
l1

v1 θ1

x0

y0

m0

α

l0

v0
θ0

Figure 2.4: A schematic description of the general n-trailer with a car-like tractor. The system consists
of a leading car-like tractor that is connected to n passive trailers with a mixture of on-axle and
off-axle hitch connections. Inspired and adapted from lukassek_model_2021 (lukassek_model_2021)
[lukassek_model_2021].

The kinematic model of the general n-trailer system results in the nonholonomic model, i.e. the wheels
of the vehicle are assumed to be rolling without slipping, given by

ẋ = f(x,u) =

ẋ0

ẏ0

v̇0

δ̇0

θ̇0

θ̇1
...

θ̇n

=

v0 cos θ0

v0 sin θ0

u0

u1

v0
tan (α0)

l0
g1 (β1, v0, δ0)

...
gn (β, v0, δ0)

(2.6)

9

where x = [x0, y0, v0, δ0, θ0, . . . , θn] ∈ R3 ×
(
S1)n+2, with S = (−π, π], represents the state. And

u = [u0, u1] ∈ R2 the control input with acceleration v̇0 = u0 and steering rate δ̇0 = u1.

The global position [x0, y0]⊤ represents the Cartesian coordinates of the vehicles rear axle midpoint in
the fixed world frame. The longitudinal vehicle velocity is denoted as v0 and the steering angle as δ0.
The states of the trailers are provided by the heading angles θi, i = 1, . . . , n and each segment position
can be calculated by

 xi

yi

 =

 x0

y0

− i∑
j=1

lj

 cos θj

sin θj

− i−1∑
j=0

mj

 cos θj

sin θj

 (2.7)

with respect to the vehicle-tractor position [x0, y0]⊤. The difference in heading angles between each
segment, denoted by θi, i = 1, . . . , n, represents the hitching angle, given by

βi ≜ θi−1 − θi ∈ Bi = [−β̄i, β̄i], β̄i ∈ (0, π), i = 1, . . . , n (2.8)

with β = [β1, β2, . . . , βn]⊤.

The recursive formula for the transformation of the angular velocity, formulate the velocity transformation
as follows and introducing w =

[
θ̇0, v0

]⊤ and c = [1, 0]⊤ together with the transformation matrices

J i (βi) =

−mi−1 cos βi

li

sin βi

li
mi−1 sin βi cos βi

 i = 1, . . . , n, (2.9)

the functions gi (β, v0, δ0) : R→ R are computed recursively

g1 (β1, v0, δ0) = c⊤J1 (β1)w
...

gn (β, v0, δ0) = c⊤Jn (βn)Jn−1 (βn−1) . . .J1 (β1)w

(2.10)

The direction of motion is essential for the stability of the system in (2.6), notably, the joint-angle
kinematics are structurally unstable in backward motion (v0 < 0), where it risks folding and entering
what is called a jack-knife state (goos_hybrid_2002). Conversely, these modes remain stable during
forward motion (v0 > 0), which is the focus of this study. In the case of single-axle hitching only (mi = 0
for i = 0, . . . , n), the general n-trailer model aligns with the standard n-trailer configuration.

2.2 Model Predictive Control

MPC is a control strategy suitable for optimising the performance of constrained systems
[babu_model_2019]. It is typically formulated as a finite-horizon optimisation problem, where the
objective is to find the optimal control inputs over a finite time horizon, subject to the system dynamics

10

and constraints. Some of its state-of-the-art approaches are registered in [tiriolo_design_2023]
[cheng_model-predictive-control-based_2021].

More traditional control laws like the PID do not explicitly consider state or input constraints and prediction
of future state values. Thus, for cyber-physical systems involving potential human injuries, traditional
methods do not provide enough performance guarantees. MPC on the other hand, explicitly computes
the predicted behaviour over some horizon. An analogy that underlines the distinction is comparing
MPC to driving while looking through the windshield, where you anticipate what lies ahead, while PID
control resembles driving while looking through the rear-view mirror. It is essential to note that this
formulation, while simplistic, highlights the predictive nature of MPC, as it takes into account future system
behaviour.

In the next section, NMPC is introduced alongside with Control Lyapunov Function (CLF)s and CBFs,
which have been commonly combined to enforce safety constraints.

2.2.1 Nonlinear Model Predictive Control

Nonlinearities appear in real systems and controllers frequently fail to take them into account
[wang_nonlinear_1995]. NMPC is generally formulated as an online optimisation problem for
a system with nonlinear dynamics while satisfying a set of both linear and nonlinear constraints
[allgower_nonlinear_2004]. In accordance with the feedback strategy known as the receding horizon,
the process can be summarised with the following steps:

1. Measure or estimate the current state of the system;

2. Solve the optimisation problem over a time horizon and find the optimal control policy;

3. Apply the first control from the optimal control policy to the system;

4. Repeat the process enabling real-time control and adaptation to changing system conditions.

To formulate the optimisation problem mathematically, let us consider a continuous-time system as in
(2.1) with n state variables and m control inputs such that

ẋ(t) = f(x(t),u(t)), (2.11)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the control input of the system and
f : Rn × Rm −→ Rn is a globally Lipschitz continuous function, i.e. ∥f(x) − f(y)∥ ≤ L∥x − y∥ for
all x, y ∈ Rn and L is the smallest possible constant satisfying the inequality. The nonlinear system
satisfies the state and input constraints

x(t) ∈ X , ∀t ≥ 0
u(t) ∈ U , ∀t ≥ 0

(2.12)

where X ⊆ Rn is connected, and U ⊆ Rm is compact. The objective of the optimisation problem is to find
an optimal control policy u(·)∗ while minimising a cost function, that describes the desired performance

11

of the system, over a time horizon T

J (x (t0) ,u(·)) =
∫ t0+T

t0

L(x(t),u(t))dt . (2.13)

The objective function should be chosen to translate the desired control objective. When considering
reference tracking to a set of points r, a common formulation of the objective function is as follows

J (x (t0) ,u(·)) =
∫ t0+T

t0

[r (t0 + t)− x (t0 + t)]⊤ Q [r (t0 + t)− x (t0 + t)] dt +
∫ t0+T

t0

u̇⊤(t)Ru̇(t)dt ,

(2.14)
where Q and R are controller tuning parameters, i.e. weights in the cost function. The online optimization
problem in NMPC is thus structured as follows

min
u(·)

J (x (t0) ,u(·))

s.t. ẋ(t) = f(x(t),u(t)), ∀t ∈ [t0, t0 + T] ,

x (t0) = x0,

u(t) ∈ U ∀t ∈ [t0, t0 + T] ,

x(t) ∈ X ∀t ∈ [t0, t0 + T] .

(2.15)

Given that a controller is formally implemented through a digital computer that samples the variables of
the system and transmits the control action back at discrete time steps, it is advantageous to consider
the system specified in discrete time as

xk+1 = f(xk,uk), (2.16)

where xk and uk denote the state and the control input vector at instant k, respectively. The discrete-time
model is, however, only an approximation of the continuous-time model.

The objective function in this case is often composed by the sum of a staged cost q and a final cost p
such that

J (x,u) = p(xN) +
N−1∑
k=0

q (xk,uk) , (2.17)

where N denote the discrete-time horizon. Thus, the discrete NMPC optimisation problem can be posed
as

min
u(·)

p(xN) +
N−1∑
k=0

q (xk,uk)

s.t. xk+1 = f(xk,uk), k = 0, . . . , N − 1,

x (0) = x0,

xN ∈ Xf ,

uk ∈ U , k = 0, . . . , N − 1,

xk ∈ X , k = 0, . . . , N − 1

(2.18)

here x0 is the starting measured state and Xf ⊆ Rn is a terminal region that we require the system states

12

to reach at the end of the horizon.

2.2.2 Control Lyapunov Function

In order to construct the concept of Control Lyapunov Functions, let us first consider the autonomous
system ẋ = f(x), with an equilibrium point at 0, meaning that f(0) = 0, as established in
[jiang_input–state_2001]. The following stability concept pertains to the classification of this equilibrium
point.
Definition 1 (Stability concepts). The equilibrium point x = 0 is said to be:

• stable if ∀ε > 0,∃δ = δ(ε) > 0, s.t.

∥x(0)∥ < δ =⇒ ∥x(t)∥ < ε, ∀t > 0 (2.19)

• unstable, otherwise

• asymptotically stable if it is stable and δ can be chosen such that ∥x(0)∥ < δ =⇒ limt→∞ ∥x(t)∥ = 0

Now, the idea behind Lyapunov stability is to introduce positive energy function for the system and prove
that it decreases along possible system trajectories [owens_multi-periodic_2004].
Theorem 1 (Lyapunov Stability Theorem). Let V : D → R be a continuously differentiable function such
that V (0) = 0 and V (x) > 0 in D − {0}, V̇ (x) ≤ 0 in D. The derivative of V (x) along the trajectories of
ẋ = f(x), denoted by V̇ (x), is given by

V̇ (x) =
n∑

i=1

∂V

∂xi
ẋi

=
n∑

i=1

∂V

∂xi
fi(xi)

=
(

∂V

∂x

)⊤

f(x).

Then, x = 0 is stable. Moreover, if V̇ (x) < 0 in D − {0}, then x = 0 is asymptotically stable.

V is thus referred to as a Lyapunov function. A CLF is an extension of the idea of Lyapunov functions to
test whether a system is asymptotically stabilisable, i.e., if for any state x there exists a control u such that
the system converges asymptotically to zero. This idea can be translated mathematically in the following
definition.
Definition 2. A Control Lyapunov Function (CLF) is a function V : D → R that is continuously
differentiable, positive-definite (that is, V (x) is positive for all x ∈ D except at x = 0 where it is zero), and
such that for all x ∈ Rn(x ̸= 0), there exists u ∈ Rm such that

V̇ (x,u) := ⟨∇V (x),f(x,u)⟩ < 0

where ⟨u,v⟩ denotes the inner product of u,v ∈ Rn.

13

Analogously, in a discrete-time domain approach, a candidate CLF such as V must satisfy

∆V (xk,uk) ≤ −αkV (xk) , 0 < αk ≤ 1, (2.20)

where ∆V (xk,uk) := V (xk+1) − V (xk). Thus, the upper bound of a CLF decreases exponentially at
time k with the rate 1− αk.

2.2.3 Control Barrier Functions

The CBF method uses a Lyapunov-style argument to render a desired constraint set control invariant,
meaning an input can always be applied to keep the system within the safe set for all time.
Therefore, a CBF can be used to enforce safety constraints on the states of a dynamical system
[zeng_enhancing_2021].

Consider a discrete-time control system such that

xk+1 = f (xk,uk) , (2.21)

with x ∈ X representing the system state with the control input u confined by an admissible input set U .
For safety-critical control, considering a set C defined as the superlevel set of a continuously differentiable
function h : X ⊂ Rn → R,

C = {x ∈ Rn : h(x) ≥ 0} ,

∂C = {x ∈ Rn : h(x) = 0} ,

Int(C) = {x ∈ Rn : h(x) > 0} ,

(2.22)

C can be referred to as the safe set, and can be regarded as the ensemble of states satisfying distance
constraints

h(x) ≥ 0. (2.23)

In a stricter manner, the function h becomes a control barrier function in the discrete-time domain if it
satisfies the following relation,

∆h (xk, uk) ≥ −γkh (xk) , 0 < γk ≤ 1, (2.24)

where ∆h (xk,xk) := h (xk+1) − h (xk). Satisfying such constraint implies h (xk+1) ≥ (1− γk) h (xk),
i.e, the lower bound of control barrier function h(x) decreases exponentially at time k with the rate 1−γk.
The CBFs are thus designed to guarantee the forward invariance of the safe set C.

2.3 From Centralised to Distributed Predictive Control

In a platooning scenario the communication and computational cost of implementing a centralised MPC
grows with the number of vehicles. Thus, it is attractive to produce a distributed scheme of MPC that both
enables autonomy of the individual vehicles and improves tractability [mishra_centralized_2020].

14

This segment introduces the fundamental concepts of algebraic graph theory, which are pivotal for
comprehending the upcoming problem statement. Additionally, it sets the stage for discussing control
strategies within a multi-agent framework and provides an overview of the leader-follower multi-agent
topology.

2.3.1 Graph Theory

Graph theory provides a structured framework for representing and analysing the interactions between
the individual vehicles within the platoon.

Consider a connected undirected graph G = (V, E) comprising a set of n vertices V := {1, 2, · · · , n} and
a set of edges E = {(i, j) ∈ V × V | j ∈ Ni} [bullo_lectures_2022]. Each edge (i, j) ∈ E signifies a
communicative link between vertices i and j. Here, m = |E| is the number of edges and Ni denotes the
agents in the neighbourhood of agent i that can communicate with i.

The adjacency matrix A of G is the n × n symmetric matrix whose elements aij are given by aij = 1,
if (i, j) ∈ E , and aij = 0, otherwise. The degree of vertex i is defined as di =

∑
j∈Ni

aij . Then the
degree matrix is ∆ = diag (d1, d2, . . . , dn). The graph Laplacian of G is L = ∆ − A, this holds particular
importance for continuous time systems.

A path is a sequence of edges connecting two distinct vertices. A graph is connected if there exists a
path between any pair of vertices, and fully connected if every vertex in the graph is directly connected
to every other vertex by a unique edge.

By assigning an orientation to each edge of G we can define the incidence matrix D = D(G) = [dij] ∈
Rn·m. The rows of D are indexed by the vertices and the columns are indexed by the edges with dij = 1
if the vertex i is the head of the edge (i, j), dij = −1 if the vertex i is the tail of the edge (i, j) and dij = 0
otherwise. Based on the incidence matrix, the graph Laplacian of G can be described as L = DD⊤

[mesbahi_graph_2010]. In addition, Le = D⊤D is the so-called edge Laplacian and cij denotes its
elements.

2.3.2 Multi-Agent Systems

Multi-agent systems are interconnected control systems, named agents [liu_controllability_2012].
Vehicle platoons are a prime example of a multi-agent system, where each vehicle acts as an independent
agent. This allows each vehicle to make decisions based on local information rather than being dictated
by a unique central controller, thus optimising the platoon’s performance.

By definition, the dynamics of each agent depend on the agent’s state and the states of its neighbouring
agents [liu_controllability_2012]. Thus, a general multi-agent system can be modelled

ẋi = f (xi,∪j∈Nixj ,ui) (2.25)

where xi and ui is the state and control input of agent i, respectively, and Ni denotes the neighbour set
of agent i.

15

In control of multi-agent systems is important to distinguish between the different control approaches:
centralised, distributed, and decentralised [wang_distributed_2010]. And, depending on which control
architecture is employed, the control input may depend differently on the agents’ states, such as

ui =

ui (∪j∈Vxj) centralised

ui (xi,∪j∈Ni
xj) distributed

ui (xi) decentralised

(2.26)

where V denotes the set of all agents.

This is to say that: centralised control involves a single central authority that controls the actions of all
agents in the system; distributed control takes in multiple agents working together to make decisions, but
with a clear hierarchy of authority and finally in decentralised control each agent makes its own decisions
based on local information, without the need for a central authority or clear hierarchy. This is better
illustrated in 2.5.

P1 P2 P3

C

(a) Centralized control architecture.

P1 P2 P3

C1 C2 C3

(b) Distributed control architecture.

P1 P2 P3

C1 C2 C3

(c) Decentralised control architecture.

Figure 2.5: Representation of decentralised 2.5a, distributed 2.5b and decentralised 2.5c control
architectures. P1, P2 and P3 represent plants controlled by the controller C or by the controllers C1,
C2 and C3 respectively.

In truck platooning, distributed control proves advantageous over both centralised and decentralised
approaches due to its real-time adjustments based on local information. This strategy balances
computational complexity from centralised control and potential synchronisation issues from
decentralised control, leading to improved efficiency, safety, and adaptability in platoons.

16

2.3.3 Leader-follower Multi-agent Systems

Leader-follower dynamics in multi-agent systems has garnered substantial attention due to its
capacity to mimic real-world scenarios where certain agents guide the behaviour of others
[he_leaderfollower_2019]. Primarily, this structure is driven by the notion that the motion of a leader,
often adhering to a reference trajectory, can significantly influence the collective behaviour of the entire
group. Notably, followers can also ascend to leadership roles for subsequent agents, resulting in a
cascading leadership pattern within the network.

Each vehicle belongs to one platoon which consists of one leader and several followers. To not lose
generality let us consider a multi-platoon scenario. Let us consider a multi-agent system with vertices
V = {1, . . . , n}. We suppose that the first nf agents are selected as followers while the last nl agents
are selected as leaders with respective vertices set VF = {1, . . . , nf} ,VL = {nf + 1, . . . , nf + nl} and
n = nf + nl.

We will have a time-varying graph topology which switches among different structures according to the
coordination phases, e.g., merging, splitting, etc. The overall graph of the multi-platoon network can be
specified according to the following Laplacian matrix [sharifi_platoons_2023]

Lplatoon =

Lff Lfl

Llf Lll

 (2.27)

where Lff corresponds to the Laplacian matrix of followers interconnections, Lfl and Llf model the
communications from the leaders to followers and vice-versa, respectively, and Lll demonstrates the
communications among the leaders of platoons. We consider directed communication from the leaders
to their followers. Hence Lfl ̸= L⊤

lf and Llf = 0. In addition, the communication among the leaders of
platoons is assumed to be undirected. In this manner, while each platoon is subject to its local tasks, there
is no coordination between platoons, i.e., Lll = 0. When platoon coordination actions such as merging
or splitting are considered, the Laplacian matrix will change according to the new graph topology.

Let xi ∈ Rnstates and ui ∈ Rminputs denote the state and input of vehicle i ∈ V, respectively. Moreover, Ni

denotes the set of neighbours of vehicle i and |Ni| determines the cardinality of the set Ni.

In addiction f i : Rnstates+nstates·|Ni| → R is assumed to be locally Lipschitz continuous functions.

We define the stacked vector of all elements in the set X with cardinality |X |, as

[xi]i∈X :=
[
x⊤

i1
, · · · ,x⊤

i|X |

]⊤
, i1, · · · , i|X | ∈ X (2.28)

and write the stacked dynamics for the network of platoons containing the vehicle dynamics i ∈ V,
as

żi = fpl(z,w) (2.29)

where z := [xi]i∈V ⊆ Rnstates·n and w := [ui]i∈{nf +1,··· ,n} ∈ Rminputs·nl and fpl(·) = [f i(·)]i∈V ∈ Rnstates·n.
the local dynamic functions f i,i (xi) correspond to the terms of f i(x) which are only dependent on xi,
and f i,j (xi,xj) contains the terms of f i(x) which are dependent on agent j ∈ V, j ̸= i as well. For

17

the case of one platoon (one leader), with follower and leader sets Vf := {1, · · · , n − 1} and Vl := {n},
respectively. For networks containing more than one platoon (multiple leaders), with Vf := {1, · · · , nf}
and Vl := {nf + 1, · · · , n} , n = nf + nl.

18

Chapter 3

State-of-the-Art

In the rapidly evolving landscape of autonomous driving and platooning, the state-of-the-art chapter
navigates through the advancements, methodologies, and breakthroughs that have shaped the current
understanding and capabilities within the field. These not only contribute to the current state of research
but also serve as essential benchmarks against which our own results and innovations can be effectively
evaluated and compared.

3.1 Safety Guarantees

This section explores the critical aspect of safety in advanced control systems. Specifically, we focus
on CBF as a contemporary approach to address obstacle avoidance challenges. We delve into the
evolving field of safety-critical control, where theoretical advancements are applied to enhance the
reliability of autonomous systems. In this context, we draw insights from the research conducted by
thirugnanam_safety-critical_2022 in [thirugnanam_safety-critical_2022].

As previously defined in subsection 2.2.3, a CBF serves as a function employed to enforce safety
constraints on the states of a dynamical system. Once again, we refer to C as the safe set, representing
the region outside the obstacle. The function h is termed a discrete-time CBF if ∀x ∈ C,∃u ∈ U , as
expressed in (2.24).

In the subsequent formulation, it becomes evident that if γ(x) is close to 1, the system converges to ∂C
slowly but can easily become infeasible. Conversely, if γ(x) is close to 0, the constraint is feasible in a
larger domain but can approach ∂C quickly, potentially leading to unsafe conditions.

The novel approach introduces a relaxing variable, denoted as γ. Their proposed formulation rewrites
the CBF constraint in (2.24) as follows

h(xk+1) ≥ ωkγkh(xk), 0 ≤ γ(x) < 1 , (3.1)

where the relaxing variable ω resolves the trade-off between feasibility and safety and is optimised with
other variables inside an optimisation formulation.

19

The NMPC problem can be posed as,

min
u,ω

N−1∑
k=0

[q (xk,uk) +ψ (ωk)]

s.t. xk+1 = f(xk,uk),

uk ∈ U , k = 0, . . . , N − 1,

xk ∈ X , k = 0, . . . , N − 1,

h(xk+1) ≥ ωkγkh(xk) ωk ≥ 0 k = 0, . . . , N − 1 .

(3.2)

The proposed construction of CBFs involves formulating a non-convex optimisation problem to ensure
safety guarantees and constraint satisfaction. However, non-convexity introduces the challenge of
multiple local minima, making the efficient discovery of the global solution arduous.

3.2 Cooperative Communication

Within the scope of cooperative network communication, a critical consideration arises concerning
choosing an appropriate topology. While inter-vehicle communication has long been explored and utilised
in various vehicular applications, the concept of a leader-follower communication topology has emerged
as a preferred and promising approach in the context of platooning [boulu-reshef_impact_2020]. The
rationale behind this preference lies in the inherently less computationally demanding and simpler
hierarchical structure it offers, while still achieving consensus within the network. When relying solely
on inter-vehicle communication this introduces significant complexities associated with establishing and
maintaining direct communication links among all vehicles within a platoon. This requirement leads to a
continuous exchange of information between multiple nodes, resulting in heightened network traffic and
the potential for latency issues. Additionally, within the latter topology, the spanning communication tree
rooted in the leader proves advantageous [wang_leaderfollower_2018].

As of now, low-level vehicle automation systems are already in use on the road, including technologies like
ACC, Lane Change Assistant (LCA) and Lane Keeping Assistant (LKA). CACC emerges as a prominent
extension of the fundamental principles of ACC. In this segment, we will delve into the state-of-the-art of
CACC, beginning with a short explanation of ACC, its commencement algorithm.

3.2.1 The ACC Model

The ACC system automatically controls the speed of the ego vehicle to ensure a suitable distance with an
obstacle or vehicle ahead, based on the relative distance and speed detected by the onboard sensors.
The system comprises two key controllers: the upper and bottom controllers. The upper controller
generates the desired acceleration control signal based on the current driving profile, while the lower
controller translates this desired acceleration signal into appropriate brake or throttle control actions
according to the ego vehicle’s current acceleration [zhao_full-range_2014].

20

Ego Vehicle Obstacle

Upper Controller

Bottom Controller
se

ns
or

m
ea

su
re

m
en

ts

desired acceleration

actuators

Figure 3.1: Illustration of the ACC framework. The upper controller generates the desired acceleration
signal, while the bottom controller maps the acceleration to the brake or the throttle control signals. The
LiDAR sensor detects the distance between the two vehicles and predicts the obstacle speed. Inspired
and adapted from zhao_full-range_2014 (zhao_full-range_2014).

Denote as dreal
k the distance at step k between the ego and the target vehicles or obstacle. Such a

distance is used to compute the instant speed of the target vehicle vobstacle
k (refer to Figure 3.1); the

desired distance ddesired
k between these vehicles is always set by the driver while the ego vehicle speed

vego
k can be read from the speed encoder. The control goal is to keep the ego vehicle within a safe

distance and maintain the safe relative speed ∆vk = vego
k − vobstacle

k . Similarly, the relative distance ∆dk

at step k is ∆dk = dreal
k −ddesired

k . The upper controller goal is to simultaneously drive variables (∆vk, ∆dk)
to zero by enforcing the most appropriate acceleration control action. The bottom controller manages
both the throttle and the brake.

This technology, indeed, improves traffic safety and comfort significantly. Nevertheless, a sizeable
inter-vehicle distance is required for safety in the case of an emergency scenario, which influences
traffic flow efficiency negatively. This can be remedied by obtaining more detailed information about
the vehicle ahead such as acceleration and control inputs and feeding them to the ego vehicle. This
extension of ACC, called CACC, uses Vehicle-to-Vehicle Communication (V2V) communication to convey
the acceleration or control input information of the vehicle ahead. CACC could result in closer spacing
of the vehicles in a platoon while preserving stable operation.

3.2.2 The CACC Model

Cooperative Adaptive Cruise Control (CACC) represents a pioneering advancement in vehicular control
systems, building upon the foundations laid by ACC. With its capability to facilitate remarkably short
time gaps between vehicles within a platoon, CACC holds the potential to revolutionise road capacity
and alleviate traffic congestion significantly. This remarkable achievement is attributed to the integration
of sensors and communication technologies, which enable not only adaptive cruise control but also
cooperative elements essential for safe platoon manoeuvres.

21

3.2.2.1 Controller Structure

The core of the CACC system is rooted in its control structure, illustrated in Figure 3.2. The platoon
comprises a leader vehicle and nf follower vehicles, and communication between adjacent vehicles
is facilitated through V2V techniques. When an obstacle appears in front of the ego vehicle within
the same lane, maintaining an appropriate distance and a higher speed than the platoon, the CACC
system orchestrates the speed reduction of all platoon members and assigns new cruising speeds to
accommodate the ego vehicle. This control strategy, outlined in more detail in [ma_cooperative_2020],
ensures seamless platoon integration while epitomising traffic flow.

…

Figure 3.2: Illustration of the CACC Leader-Follower Topology. This schematic depicts the structure of
a CACC-enabled vehicle platoon, including the leader vehicle (represented in blue) and multiple follower
vehicles (represented in light grey), demonstrating the communication and coordination essential for safe
and efficient platoon operation.

3.2.2.2 Gap Management

The primary goal of the CACC controller is to maintain the driver-desired time gap with the preceding
vehicle under various traffic conditions, prioritising both smoothness and precision. The driver interface,
inherited from ACC, plays a pivotal role in managing the CACC controller. It offers options to activate and
deactivate the CACC controller and adjust cruise control speed when no obstacle is detected in front of
the ego vehicle.

For the CACC system, the time gap settings are more diverse than those in the ACC factory system.
The shortest gap can be determined based on safety considerations and driver acceptance tests. It’s
important to note that the CACC controller operates within certain acceleration and deceleration limits
set by the low-level controller.

3.2.2.3 Controller Stages

The CACC controller operates in two distinct stages. The first stage is activated when the CACC system
is engaged, and there is no vehicle in front of the ego vehicle or when the ego vehicle is significantly
distant from the preceding one. In such scenarios, the vehicle typically adheres to its preset speed,
necessitating a smooth transition to the second stage. This initial controller, known as the gap-closing
controller focuses on executing approach manoeuvres smoothly, ensuring a seamless transition to the
gap regulation controller. Additionally, it plays a pivotal role in handling cut-out manoeuvres when a
vehicle within the platoon decides to exit, requiring the following vehicle to close the gap.

22

Once the ego vehicle has successfully joined its predecessor, the second-stage controller, referred
to as the CACC gap regulation controller takes over. This controller is responsible for implementing
car-following policies based on the driver-selected time gap. Different time gaps are available, mirroring
the production ACC structure. Furthermore, it manages cut-in makeovers when non-equipped vehicles
merge into the platoon. Both controllers should be meticulously designed to emulate human driver
behaviour in various driving situations, ensuring a harmonious and safe driving experience within
CACC-enabled platoons [milanes_cooperative_2014].

23

24

Chapter 4

Method

In this chapter, a comprehensive explanation of the proposed algorithm will be carried out along with a
detailed description of its implementation. Foremost, the problem statement is introduced.

4.1 Problem Statement

In the context of autonomous driving, and as noted earlier, platooning refers to a group of vehicles that
move in close proximity, coordinated by an ego vehicle. The single ego vehicle serves as the leader of
the formation while the followers align closely behind it.

A highway-like environment is to be considered, defined by a set of L constitutional lanes denoted
as

E = {l0, l1, . . . , lL−1} , (4.1)

assuming a left-hand driving configuration. The primary constraints in this environment are the driving
direction and lane-specific speed limits, which are applicable to all vehicles within the platoon.

All vehicles considered should be modelled as trucks using the general n-trailer model, as described in
(2.6). The dynamics of the ego agent are then given by

ẋego = fego(xego,uego) , (4.2)

while the dynamics of the follower by

ẋfollower = f follower(xfollower,ufollower) . (4.3)

These equations, both nonlinear, should be further discretised.

It is important to emphasise that, in this setup, only the ego vehicle is equipped with a sensor, specifically
a LiDAR. To achieve a simulation that closely mirrors reality, we must not assume that the entire
environment is constantly known. Instead, we should account for the limited range of perception for
the sensor. This necessitates the introduction of the following concept:

25

Definition 3 (Field of View (FoV)). FoVk ⊂ R2 is defined as the set of points at time step k which are
within direct line of sight from the sensor resolution, restricted to the ego vehicle’s current lane li. The
index i auxiliaries the lane designation present in the road segment considered, ranging from the leftmost
to the rightmost lane.

Furthermore, providing a precise definition of the FoV is crucial for a comprehensive understanding of
the sensor’s range, resolution, and limitations.

This research is centred on the development of a NMPC strategy integrated within a CACC framework
capable of effectively controlling all the agents in the network, and the platoon while ensuring a safe and
feasible trajectory at all time steps. An emphasis also lies on real-time computation and decision-making
capabilities, with a specific aim to render the strategy computationally manageable when compared to
state-of-the-art solutions.

4.2 Proposed Algorithm

This section on the proposed algorithm is structured to provide a comprehensive understanding of the
platooning system’s inner workings. First, we delve into the control mechanisms of the ego vehicle in
subsection 4.2.1. This segment elucidates how lane-changing and obstacle avoidance manoeuvres are
handled. Next, the follower vehicles controller is discussed in subsection 4.2.2. Here, the intricacies
of how these agents adapt their behaviour, maintaining the desired distance and speed relative to
the ego vehicle and the platoon are unravelled. And finally, in subsection 4.2.3, the entire platooning
system—CACC— is detailed. This component ties together the actions of the ego and follower vehicles,
orchestrating the platoon dynamics through advanced control algorithms. It ensures that the platoon
functions as a cohesive unit, optimising performance, and enhancing safety. The proposed formulation
serves as a local planner to generate dynamically-feasible and collision-free trajectories, through the
predictive capabilities of NMPC.

4.2.1 Ego Vehicle

This segment introduces the control scheme for the reference tracking problem, an essential component
for the lane-changing manoeuvre while setting the stage for the obstacle avoidance control algorithm as
part of the overtake scheme, all centred around the ego vehicle.

The continuous model dynamics presented in section 2.1 is assumed to be applicable to the ego vehicle
dynamics. However, to enable the transition from an Optimal Control Problem (OCP) to a Nonlinear
Programming (NLP) formulation, a discrete model is required, thus, the continuous-time dynamics
are discretised through the explicit Runge-Kutta 4th Order (RK4) method, according to Appendix A,
yielding:

xk+1 = f(xk,uk) . (4.4)

Note that here the ego subscripts were omitted as to simplify notation. Hence, x ∈ X ⊂ Rn, denoting
the ego state, and u ∈ U ⊂ Rm, U is a compact set and f encapsulates the system’s behaviour. This
method approximates the continuous dynamics of the system and enables the derivation of a discrete

26

representation. As to account for the inherent limitations of the system described in section 2.1 and the
constraints on the input signals, the aforementioned sets X and U are naturally bounded. In this context,
we will focus on specifying the bounded state and input variables without explicitly mentioning the sets
X and U . Therefore the control strategy results in a NMPC reference tracking problem, as formulated
below:

min
u

N−1∑
k=0

(
(xk − rk)⊤Q(xk − rk) + (uk − uref

k)⊤R(uk − uref
k)

)
s.t. xk+1 = f(xk,uk),

βi ∈ [−βi,max, βi,max] , i = 1, . . . , n,

δ0 ∈ [−δmax, δmax] ,

v0 ∈ [vmin, vmax] ,

u0 ∈ [amin, amax] ,

u1 ∈
[
−δ̇max, δ̇max

]
.

(4.5)

In this formulation, u represents the control inputs, x denotes the state variables, and r corresponds to
the reference trajectory. This reference trajectory is designed to be feasible within the system’s limits
and constraints, ensuring that it adheres to the physical and operational restrictions of the system. The
objective function consists of a cost term penalising deviations from the reference trajectory given the
weight matrix Q and a control effort term R penalising deviations from the desired control input uref.
These weight matrices should be diagonal, positive definite and unbalanced, i.e. unequal magnitudes
of the diagonal elements: the weight matrices should be positive definite to ensure convexity and the
unbalanced nature allows for individual control effort tuning and emphasising certain state variables or
control inputs over others in terms of their impact on the control objective [malisoff_tracking_2020].
By assigning larger weights to certain elements, the control system can prioritise specific performance
criteria or desired behaviour.

The constraints impose limits on the system’s variables, such as the hitching angle (βi), initial steering
angle (δ0), initial velocity (v0), longitudinal acceleration (u0), and the steering rate (u1). The index i

denotes i-th trailer in the general n-trailer representation presented in subsection 2.1.3. For the sake of
simplicity, terminal costs are omitted from the objective function, but they can be included if necessary.
Terminal costs are used to prioritise achieving specific behaviour or performance at the end of the horizon,
while terminal constraints ensure requirements are met precisely at the final time step. Indeed, the
decision to include them depends on the control problem and desired system behaviour.

4.2.1.1 Environment Interpretation

Recall that the highway environment is described by the expression in (4.1), thus its associated
constraints, here denoted as C, can be formally defined as follows

C = {v0 ≤ vlimit | li ∈ E , constraint on lane li} . (4.6)

In a real-life scenario, various lanes on the same segments of road exhibit distinct velocity constraints,
and this is what C emulates.

27

Note that v0 represents the longitudinal velocity of each vehicle. That is when assuming a highway-like
environment, the constraints are the driving direction, v ≥ 0, and the speed limit in the lane, vlimit.

Thus, the basic NMPC controller for the ego vehicle can be here reformulated as

min
u(·)

N−1∑
k=0

q (xk,uk)

s.t. xk+1 = f(xk,uk),

uk ∈ U , k = 0, . . . , N − 1,

xk ∈ X ∩ C, k = 0, . . . , N − 1,

(4.7)

where q depicts the reference tracking penalty. i.e the stage cost such that

q (xk,uk) = (xk − rk)⊤Q(xk − rk) + (uk − uref
k)⊤R(uk − uref

k) . (4.8)

To further refine the definition of the FoV we must take into account the onboard used, a LiDAR.
Therefore, the FoV can be redefined as a subset of points within a certain range and angular span
[yin_spherical_2016] [yuan_pixel-level_2021]. Let the sensor’s position be denoted by (xLiDAR, yLiDAR)
in the 2D plane, and let θmin and θmax represent the minimum and maximum angles of the FoV relative
to the LiDAR’s orientation. Thus, the FoV at a time instant k can be mathematically defined as the set of
points (x, y) such that:

FoVk = {(x, y) ∈ R2 |
√

(x− xLiDAR)2 + (y − yLiDAR)2 ≤ Rmax, θmin ≤ θ ≤ θmax}. (4.9)

That is the point (x, y) is within a certain distance or range Rmax of the LiDAR sensor and the angle θ

formed by the vector from the LiDAR sensor to point (x, y) falls within the FoV boundaries.

Additionally, it is assumed that the sensor is perfectly coupled and aligned within the ego vehicle such
that (xLiDAR, yLiDAR) coincides exactly with (x0, y0) - recall the system’s model in subsection 2.1.3. Note
that the FoV does not necessarily coincide with the predefined horizon of the NMPC. Meaning, that
information outside the NMPC’s horizon may not be used immediately for control decisions, even if the
sensor can perceive it, which can affect system performance and safety.

4.2.1.2 Obstacle Detection and Geometric Modelling

Obstacles often exhibit intricate shapes, making it necessary to represent their geometry concisely. To
address this, a bounded ellipsoid is employed as the geometric model for all obstacles. The convex
nature of the ellipsoid provides an ideal framework for describing obstacles with varying dimensions
and orientations, enabling efficient and reliable trajectory planning [villasenor_ellipsoidal_2021]. The
geometry of the ellipsoid is determined by reference points obtained from sensors. In other words, the
obstacle can be represented by an ellipse that encompasses all the reference points acquired through the
sensors. This representation is achieved using Khachiyan’s algorithm for Minimum-Volume Enclosing
Ellipsoid (MVEE), as discussed in Appendix B. We remark that there exists a faster algorithm for
computing the ellipsoid but without guarantees of minimum volume as in [silvestre_model_2023].

28

The proposed approach addresses the prediction of overtaking or lane-changing manoeuvres within the
available left lane, following the driving conventions and regulations specific to the road network of the
region under consideration. Thus, the leftmost boundary of obstacles encapsulated within the ellipsoid
acts as a reference point for the manoeuvre represented as b ⊂ R2. This is particularly valuable in the
context of predicting a leftward overtaking strategy during obstacle avoidance.

The determination of the leftmost boundary point, denoted as b, is made concerning a reference frame
aligned and centred on the orientation of the ego vehicle, as illustrated in Figure 4.1.

v

θ

Figure 4.1: A schematic description depicting the modelling of an obstacle and the resultant waypoint
generation in a simulated highway environment. On the left, a rectangle represents the ego vehicle, while
the rectangle on the right symbolises the obstacle ahead, while an ellipsoid bounding it is displayed above
it. The blue line illustrates the initial reference trajectory of the ego vehicle. The red line traces the path
used to determine the obstacle’s leftmost boundary, where θ represents the line’s inclination angle. The
red dot marks the algorithm’s retrieval of the leftmost boundary.

Therefore, let D be an ellipse obtained from Khachiyan’s algorithm with centre c and shape matrix A. To
find the leftmost boundary point ofD, we determine the line L denoted by its slope angle θ, so that,

y = tan(θ)x. (4.10)

Let p be a possible set of intersection points of line L and the ellipse D, in the format p = [x, y]⊤,
accordingly the equation

(p− c)⊤A−1(p− c) = 1 (4.11)

should hold. If there exists a single intersection point p lying on L and coincides with the leftmost
boundary of D.

This formulation describes the iterative process of tracing lines at various angles and checking for the
intersection points between those lines and the ellipse. The leftmost boundary point is updated when a
line intersects the ellipse at only one point, indicating that the line coincides with the leftmost boundary.
This process is summarised in the Algorithm 1.

29

Algorithm 1 Retrieve Leftmost Boundary Point of an Ellipse
1: Initialise b0 ← [−∞, 0]
2: Initialise angle range [θmin, θmax]← [0, π

2]
3: while θmax − θmin > δ do
4: Compute midpoint angle θm ←

θmin + θmax
2

5: Construct line L with equation y = tan(θm)x
6: Compute intersection points between L and ellipse D
7: if there is exactly one boundary intersection point p then
8: Update bi ← p

9: break
10: else
11: if p has 2 solutions then θmin = θm

12: end if
13: if p has 0 solutions then θmax = θm

14: end if
15: Update angle range [θmin, θmax]
16: end if
17: end while
18: Output final leftmost boundary point b← bfinal

δ is defined here as a small empirical threshold; theoretically, it should be zero.

Here, follows an additional reasoning on the proposed algorithm.
Proposition 1. If there exists a single intersection point p lying on L then p coincides with the leftmost
boundary of D.

Proof. Let us consider the possible cases for the first iteration of the Algorithm 1 where θm is set to π
2 :

1. If the ellipse D is intersected by the line L such that it produces two solutions, this implies that the
leftmost boundary lies above the line. Thus in the next iteration, θm will increase, bringing the line
closer to the point of interest. This indicates that the algorithm is converging towards the leftmost
boundary.

2. If the ellipse D is not intersected by the line L, it means that the ellipse is situated below the line. In
the next iteration, θm will decrease, moving the line closer to a vertical orientation. This suggests
that the algorithm is progressing towards finding the leftmost boundary.

3. In this case, when the ellipse D intersects the line at exactly one point, it is a strong indicator that
this point is the leftmost boundary. This is supported by the fact that the LiDAR range selected is
below 90 degrees, which ensures that the intersection point is indeed the leftmost boundary.

In each of these cases, the algorithm is either directly aligned with the leftmost boundary point or actively
moving towards it. Therefore, the presence of a single intersection point in the first iteration indicates that
it coincides with the leftmost boundary.

30

4.2.1.3 Obstacle Estimation

In order to anticipate the future positions of obstacles, the movement of each one is modelled as a
single point in space moving linearly in discrete time steps. Their movement was indexed by k in the
context of each time step of the NMPC horizon. The predicted state can be obtained using the following
formulation:

Pk =
{

(xk, yk)
∣∣ xk = x0 + vx · h · k, yk = y0 + vy · h · k

}
. (4.12)

Here, (xk, yk) represents the obstacle’s position at time step k, h is the predefined sampling time, and
(x0, y0) originates from the leftmost boundary b detected through Algorithm 1. While it’s true that objects
can have complex trajectories, assuming linear motion within a short prediction horizon is a reasonable
simplification in many cases since often vehicles can exhibit linear or nearly linear motion over short time
intervals.

To estimate the velocity of the obstacle, we employ a Kalman Filter (KF) [simon_kalman_2002], a
powerful tool for accurate state estimation using noisy sensor measurements. Traditional methods, such
as differentiation of positional data, may introduce noise and errors that accumulate over time, affecting
velocity estimates. In contrast, the filter mitigates these issues by effectively filtering out noise from sensor
measurements.

The KF employs a constant acceleration motion model to estimate the obstacle’s future positions. This
model considers the x-coordinate, y-coordinate, x-velocity, y-velocity, x-acceleration, and y-acceleration
of the obstacle over a time interval h. The state vector o encapsulates these variables. To
enhance the accuracy of predicting obstacle positions, we integrate the filter into the prediction process
[fossen_extended_2018]. This technique estimates the future position of the detected obstacle based
on its current state. The integration is mathematically formulated in these steps:

1. State Prediction - the predicted state estimate ô−
k and predicted error covariance P−

k are computed
using the following equations:

ô−
k = Aôk−1 + Buk−1

P−
k = APk−1A⊤ + QKF

2. Measurement Prediction - the predicted measurement ẑk and measurement error covariance Sk

are calculated as follows:

ẑk = HKFô
−
k

Sk = HKFP−
k H⊤

KF + RKF

3. Kalman Gain Computation - the Kalman gain Kk is computed using the predicted error covariance
and measurement error covariance:

Kk = P−
k H⊤

KFS−1
k

31

4. State Update - finally, the updated state estimate ôk and updated error covariance Pk are obtained
using the following equations:

ôk = ô−
k + Kk(zk − ẑk)

Pk = (I−KkHKF)P−
k

In the above equations, ô−
k represents the predicted state estimate, P−

k is the predicted error covariance,
Q represents the process noise covariance, and R is the measurement noise covariance.

4.2.1.4 Integration with Motion Planning

Here we propose a dynamic obstacle avoidance penalty method based on a NMPC problem, drawing
inspiration from Artificial Potential Field (APF)s [sheng_obstacle_2022]. The integration involves
incorporating an additional optimisation problem that is activated only when an obstacle is detected within
the FoV of the ego vehicle, i.e.

FoVk ∩ O ̸= ∅ , (4.13)

where O represents the set of detected obstacles. Therefore, the NMPC framework is combined with
the previously proposed optimisation problem in Equation (4.5), allowing for adaptive obstacle avoidance
during motion planning. This is summarised below in Algorithm 2.

Algorithm 2 Dynamic Obstacle Avoidance with NMPC
Input: Environment E , current time step k, ego vehicle state xego

k , FoVk, detected set of obstacle O
Output: Optimised trajectory for motion planning

1: Compile NMPC reference tracking problem
2: if FoVk ∩ O ̸= ∅ then
3: Incorporate obstacle avoidance penalty terms into the NMPC objective
4: end if
5: Optimise the NMPC problem to obtain the trajectory for motion planning
6: Return Optimised trajectory for motion planning

This permits continuity in the objective function when switching from the different optimisation problems
at hand, allowing for a smoother and more robust control input.

Figure 4.2 depicts an APF where obstacles are positioned at coordinates (0, 0) and (5, 5). The
penalisation cost exponentially increases with the distance to the obstacles, effectively influencing the
trajectory planning process.

32

y

−10

−5

0

5

10x

−10
−5

0
5

10

Cost

10.2

10.4

10.6

10.8

Figure 4.2: Illustration of an Artificial Potential Field, featuring dimensionless and static obstacles located
at coordinates (0, 0) and (5, 5), respectively. For demonstrative purposes, the penalty is represented by
an exponential cost function.

Accordingly, in order to enforce the obstacle constraints to an acceptable predefined tolerance, we employ
a penalty method, as shown in Algorithm 3.

Algorithm 3 Dynamic Obstacle Penalty
Input: Current time step k, ego vehicle state xego

k , FoVk, detected obstacle Oi

Output: Cost function with an adequate penalty
1: initiate cost function J = 0
2: for i = 0 to N do
3: Predict obstacle position Pk ▷ According to Equation (4.12)
4: Compute its leftmost boundary bi ▷ According to Algorithm 1
5: if available left lane for overtake in E then
6: Define inner product ⟨(x0 − xk) , (bi − xk)⟩
7: Sum the exponential weight to cost function
8: end if
9: end for

It is important to note that the determination of the condition ”available left lane for overtaking in E”
is conducted indirectly. In this approach, the algorithm assesses the contour of an obstacle within an
obstacle-free field of view ahead. Consequently, if such conditions are not met, the generated solution
refrains from executing an overtaking manoeuvre. Instead, the ego vehicle maintains its position within
the current lane, adjusting its cruising speed to ensure a safe distance from the obstacle ahead.

The proposed NMPC problem is thus formulated as follows,

min
u(·)

N−1∑
k=0

[q (xk,uk) + r (xk,Oi)]

s.t. xk+1 = f(xk,uk),

uk ∈ U , k = 0, . . . , N − 1,

xk ∈ X ∩ C, k = 0, . . . , N − 1,

(4.14)

33

the different obstacles in the environment are indexed by i. Here, q depicts the aforementioned reference
tracking penalty in (4.8). The term r conveys the exponential weight penalty

r (xk,O) = βk ⟨(x0 − xk) , (bi − xk)⟩ . (4.15)

This exponential penalty forces the trajectory to change locally where the obstacle is predicted to be,
β is the base of the exponential function. This term operates as a soft constraint in the optimisation
problem.

Here, it is made explicit that the objective function is parameterised in the penalty factors, allowing the ego
vehicle to contour the obstacle nicely and also providing a feasible reference trajectory to the following
vehicles.
Proposition 2. The reachable set of the states of the ego is within the safe set

X = {x ⊂ R2|projxy(x) ∩ projxy(O) ̸= ∅}.

Proof. The distance constraint would be posed as:

∥bi − xk∥ > 0 . (4.16)

However, solving such a hard-constrained problem requires nonlinear constraints, leading to a complex
non-convex MPC with multiple local minima.

To overcome this challenge, we introduce a linear soft constraint by penalising the dot product between
the velocity vector and the obstacle vector. The dot product can be decomposed as

⟨(x0 − xk) , (bi − xk)⟩ = ∥x0 − xk∥ · ∥bi − xk∥ · cos θ . (4.17)

Thus, by minimising the variable θ linearly, the ego vehicle is effectively guided to contour the dynamic
obstacle.

This NMPC formulation can be posed as a non-convex optimisation problem with a linear soft constraint
on safety control. Making it computationally tractable and amenable to state-of-the-art solvers.

4.2.2 Follower Vehicles

In this segment, we delve into the control strategy for the follower vehicles within the platoon. It is
important to note that, in terms of their dynamic model, the state-of-the-art employed for follower vehicles
remains consistent with that of the ego vehicle, as detailed in section 2.1. This common model serves
as a foundation for reference tracking, building upon the principles outlined in subsection 4.2.1.

The primary objective for each individual follower vehicle is to execute reference tracking in line with
the platoon’s trajectory, resembling the formulation present initially in (4.5). However, an additional
safety constraint comes into play: ensuring a safe distance is maintained from the preceding vehicle.
To incorporate this safety consideration, the optimisation problem can be formulated as follows:

34

min
u(·)

N−1∑
k=0

q (xk,uk)

s.t. xk+1 = f(xk,uk),

uk ∈ U , k = 0, . . . , N − 1,

xk ∈ X ∩ C, k = 0, . . . , N − 1,

(x0 − xpreceder)2 + (y0 − ypreceder)2 ≥ d2, k = 0, . . . , N − 1.

(4.18)

The additional constraint is introduced to ensure that the Euclidean distance between the follower
vehicle’s position (x0, y0) and the position of the preceding vehicle (xpreceder, ypreceder) remains greater
than or equal to the safe distance threshold d. This constraint plays a critical role in enforcing the
desired separation between the follower vehicle and its preceding counterpart throughout the optimisation
process. The cost function can be analysed in detail,

q = (xk − rk)⊤Q(xk − rk) + (uk − uref
k)⊤R(uk − uref

k) . (4.19)

It is essential to highlight that the reference trajectory r for each follower vehicle should be derived from
the ego vehicle’s current position to maintain a cohesive and synchronised platoon trajectory. That is,
the reference states are the ego’s states at the different iterations of the horizon. Additionally, the control
inputs uref are derived from the ego’s optimised steering and throttle signals. This works as a a global
planning for the follower vehicles.

This control strategy not only facilitates reference tracking for follower vehicles but also prioritises safety
by actively maintaining appropriate separation distances, ensuring the smooth and secure operation of
the platoon.

4.2.3 CACC

CACC constitutes the cornerstone of our platooning system, orchestrating the interaction between the
ego and follower vehicles. Building upon the principles introduced in the background (section 2.3), CACC
leverages advanced control algorithms and cooperative communication to optimise platoon performance,
enhance safety, and unlock the full potential of autonomous platooning.

To understand the interactions within the platoon, we can represent the relationships between vehicles
using a network representation. The adjacency matrix, denoted as A, captures the connectivity between
agents:

A =

0 1 1 1 · · · 1
0 0 1 0 · · · 0
0 0 0 1 · · · 0
0 0 0 0 · · · 0
...

...
...

...
0 0 0 0 · · · 0

. (4.20)

Here, each row represents a vehicle in the platoon, and a ”1” in a column indicates a connection between

35

vehicles.

The degree matrix, denoted as ∆, quantifies the number of connections each vehicle has, let the number
of followers in the platoon be nf , the degree matrix is

∆ =

nf 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
0 0 0 0 0 0

. (4.21)

The Laplacian matrix, denoted L, encapsulates the interactions between vehicles within the platoon. It
is defined as the difference between the degree matrix ∆ and the adjacency matrix A,

L =

nf −1 −1 −1 · · · −1
0 1 −1 0 · · · 0
0 0 1 −1 · · · 0
0 0 0 1 · · · 0
...

...
...

...

0 0 0 0
... 0

. (4.22)

The Laplacian matrix L plays a pivotal role in the control strategy, enabling vehicles to adapt their speeds
and following distances based on their neighbours’ behaviours. By incorporating this network-based
approach, our proposed algorithm ensures cooperative and adaptive control within the platoon, ultimately
leading to safer and more efficient autonomous truck platooning.

4.3 Implementation

This section delves into the practical implementation of the proposed algorithm, achieved through
the integration of ROS with Gazebo [sharifi_modelling_2018] and ROS Visualization Tool (RViz)
[kam_rviz_2015]. Gazebo is an integrated, physics-based 3D simulator in ROS that accurately models
complex robots and environments while RViz is a powerful tool in the ROS ecosystem that visually
represents three-dimensional data, making it easier to understand and work with data generated by
sensors, actuators, and algorithms. These tools collectively enable the development, testing, and
analysis of the platooning system within a controlled environment. Additionally, the Unified Robot
Description Format (URDF) is crucial in robotics for accurately representing a robot’s physical structure
using a standardised XML-based description [fabian_pose_2020].

The URDF acts as a bridge between mechanical design and simulation, accurately representing the
different vehicle components such as chassis, sensors and degrees of freedom. Gazebo provides a
physics-based 3D simulation environment that replicates real-world dynamics and interactions. Notably,

36

this implementation successfully replicated a highway environment. Finally, RViz enhances data
comprehension since allows visualising sensor readings.

To offer a comprehensive context, an overview of the ego vehicle’s system architecture is presented in
Figure 4.3. This illustration aids in understanding the broader framework.

Control System Actuation

Localisation

PerceptionSe
ns

or
Fu

si
on

Obstacle Detection

steering,
breaking
throttle

odometry

Lidar

Figure 4.3: Holistic view of system architecture for the ego vehicle. Illustrating the interplay between
control system, actuation, localisation, perception, sensor fusion, and obstacle detection components.

Moving forward, specific contributions within each component of the architecture are detailed, as well as
further communications with the different agents. These are localisation, perception, sensor fusion and
lastly the control system. Additionally, considerations about the implementation of the platoon-distributed
system are also included.

4.3.1 Localisation

The primary source of localisation information for our platooning system is the odometer. The odometer
measures the distance travelled by the vehicle’s wheels and calculates the change in position over time.
This information is valuable for tracking the agent’s trajectory and maintaining an up-to-date estimate of
its pose. The ROS ecosystem enables access to the odometry data of every agent, thus we achieve
real-time, high-precision localisation. This data forms the basis for subsequent control actions, used
individually by the ego and the follower vehicles.

4.3.2 Perception

The perception module provides the control system with an accurate description of the environment. This
encompasses both moving and static objects, as well as an estimation of the road geometry and gradient
that the vehicles traverse.

The perception element is developed centred around a LiDAR sensor. The sensor measures distances
by sending laser pulses and calculating the time taken for the pulses to return after hitting an object.
Thus providing high-resolution point cloud data, enabling the perception system to create a detailed and
precise representation of the surroundings.

37

In this context, the Hokuyo UTM-30LX 2D laser scanner [noauthor_utm-30lx_nodate] is chosen to be
incorporated into the ego vehicle. The specifications of this LiDAR are outlined in Table 4.1.

Table 4.1: Specifications of the Hokuyo UTM-30LX LiDAR.

Characteristic Value

Range 0.01 m - 30 m
Scanning angular range 270°

Angular resolution 0.25°
Scanning rate 40 Hz

4.3.3 Sensor Fusion

The sensor fusion module is a critical component that combines data from multiple sources, such
as odometry and LiDAR, to estimate obstacle positions accurately. Moreover, it employs advanced
techniques to differentiate between static and dynamic obstacles within the environment.

To distinguish between static and dynamic obstacles in the spatial domain, the module employs an optical
flow-inspired method based on LiDAR measurements over time. This involves comparing the positions of
LiDAR points between consecutive scans to estimate the motion of obstacles. This motion is calculated
by computing the displacement. The ideal optical flow is naturally zero for static points and different from
zero for dynamic points. However, the presence of LiDAR measurement noise can highly impact this
process. Therefore, empirically determined thresholds near zero and a second higher arbitrary threshold
were used to classify static and dynamic obstacles respectively.

Through the integration of a KF, the sensor fusion module predicts obstacle velocities by leveraging the
principles established earlier filter’s formulation (see subsubsection 4.2.1.3). Furthermore, assuming
the obstacle’s motion always follows a constant acceleration, the system state vector is expressed as
follows:

1 0 h 0 h2

2
0

0 1 0 h 0 h2

2
0 0 1 0 h 0
0 0 0 1 0 h

0 0 0 0 1 0
0 0 0 0 0 1

, (4.23)

where h is the time interval. This model expresses the x-coordinate, y-coordinate, x-velocity, y-velocity,
x-acceleration, and y-acceleration of the obstacle in sequence.

In the process of system estimation, the noise covariance matrix QKF is defined to account for the
uncertainties and noise present in the system. It encompasses the variances of position, velocity, and

38

acceleration in both x and y directions, such that:

QKF =

σ2
wx 0 0 0 0 0
0 σ2

wy 0 0 0 0
0 0 σ2

wvx 0 0 0
0 0 0 σ2

wvy 0 0
0 0 0 0 σ2

wax 0
0 0 0 0 0 σ2

way

. (4.24)

Each covariance σ was chosen empirically, and the cross-covariance was assumed always 0. The
observation matrix HKF is formulated to estimate the velocity of the obstacle by applying the constant
acceleration motion model. Consequently, the input of the observation model is the centre position of
the point cloud after clustering, and its coordinates x, y serve as the design reference of the observation
matrix, thus

HKF =

1 0 0 0 0 0
0 1 0 0 0 0

 . (4.25)

In the observation process, the noise covariance matrix RKF is calculated to weigh the state correction
based on the current state and the observed noise. The diagonal elements represent the variance of the
x and y coordinates, reflecting the measurement noise covariance resulting from the observation noise,
such that

RKF =

σ2
vx 0
0 σ2

vy

 . (4.26)

Lastly, the KF is thus initialised as shown in Table 4.2.

Table 4.2: Initial setting of the Kalman Filter parameters.

Initial Setting of Parameters

position x read from LiDAR

position y read from LiDAR

velocity x 0.0

velocity y 0.0

acceleration x 0.0

acceleration y 0.0

4.3.4 Control of Vehicles

The control module is built upon the NMPC formulation introduced earlier, in (4.7) for the ego vehicle and
in (4.18) for the follower vehicles. To find a locally optimal solution to the Optimal Control Problem (OCP),
the state-of-the-art numerical optimal control software CasADi [andersson_casadi_2019] is employed.
The software package allows for reformulating the continuous-time optimal control problem into a NLP

39

problem. The resulting NLP is solved using a nonlinear Interior-Point Method (IP) solver via a direct
multiple shooting combined with numerical integration.

After every NMPC step, it is a common practice to warm-start the next optimal control problem, shifting
the vector of control inputs over one time instant and adding an initial guess, often the zero vector, for
the last time instant. Similarly, the penalty factors are shifted, and a vector of ones is added for the last
time instant.

To visualise the hierarchical structure of nodes and topics in the ROS system, one can refer to Figure 4.4,
where nodes are depicted as ellipses, and topics are represented as lines connecting them. This
visualisation enables us to observe the flow of information and dynamic interactions between nodes
within our control system. It significantly enhances our comprehension of the vehicle’s decision-making
process.

/ego _vehicle

/ego_vehicle/control _ego _vehicle

/gazebo

/ego_vehicle/cmd_vel

/ego_vehicle/odom

/ego_vehicle/laser_scan

Figure 4.4: Hierarchical representation of nodes and topics in the control system via the rqt graph GUI
tool.

4.3.5 Distributed Control

The CACC, that is the distributed control scheme used in this research work, is facilitated through ROS.
The foundational principles underlying a ROS-based implementation encompass key elements such as
nodes, messages, topics, and services. As depicted in Figure 4.5, the ROS master node, known as
roscore, assumes a pivotal role in this architecture enabling inter-node communication.

roscore

node 2node 1 node n

…

registration

messages messages
…

registration

registration

messages

Figure 4.5: ROS architecture and node communication illustration. The roscore orchestrates the
exchange of information among nodes, enabling collaborative coordination and data flow. Inspired and
adapted from [koubaa_coros_2015].

40

A way to conceptualise the interactions within a ROS-based system is by envisioning it as a
directed graph [jiang_sign-consensus_2017]. Recalling the introduction to graph theory performed
in subsection 2.3.1, a semi-formal definition of a ROS graph is thus
Definition 4 (ROS-graph). A ROS-graph is denoted as G := (N , T ,S, E ,D, C,X , λ), where:

• N is the set of vertices corresponding to ROS nodes;

• T the set of topics;

• S the set of services;

• C ordered set of object classes;

• X a set of labels on vertices;

• E ⊂ (N × T) ∪ (T ×N) ∪ (N × S) ∪ (S ×N) is a set of directed edges to represent publishing of,
and subscription to, topics and provision of, and subscription to, services, respectively;

• D : E− → C∗, E− = T ∪ (N × S) ∪ (S × N), is a data descriptor function with C∗ is a notation for
finite sequences of entries from the set of a data object classes C, which are used in services and
topics to send information between nodes.

Each of N , T ,S are labelled by the function λ : N ∪ T ∪ S → X .

Thus, in this dissertation, where vehicles communicate and coordinate, ROS acts as a facilitator. Each
vehicle functions as a distinct node within the ROS ecosystem, exchanging vital information and thus
orchestrating complex manoeuvres.

In the context of CACC, the communication and interaction between vehicles can be represented using
a ROS graph G = (N , T ,S, E ,D, C,X , λ), likewise asserted in above. Thus G is such that:

• N represents the set of vertices corresponding to ROS nodes, including the ego vehicle and
different followers in the platoon. One can mathematically define it as

N = {0, 1, 2, . . . , nf}. (4.27)

Where, nf represents the number of follower vehicles in the network, equalling a total of 1 + nf

ROS nodes.

• T is the set of topics through which vehicles communicate. Thus,

T = {Tego, Tfollower 1, . . . , Tfollower nf
}, (4.28)

these indexes take the format of the numbering of nodes established in N .

• C is the set of object classes, formally expressed as:

C = {Codom, Ccontrol, Csensor} (4.29)

That is each class Ci within C defines a distinct category of information exchanged among platoon

41

vehicles. The specific composition of C recalls the odometry data, the input control commands, and
the sensor data.

• X is the set of labels assigned to the vertices in the network, thus representing vehicle roles.
Formally expressed as:

X = {X0, X1, X2, . . . , Xnf
} (4.30)

where X0 represents the label assigned to the ego vehicle, X1 and X2 represent the label assigned
to the first and second follower vehicles, respectively. Xnf

naturally represents the label assigned
to the nf -th follower vehicle.

• E is the set of directed edges in the network, representing communication relationships between
nodes, i.e. different vehicles. Formally expressed as:

E = {(vi, vj) | vi, vj ∈ N}, (4.31)

where, (vi, vj) denotes a directed edge from node vi to node vj within the network, and vi, vj ∈ N
indicates that both vi and vj are vertices (ROS nodes) in the network.

• D is the data descriptor function that maps directed edges in the network, E−, to sequences of data
object classes, C∗, such that

D : E− → C∗ (4.32)

The output of D is a sequence of data object classes that characterises the information content
and format of messages exchanged along each directed edge.

Practically, the role of ROS is paramount in orchestrating seamless communication and cooperation
among platoon vehicles. The platoon’s dynamics begin with the initial assignment of roles, designating
vehicles as either the ego or a follower based on predefined criteria or real-time communication with other
platoon members. Each vehicle node is attributed a specific role label, as defined within X . The platoon
ego, driven by its local sensor data and control unit, maintains a constant desired velocity and adheres to
the nominal path. Simultaneously, it periodically broadcasts its state, encompassing essential data such
as position, velocity, and control inputs, via a designated communication channel represented by topic
Tego.

In the followers’ domain, these vehicles subscribe to the ego’s state information, which flows through the
very same topic Tego. Armed with real-time insights into the ego’s behaviour, each follower autonomously
computes its desired trajectory and corresponding control commands. These commands, originating
from the follower’s calculations, are then disseminated via an exclusive communication channel, aptly
termed Tfollower.

Follower vehicles communicate with each other through the topic Tfollower. Each follower considers the
control commands of the preceding follower vehicle, aiming to maintain a safe distance and synchronised
motion. The data descriptor function D maps the topic edges to data object classes that include position,
velocity, and other relevant information. Follower vehicles use the received control commands to adapt
their velocity, acceleration, and braking based on the current traffic situation. The ego and followers
adjust their behaviours to ensure safe and cooperative driving within the platoon. The system continues

42

to operate until a termination condition is met, such as a designated exit point or completion of a specific
mission.

Figure 4.6 visually captures the essence of this communication scheme, drawing inspiration from the
CACC framework in Figure 3.2, and highlights the labels and topics integral to the platoon’s coordinated
operation.

Tfollower 2 Tfollower 1 Tego…

X0X1X2

TegoTego

Figure 4.6: A visual representation of the information flow in the platoon dynamics within ROS. The ego
vehicle is represented in blue and the different followers in light grey.

43

44

Chapter 5

Validation

In this chapter, the proposed method will be rigorously evaluated to assess its performance, effectiveness,
and robustness in various scenarios. The evaluation aims to validate the approach’s capability to address
the challenges of lane-changing manoeuvres, obstacle avoidance, overtaking, and abrupt braking for the
ego vehicle within the platoon.

5.1 Experimental Setup and Methods

The codebase and resources associated with the work presented in this dissertation are available in
the following repository: GitHub Repository 1. This repository serves as a comprehensive source for
accessing the software, data, and documentation pertinent to the experiments and results discussed in
this chapter.

5.1.1 Performance Metrics

The evaluation utilises a set of key performance metrics to thoroughly assess the effectiveness and
efficiency of the truck platooning system proposed. These metrics include computation effort, control
effort, and, consequently, energy efficiency, state stability (platoon stability), lane-change success rate,
and collision avoidance rate. Computation resources and system stability are meticulously monitored.
Furthermore, the ability of the system to execute successful lane changes and avoid collisions is
measured. To provide context, the system’s performance is compared with established baseline models,
enabling a robust evaluation of its capabilities and areas for potential improvement.

5.1.2 Computational Resources

In this study, the computational resources utilised include a MacBook Pro powered by an Apple M1
Pro chip with 16GB of RAM. All experiments and simulations were conducted within a virtual machine
environment, facilitated by Parallels Desktop, using Ubuntu 20.04 and ROS Noetic. It is important to note

1https://github.com/blourenco217/Master-Thesis-Simulation

45

https://github.com/blourenco217/Master-Thesis-Simulation
https://github.com/blourenco217/Master-Thesis-Simulation

that this experiment does not rely on GPU acceleration, ensuring compatibility with the MacBook Pro’s
hardware configuration.

5.1.2.1 Experiment environment

The evaluation of the proposed solution was conducted within a simulated highway environment, utilising
the Gazebo simulation platform. This environment, as illustrated in Figure 5.1, provided a realistic and
controlled setting for assessing the performance of our platooning system. The Gazebo simulation
framework facilitated the recreation of highway scenarios, enabling comprehensive testing and analysis
of the system’s capabilities in a simulated but representative context.

Figure 5.1: Simulated highway environment for proposed solution testing in Gazebo.

Figure 5.2 illustrates the integration of RViz and Gazebo in the simulation environment, showcasing their
pivotal roles in fine-tuning LiDAR data. The simulation features a two-segment truck (tractor + trailer)
navigating an environment with strategically positioned obstacles. In the RViz visualisation (Figure 5.2a),
the red scatter represents the data points received from the LiDAR sensor, providing real-time insights
into the surrounding environment. Simultaneously, in the Gazebo simulation (Figure 5.2b), the blue rays
denote the range area captured by the LiDAR, offering a comprehensive view of the sensor’s coverage.
This integration facilitates precise LiDAR data analysis and optimisation, contributing to the development
of an efficient platoon control system.

(a) RViz Integration. (b) Gazebo Simulation.

Figure 5.2: Visualization of LiDAR data integration.

46

5.2 Experiments

In this section, a detailed description of the experiments conducted to evaluate the proposed approach
is provided. These experiments encompass a range of scenarios designed to challenge the capabilities
of the approach.

During the valuation process, we performed limited parameter tuning to optimise the performance of the
proposed algorithm. Specifically, we selected the state penalty matrix Q and the control input penalty
matrix R, both of which contribute to the objective cost function described in (4.8). The state penalty
matrix was chosen as a diagonal matrix such that:

Q = diag(100, 150, 10, 5, 10, 5, 5, . . . , 5︸ ︷︷ ︸
n-times

) (5.1)

Here, n represents the number of trailers in the controlled vehicle model (recall section 2.1). These values
correspond to the penalty for the orientation of each tractor or trailer segment in the model, and the same
penalty value was applied to all segments. Therefore, Q has a dimension of (5 + n)× (5 + n).

Additionally, the control input penalty matrix R was defined as a fixed-size matrix:

R =

5 0
0 5

 (5.2)

Furthermore, the exponential weight penalty for the soft constraint in (4.15) was set to β = 3.7. The
prediction horizon was fixed at N = 10, and the controller operates at a frequency of 10 Hz.
Additionally, all topics and services in the ROS system are broadcasted at uniform time intervals to ensure
standardisation.

All the forthcoming experiments were conducted using trucks of comparable shapes, each featuring a
single trailer in a simple tractor-trailer configuration. The tractor segment has a length of l0 = 3.5 m, with
a hitching offset denoted as of m0 = 0.5 m. The trailer’s length is l1 = 6 m.

The LiDAR was empirically tuned to operate within a narrow range, roughly matching the lane’s width.
The selection of values for the covariance matrices QKF and RKF is a critical aspect of the KF design.
The values of QKF, which represent process noise, were intentionally set to low values such as

σx = σy = σvx = σvy = σax = σay = 0.01 . (5.3)

These low values reflect our desire to have a high confidence in the accuracy of the predicted state of
the system, as it relies on the dynamic model’s accuracy.

Conversely, the values of RKF, which correspond to measurement noise, were set higher,
specifically

σvx = σvy = 0.1 . (5.4)

This decision was driven by the nature of sensor measurements, which inherently contain more noise and

47

uncertainty. By assigning higher values to R, we ensure that the Kalman filter places greater emphasis
on sensor measurements and adapts to changes in the observed data. This balance between process
noise and measurement noise is crucial in achieving optimal filter performance, ensuring that the filter
effectively fuses the predictions from the dynamic model with real sensor measurements to provide an
accurate and reliable estimate of the system’s state.

It is important to note that our goal was not to fine-tune the NMPC extensively but rather to assess its
overall performance within this specific experimental setup.

5.2.1 Lane Changing Manoeuvres

In order to assess the proposed approach’s capability to perform basic lane-changing manoeuvres while
maintaining platoon integrity and stability, a series of experiments were conducted. These tests aimed to
evaluate the approach’s performance across different platoon configurations, focusing on two scenarios:
one with a platoon composed of three trucks and another with four trucks. This was performed on
similar-shaped trucks with only one trailer - i.e. a tractor-trailer configuration.

Figure 5.3 presents comprehensive performance metrics for the basic lane-changing manoeuvre.
Particular emphasis is given to the evolution of position over time (Figure 5.3a and Figure 5.3c), as
well as the velocity profile over time (Figure 5.3b).

Furthermore, Figure 5.4 presents a sequence of snapshots from the Gazebo simulation, providing a
visual representation of the platoon’s dynamic movement. These snapshots correspond to the same
experimental run as the previously displayed plots.

Analogously, Figure 5.5 offers a comprehensive overview of performance metrics during a lane-changing
manoeuvre involving four vehicles. Notable aspects include the evolution of vehicle positions over time
(Figure 5.5a and Figure 5.5c) and the corresponding velocity profiles (Figure 5.5b). While Figure 5.6
captures key moments from a 14-second video clip, portraying a coordinated lane-changing manoeuvre
within a platoon of four vehicles. These visual snapshots align with the experimental scenario explored
through the previously detailed graphs.

The provided plots showcase performance metrics for lane-changing manoeuvres in platoons of three
and four trucks. In the lane-changing manoeuvre, the Time Evolution graphs (Figure 5.3a and
Figure 5.5a) illustrate smooth execution with distinct phases, allowing for comparisons across different
platoon sizes. The Velocity Profile graphs (Figure 5.3b and Figure 5.5b) highlight dynamic behaviours,
revealing acceleration and deceleration patterns that contribute to overall platoon stability. The position
tracking graphs (Figure 5.3c and Figure 5.5c) demonstrate the platoon’s ability to maintain its desired
formation during the manoeuvre, reinforcing the robustness of the proposed algorithm. These images
collectively emphasise the efficacy of the control approach, demonstrating consistent and reliable
performance across varying platoon sizes in executing complex lane-changing manoeuvres.

The experiments demonstrated that the proposed approach successfully managed basic lane-changing
makeovers within the platoon for both three-truck and four-truck configurations. The control effort
exhibited efficiency, and the platoon’s stability was well-maintained throughout the manoeuvres.
Sequential images showcasing the lane-changing performance of the platoon revealed smooth

48

0 5 10 15 20 25

time t (s)

−50

−25

0

25

50

75

100

125

150
po

si
tio

n
(m

)

x - Ego vehicle
y - Ego vehicle
x - Follower vehicle 1
y - Follower vehicle 1
x - Follower vehicle 2
y - Follower vehicle 2

(a) Time evolution of lane changing.

0 5 10 15 20 25

time t (s)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

ve
lo

ci
ty
v 0

(m
s−

1
)

Ego vehicle
Follower vehicle 1
Follower vehicle 2

(b) Velocity profile during lane changing.

−50 0 50 100 150

x (m)

−10.0

−9.5

−9.0

−8.5

−8.0

−7.5

−7.0

−6.5

−6.0

y
(m

)

(x, y) - Ego vehicle
(x, y) - Follower vehicle 1
(x, y) - Follower vehicle 2

(c) Position tracking during lane changing.

Figure 5.3: Performance metrics for lane changing manoeuvres on a three trucks platoon configuration.

transitions between lanes. The ego vehicle exhibited controlled acceleration and deceleration while
maintaining safe distances from neighbouring vehicles. These simpler experience makes it promising
for further and more complex approaches, such as overtaking manoeuvres.

5.2.2 Static and Dynamic Obstacle Avoidance

A stationary obstacle was placed along the trajectory of the platoon to evaluate how well the approach
detects and avoids such obstacles. The ego vehicle initiated avoidance manoeuvres upon detecting the
obstacle in its path.

Figure 5.7 presents a set of performance metrics given the described scenario. The images include

49

Figure 5.4: Sequential images illustrating a successful lane-changing manoeuvre. This set of four
equally spaced frames, captured from a 16-second clip, depicts the lane-changing performance of the
ego vehicle (equipped with LiDAR) and two following vehicles.

the time evolution of vehicle positions (Figure 5.7a) and velocities (Figure 5.7b), as well as the tracked
positions (Figure 5.7c) during these experiments.

In Figure 5.7a, notably, the x position demonstrates a synchronised behaviour, indicating that the
vehicles maintain a constant inter-vehicle distance throughout the manoeuvre. Meanwhile, the y position
reveals a ripple effect originating around second 4 for the ego vehicle, propagating this divergence
from the nominal trajectory to the follower vehicles. This observation underscores the algorithm’s
proficiency in orchestrating a cohesive platoon, ensuring that all vehicles faithfully follow the lead vehicle’s
trajectory.

The velocity profiles depicted in Figure 5.7b showcase the algorithm’s capability to adapt vehicle speeds
when confronted with static obstacles. Specifically, at second 4, the ego vehicle, at second 5, the
first following vehicle, and finally, at second 7, the last vehicle in the platoon react to the presence of
the obstacle by smoothly decelerating. This orchestrated speed reduction aligns with the ego vehicle’s
detection and deviation from its initial nominal trajectory, thereby preventing any abrupt changes in the
platoon’s movement.

In the context of Figure 5.7c, we witness the meticulous tracking of the platoon’s vehicle positions over
time. Here, the algorithm’s effectiveness in circumnavigating the obstacle is particularly evident. The
discernible ”jump” in the trajectory corresponds to the precise avoidance of the obstacle, demonstrating
the algorithm’s capacity for decisive and obstacle-aware manoeuvres. The oscillations observed in the
trajectories of the follower vehicles just before overtaking the obstacle stem from the sudden trajectory
shift executed by the ego vehicle. These oscillations highlight the algorithm’s ability to navigate the
platoon seamlessly through complex scenarios while maintaining the desired safety margins.

50

0 5 10 15 20

time t (s)

−50

0

50

100

150
po

si
tio

n
(m

)
x - Ego vehicle
y - Ego vehicle
x - Follower vehicle 1
y - Follower vehicle 1
x - Follower vehicle 2
y - Follower vehicle 2
x - Follower vehicle 3
y - Follower vehicle 3

(a) Time evolution of lane changing.

0 5 10 15 20

time t (s)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

ve
lo

ci
ty
v 0

(m
s−

1
)

Ego vehicle
Follower vehicle 1
Follower vehicle 2
Follower vehicle 3

(b) Velocity profile during lane changing.

−50 0 50 100 150

x (m)

−9.5

−9.0

−8.5

−8.0

−7.5

−7.0

−6.5

−6.0

y
(m

)

(x, y) - Ego vehicle
(x, y) - Follower vehicle 1
(x, y) - Follower vehicle 2
(x, y) - Follower vehicle 3

(c) Position tracking during lane changing.

Figure 5.5: Performance metrics for lane changing with on a four trucks platoon configuration.

In the sequential snapshots presented in Figure 5.8, we witness the platoon’s coordinated manoeuvre
around a static obstacle. This series of images showcases the algorithm’s ability to effectively guide the
platoon’s vehicles smoothly and efficiently navigating past the obstacle. These snapshots demonstrate
the algorithm’s real-time decision-making and trajectory adjustments, ensuring the safe and obstacle-free
progression of the platoon.

The next experiment delves into the assessment of the same proposed algorithm, this time in the context
of dynamic obstacle avoidance. To accurately represent the obstacles, a kinematic bicycle model
was employed, and their movements were controlled using a PID controller. Additionally, a reference
trajectory for each vehicle was planned by incorporating randomisation techniques to determine the
desired lane.

51

Figure 5.6: Snapshot from a 14-second video clip showcasing lane-changing manoeuvres . In this
frame, the ego vehicle, equipped with LiDAR, leads a platoon of three following vehicles as they execute
a coordinated lane change.

As the platoon encounters dynamic obstacles in its path, the algorithm’s performance is examined to
ensure its adaptability to changing scenarios. Figure 5.9 presents the set of performance metrics of the
present experience.

In Figure 5.9a it becomes apparent that the ego vehicle and the follower vehicle respond synchronously
to the dynamic obstacle. The plot highlights the parallel behaviour of their positions along the x-axis,
indicating that the vehicles maintain a constant distance from each other. Additionally, on the y-axis it
demonstrates a ripple effect caused by the obstacle’s detection at approximately second 4 for the ego
vehicle. This ripple propagates along the path, illustrating how the vehicles effectively follow each other’s
trajectories.

In Figure 5.9b the ego vehicle exhibits a smooth deceleration as it approaches the obstacle at
approximately second 4. This deceleration results in a downward slope in the velocity curve, indicating
a controlled reduction in speed. Following successful obstacle avoidance, the ego vehicle smoothly
accelerates to regain its initial speed. Importantly, the follower vehicles also adjusts its velocity to maintain
platoon coherence during the ego vehicle’s manoeuvre, demonstrating a controlled reduction in speed
and subsequent acceleration.

Figure 5.9c emphasises how effectively the vehicles contour the dynamic obstacle. Notably, a jump in the
trajectory corresponds to the avoidance of the obstacle, showcasing the algorithm’s ability to orchestrate
this manoeuvre seamlessly. The slight oscillation in the trajectory of the follower vehicles just before
overtaking the obstacle is a result of the ego vehicle’s sudden trajectory change. This analysis confirms
the algorithm’s capacity to navigate dynamic obstacles while ensuring platoon coherence.

52

0 5 10 15 20 25 30 35

time t (s)

−50

−25

0

25

50

75

100

125

150
po

si
tio

n
(m

)

x - Ego vehicle
y - Ego vehicle
x - Follower 1 vehicle
y - Follower 1 vehicle
x - Follower 2 vehicle
y - Follower 2 vehicle

(a) Time evolution the platoon’s position.

0 5 10 15 20 25 30 35

time t (s)

−0.6

−0.4

−0.2

0.0

0.2

ve
lo

ci
ty
v 0

(m
s−

1
)

Ego vehicle
Follower 1 vehicle
Follower 2 vehicle

(b) Velocity profile.

−50 0 50 100 150

x (m)

−10

−9

−8

−7

−6

−5

y
(m

)

(x, y) - Ego vehicle
(x, y) - Follower 1 vehicle
(x, y) - Follower 2 vehicle

(c) Position tracking.

Figure 5.7: Performance metrics for a static obstacle avoidance scenario with a three vehicles platoon
configuration.

In Figure 5.10 we denote the sequential snapshots from this manoeuvre.

5.2.2.1 Baseline

The obstacle avoidance performance of the system was compared with a well-established baseline
model, discussed in the state-of-the-art segment (see section 3.1). This comparison allows for a robust
evaluation of the system’s capabilities, highlighting areas for potential improvement.

To assess its performance, a quadratic barrier function was employed represented as follows:

h(pego) = 1
2

∥∥pego − b
∥∥2 − 1

2
r2 . (5.5)

53

Figure 5.8: Snapshot from a 13-second video clip showcasing platoon of vehicles navigating past a
static obstacle. In this frame, the ego vehicle, equipped with LiDAR, leads a platoon of two following
vehicles as they execute a coordinated lane change. The static obstacle is a light-grey cube placed on
the rightmost lane of the highway environment.

Here, pego denotes the pose of the ego vehicle, while b represents the leftmost boundary of the obstacle.
The parameter γ acts as the convergence rate for the CBF and was tuned to a fixed value, independent
of the ego vehicle’s position, set at γ = 0.7. This choice strikes a balance between the feasibility domain
and achieving the fastest possible convergence. Additionally, recalling problem formulation in (3.2) the
objective function was altered by the addition of a quadratic cost of the slack variable ω, that is, by the
sum of

ψ (ωk) = ω2
k. (5.6)

The reference tracking function maintained the same framework as in the proposed algorithm in (4.8)
such that

q (xk,uk) = (xk − rk)⊤Q(xk − rk) + u⊤
k Ruk. (5.7)

However, to ensure integrity and convergence the NMPC optimisation problem had to be re-tuned with
higher weight values. While matrix R remained unaltered, matrix Q had to be assigned higher weights
on the segments’ orientation, such that

Q = diag(100, 150, 10, 5, 10, 10, 10, . . . , 10︸ ︷︷ ︸
n times

) (5.8)

This adjustment had to be applied the segments orientation otherwise it would diverge from its desired
orientation, ensuring the MPC’s effectiveness in achieving the desired outcomes. The predicted horizon
remained the same, i.e. N = 10.

54

0 5 10 15 20 25 30

time t (s)

−50

−25

0

25

50

75

100

125

150
po

si
tio

n
(m

)

x - Ego vehicle
y - Ego vehicle
x - Follower 1 vehicle
y - Follower 1 vehicle
x - Follower 2 vehicle
y - Follower 2 vehicle

(a) Time evolution the platoon’s position.

0 5 10 15 20 25 30

time t (s)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

ve
lo

ci
ty
v 0

(m
s−

1
)

Ego vehicle
Follower 1 vehicle
Follower 2 vehicle

(b) Velocity profile.

−50 0 50 100 150

x (m)

−10

−9

−8

−7

−6

−5

y
(m

)

(x, y) - Ego vehicle
(x, y) - Follower 1 vehicle
(x, y) - Follower 2 vehicle

(c) Position tracking.

Figure 5.9: Performance metrics for a dynamic obstacle avoidance scenario with a three vehicles platoon
configuration.

Figure 5.11 along with the additional snapshots provided in the Appendix C offer a comprehensive view
of the real-time obstacle avoidance performance.

In order to evaluate the real-time performance of the proposed approach, we conducted a comparison
with an established baseline model. The objective was to assess the efficiency and effectiveness of our
approach in obstacle avoidance scenarios. The results, presented in Table 5.1, highlight key performance
metrics, including computational time and the number of iterations required for successful manoeuvre
execution.

Note that the time indicated in the table encompasses the entire set of iterations specified.

55

Figure 5.10: Snapshot from a 16-second video clip showcasing a platoon of vehicles navigating past
a static obstacle. In this frame, the ego vehicle, equipped with LiDAR, leads a platoon of two following
vehicles as they execute a coordinated lane change. The dynamic obstacle being overtaken is alight-grey
cube on the rightmost lane of the highway environment that is independently controlled through a PID.

Figure 5.11: Snapshot from a 14-second video clip showcasing platoon of vehicles navigating past a
dynamic obstacle. Here, the baseline NMPC controller was employed.

These results underscore the significance of real-time performance in obstacle avoidance scenarios.
Both the CBFs method and the Penalty method demonstrate commendable efficiency, with comparable

56

Table 5.1: Comparison of the computational time, in seconds, and iteration count between the CBFs
method and the Penalty method. These metrics offer insights into the real-time capabilities of both
approaches in overcoming obstacles.

CBFs method Penalty method

Computational time (sec) 2.1384 2.0098
Iterations 11 12

computational times. However, the Penalty method requires slightly more iterations to complete the
manoeuvre.

In the context of real-time applications, where rapid decision-making is paramount, minimising the
computational time and maintaining a reasonable iteration count are crucial factors. The small difference
in iteration count suggests that both methods offer feasible solutions within practical timeframes.
However, the faster computational time of the Penalty method may provide an edge in scenarios where
split-second decisions are required for obstacle avoidance.

In our comparative analysis, we explore the magnitude of input signals, offering insights into the control
strategies employed by both the baseline and the novel proposed methods. Figure Figure 5.12 provides a
side-by-side comparison of the input signal magnitudes, shedding light on their respective characteristics
and performance.

0 5 10 15 20

time t (s)

0

20

40

60

80

100

in
pu

t
va
lu
es

u0 (m s − 1)

u1 (rad s − 1)

(a) Baseline method.

0 5 10 15 20

time t (s)

0

20

40

60

80

100

in
pu

t
va
lu
es

u0 (m s − 1)

u1 (rad s − 1)

(b) Novel method.

Figure 5.12: Comparative analysis of the input signals magnitude for the baseline methods vs. the novel
proposed method.

In the presented comparative analysis notable differences between the novel method and the baseline
approach emerge, offering valuable insights into their control strategies. Firstly, when examining
acceleration, a distinct characteristic stands out. In the novel method, acceleration exhibits a linear
behaviour at the beginning of the ego vehicle’s movement. Conversely, in the baseline approach,
acceleration shows two steep valleys. These valleys are a direct result of the simulation’s behaviour,

57

where the platoon briefly halts to evaluate and compute its trajectory. This momentary stoppage
creates the observed acceleration pattern. On the other hand, when assessing the steering rate, both
experiments showcase striking similarities. This similarity suggests that the steering rate profiles in
both methods are relatively consistent, emphasising their stable control behaviour during the obstacle
avoidance manoeuvre.

Furthermore, it’s worth noting that the nonlinearity in the optimisation process primarily arises from the
CBF constraints. These constraints introduce complexity to the optimisation process, as they dictate
the vehicle’s behaviour to ensure safety. Despite this increase in complexity, it’s crucial to highlight
that the reduction in constraint horizons, achieved through careful algorithm design, tends to dominate
any rise in complexity resulting from the introduction of additional optimisation variables ωk. This
optimisation strategy underscores the effectiveness of both methods in navigating complex obstacle
avoidance scenarios while maintaining platoon coherence and safety.

5.2.3 Abrupt Braking of the Ego Vehicle

In the last experiment, we tested the response of the platoon’s integrity to the abrupt braking of the ego
vehicle. The platoon tested consisted of four trucks: one ego vehicle and three followers. Similar to
previous experiments, all vehicles in this scenario had a similar tractor-trailer configuration.

The results in Table 5.2 provide insight into the response time of each following vehicle in the platoon
to the ego vehicle’s abrupt braking. The table records the time, in seconds, taken by each follower to
detect and respond to the ego vehicle coming to a stop. Remarkably, the recorded times indicate almost
instantaneous responses. The responses, captured in fractions of a second, demonstrate the platoon’s

Table 5.2: Response times, in seconds, of following vehicles to ego vehicle’s abrupt braking.

Follower 1 Follower 2 Follower 3

1.846e-05 1.692e-05 2.885e-05

rapid adaptability to sudden changes in the ego vehicle’s motion.

Additionally, Figure 5.13 presents a comprehensive set of performance metrics for this scenario. The
images include the time evolution of vehicle positions (Figure 5.13a) and velocities (Figure 5.13b), as
well as the tracked positions (Figure 5.13c) during the experiments.

The parallel evolution of the x-coordinate in Figure 5.13a indicates that the safety distance constraint
is consistently maintained throughout the movement. In 5.13b, we observe that all vehicles in the
platoon come to a halt at approximately the same time, around second 7. At this point, their velocities
converge to zero. And finally, Figure 5.13c illustrates that the vehicles come to a complete stop, with
distances between them remaining constant. This experiment reinforces the platoon’s capability to
respond swiftly to abrupt changes in the ego vehicle’s motion, showcasing its potential in critical real-world
situations.

Figure 5.14 presents a snapshot from a 12-second video clip, providing a visual representation of the
platoon’s coordinated braking manoeuvre.

58

0 5 10 15 20

time t (s)

−60

−40

−20

0

20

40

60

80

po
si

tio
n

(m
)

x - Ego vehicle
y - Ego vehicle
x - Follower vehicle 1
y - Follower vehicle 1
x - Follower vehicle 2
y - Follower vehicle 2
x - Follower vehicle 3
y - Follower vehicle 3

(a) Time evolution the platoon’s position.

0 5 10 15 20

time t (s)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

ve
lo

ci
ty
v 0

(m
s−

1
)

Ego vehicle
Follower vehicle 1
Follower vehicle 2
Follower vehicle 3

(b) Velocity profile.

−60 −40 −20 0 20 40 60 80

x (m)

−9.8

−9.7

−9.6

−9.5

−9.4

−9.3

−9.2

y
(m

)

(x, y) - Ego vehicle
(x, y) - Follower vehicle 1
(x, y) - Follower vehicle 2
(x, y) - Follower vehicle 3

(c) Position tracking.

Figure 5.13: Performance metrics for a abrupt braking of the ego vehicle scenario with platoon of three
vehicles.

59

Figure 5.14: Snapshot from a 12-second video clip showcasing platoon of vehicles. In this frame, the
ego vehicle, equipped with LiDAR, leads a platoon of two following vehicles. In this experience the ego
vehicle is disconnected from its controller leading to an abrupt brake.

60

Chapter 6

Discussion

This chapter delves into a comprehensive discussion of the research findings and insights gained
throughout this study. The preceding chapters have focused on the development and implementation of a
novel control algorithm, leveraging NMPC to enable autonomous platooning. While these chapters have
presented the technical details and results of the proposed approach, the discussion segment provides
a platform for a deeper analysis of these findings and their implications.

6.1 Control of Nonlinear Systems

One of the fundamental challenges encountered in this research was the optimal control of highly
nonlinear systems, particularly in the context of a general n-trailer model. Nonlinearity inherently
introduces complexities that demand innovative solutions. Throughout the development of the NMPC
framework, numerous decisions were made to address these challenges effectively. The results highlight
the algorithm’s adaptability and ability to tackle the inherent nonlinearities, reinforcing its suitability for
real-world platoon control applications.

The choice of discretisation techniques plays a pivotal role in controlling nonlinear systems. In our
approach, the RK4 was chosen over the simpler Euler method. This decision was driven by the intricate
dynamics of the general n-trailer model, characterised by its nonlinear behaviour. RK4’s higher-order
accuracy proved essential in capturing the system’s nuances and enhancing predictive accuracy. The
adoption of RK4 contributed significantly to improved real-time performance and manoeuvre execution
in the presence of nonlinearities.

One of the key innovations in the NMPC approach is the incorporation of soft constraints within the
objective function. Unlike traditional methods that apply nonlinear distance constraints directly in the
optimisation problem, soft constraints were implemented, representing a linear operation. This strategic
shift yielded notable advantages, including improved computational efficiency and manoeuvre stability.
By introducing soft constraints, the NMPC framework strikes a balance between obstacle avoidance and
platoon coherence, offering a practical solution for real-time platoon control.

In conclusion, this discussion underscores the pivotal role of NMPC in addressing the challenges of

61

controlling nonlinear systems. The decisions made throughout the development process, from handling
nonlinearities to selecting appropriate discretisation techniques and implementing soft constraints,
collectively contribute to the algorithm’s adaptability and robustness in real-world platoon control
scenarios. These insights mark significant progress in the realm of autonomous truck platooning, bringing
us closer to realising safer, more efficient, and intelligent transportation systems.

6.2 Real-World Applications

The practical applications of autonomous platooning extend beyond the realms of research and into
real-world scenarios with transformative potential. This section explores some key domains where the
proposed algorithm holds promise.

6.2.1 Overtaking

Overtaking other vehicles on the road is a common manoeuvre that requires careful coordination
and control to ensure safety and efficiency. From the experiment of ”Dynamical Obstacle Avoidance”
where the baseline method was evaluated in respect to the novel method, one notable advantage of
our proposed approach is the ability to execute overtaking manoeuvre with smoother velocity profiles
compared to traditional methods, as demonstrated in the benchmarks.

In many benchmark scenarios, abrupt changes in velocity are often observed, particularly when the
platoon encounters obstacles or navigates through complex environments. These sudden velocity
changes, while effective in obstacle avoidance, may not be ideal for overtaking scenarios.

Smooth, gradual changes in velocity during overtaking can provide several benefits:

1. Enhanced Safety: Smoother velocity profiles reduce the risk of abrupt changes that might catch
other road users off guard. This enhances overall road safety, especially when overtaking
slower-moving vehicles.

2. Passenger and Load Comfort: Sudden changes in velocity can be uncomfortable for passengers
and cargo, particularly in commercial transportation. Smoother overtaking manoeuvres improve
the comfort of those on board.

3. Fuel Efficiency: Gradual changes in velocity can contribute to improved fuel efficiency. Abrupt
changes often result in unnecessary fuel consumption, while smoother manoeuvres optimise
energy usage.

4. Traffic Flow: Smoother overtaking can lead to improved traffic flow and reduced congestion.
Predictable, gradual manoeuvres allow for better coordination among vehicles on the road.

By prorating smoother velocity profiles during overtaking, our proposed approach aligns with the broader
goals of enhancing road safety, passenger comfort, and fuel efficiency. It also contributes to a more
harmonious traffic flow, benefiting both platooning and other road users.

Incorporating such considerations into platoon control strategies can pave the way for safer and more

62

efficient overtaking manoeuvres, ultimately contributing to the broader adoption of platooning in real-world
scenarios.

6.2.2 Emergency Braking

In the context of real-world applications, our proposed approach opens up new possibilities
and challenges for platoon management, particularly in emergency situations like abrupt braking.
Traditionally, platooning research has often focused on maintaining relatively large inter-vehicle
distances, typically between 5 to 10 meters, to mitigate the risk of rear-end collisions, especially
during emergency braking scenarios. The SARTRE project [bergenhem_challenges_nodate], for
instance, conducted controlled experiments with professional truck drivers in lead vehicles and observed
inter-vehicle distances in this range, broadcasting packets to all trailing vehicles. Additionally, they
emphasised disbanding the platoon in the event of braking emergencies as a safety measure.

However, our approach introduces a unique perspective by reducing the inter-vehicle distance to 2.5
meters. This reduced distance not only provides aerodynamic benefits but also results in increased
average fuel savings for the entire platoon. Nonetheless, at such short following distances, the risk
of rear-end collisions during abrupt braking is still present, albeit mitigated by the platoon’s automated
control system. This approach allows the platoon to react swiftly to emergencies and stop within a
driver’s typical response time, akin to real-life scenarios involving imminent collisions, sudden obstacles,
or unexpected slowdowns. This capability is crucial for collision-free emergency braking in practical
applications.

The ”Abrupt Braking of the Ego Vehicle” experiment, as discussed in Chapter 5, showcased the platoon’s
ability to halt with a driver’s response time. This capability is vital in real-life situations such as imminent
collisions, sudden obstacles, or unexpected slowdowns.

In [noauthor_active_nodate] was obtained empirically that the reaction time for a human driver
can vary from 0.3 s to 1.2 s. And while the simulations naturally do not account for latency in
real-world communication systems, the demonstrated capabilities highlight the potential of our approach
in improving road transportation efficiency and safety.

63

64

Chapter 7

Conclusion

In this thesis, we have delved into the realm of platoon control systems, focusing on the development and
evaluation of a novel approach for real-time obstacle avoidance. Platoon-based transportation systems
have garnered significant attention for their potential to revolutionise road transport by improving fuel
efficiency, reducing emissions, and enhancing overall traffic management. However, the successful
implementation of platoon systems hinges on the ability to navigate complex environments while ensuring
safety, feasibility and efficiency.

Foremost, a comprehensive exploration of the state-of-the-art in platoon control is introduced while
revealing existing challenges and opportunities for improvement. We identified the need for more
robust obstacle avoidance strategies and set out to design a novel solution that addresses these
challenges.

The proposed approach to real-time obstacle avoidance leverages NMPC to enable platoons to respond
to dynamic obstacles in their path. This approach stands out for its ability to seamlessly integrate with
existing platoon control systems and adapt to rapidly changing road conditions.

One of the cornerstones of our approach is the use of penalty soft constraints on the optimisation
problem to define safety constraints, ensuring that vehicles within the platoon maintain safe distances
from obstacles while preserving platoon coherence. We meticulously designed an objective function,
demonstrating their effectiveness in preventing collisions in real-time simulations. Our predictive
controller optimises trajectory planning, enabling platoons to navigate around obstacles while ensuring
minimal disruption to traffic flow.

To rigorously evaluate the effectiveness of our proposed approach, we conducted a series of experiments
in simulation environments that replicated real-world scenarios. These experiments encompassed a
wide range of challenges, from static obstacle avoidance to abrupt braking scenarios. Through detailed
analysis and comparison with established baseline models, we demonstrated the superior performance
of our approach in terms of safety, efficiency, and real-time decision-making.

This chapter provides a summary of the contributions then discusses future research directions.

65

7.1 Key Findings and Contributions

Our research yielded several key findings and contributions:

1. Enhanced Safety: Our approach significantly enhances the safety of platoon-based transportation
systems by effectively preventing collisions with obstacles. This is achieved through the predictive
control, and real-time decision-making.

2. Improved Efficiency: We have shown that platoons equipped with our approach can efficiently
navigate complex environments while maintaining platoon coherence. This efficiency contributes
to reduced fuel consumption and emissions, aligning with sustainability goals.

3. Real-Time Adaptability: Our approach demonstrates remarkable real-time adaptability, capable of
responding swiftly to dynamic obstacles and unforeseen challenges. This adaptability positions
platooning as a viable solution for contemporary transportation needs.

4. Smoother Velocity Profiles: In overtaking scenarios, our approach excels in providing smoother
velocity profiles compared to traditional methods. This enhances overall road safety, passenger
comfort, and fuel efficiency.

7.2 Future Work

While the present research represents a significant step forward in platoon control systems, there are
several avenues for future exploration and improvement. Continued research and development should
focus on scalability, integration with autonomous vehicles, and extensive real-world testing. The following
discussions outline these potential areas of exploration and improvement:

1. Cost-Coupled Optimisation Problem: this would involve each agent, including the ego vehicle and
followers, autonomously computing and possessing knowledge of its individual cost functions,
which could encompass various metrics such as fuel consumption, traffic flow optimisation, and
safety considerations - likewise the current approach. By exchanging cost-related information
among neighbouring agents through a novel algorithm, the cooperative optimisation problem aims
to collectively minimise the overall cost of the platoon, resulting in a more efficient and collaborative
system. Further investigation would be needed to fully understand the potential benefits of this
approach, optimise its implementation and compare its competitive performance with the current
method.

2. Enhanced Perception with 3D LiDAR Integration: A promising avenue for future work involves the
integration of 3D LiDAR sensors into the lead truck of the platoon. While our experiments have
already showcased the effectiveness of LiDAR in obstacle detection, the transition to 3D LiDAR
can provide a more comprehensive view of the environment, enabling better obstacle recognition
and avoidance strategies.

3. Advanced Communication Protocols: Building on our insights into long-distance communication
challenges between follower vehicles and the ego vehicle, future research can focus on the
development of more advanced communication protocols. These protocols should not only

66

enhance data transmission reliability but also support real-time decision-making and coordination
among platoon members.

4. Fine-Tuning of MPC Parameters: While our experiments have demonstrated the feasibility and
efficiency of our proposed approach, there is still room for extensive tuning of the MPC parameters.
Future work can delve deeper into parameter optimisation to further refine the control strategies,
ultimately leading to even smoother and more efficient platoon operations.

5. Graphics Processing Unit (GPU) Integration for Real-Time Control: To augment the real-time
control capabilities of platoon systems, future research can explore the integration of GPUs.
Leveraging GPU technology can significantly improve tracking performance, enabling real-time
obstacle detection and avoidance. This advancement can further enhance the safety and
adaptability of platoon-based transportation systems.

Additionally, further investigation into the broader implications of platoon-based transportation on traffic
management, energy efficiency, and urban planning is warrented. Collaborative efforts involving
academia, industry stakeholders, policymakers, and urban planners will be crucial in realising the full
potential of platoon-based transportation systems. The future of transportation holds immense promise,
and continued innovation and research will play a pivotal role in shaping that future.

67

68

Appendix A

Explanation of the 4th Order
Runge-Kutta Method

In this appendix, we provide an explanation of the 4th Order Runge-Kutta (RK4) method, which is a
numerical integration technique widely used to solve Ordinary Differential Equations (ODE).

The RK4 method is an iterative process that approximates the solution of an ODE by evaluating the
derivative at multiple points within a time interval and combining them to obtain an accurate estimate of
the solution at the next time step.

The general formula for the RK4 method is as follows:

k1 = h · f(tn, yn),

k2 = h · f(tn + h

2
, yn + k1

2
),

k3 = h · f(tn + h

2
, yn + k2

2
),

k4 = h · f(tn + h, yn + k3),

yn+1 = yn + 1
6

(k1 + 2k2 + 2k3 + k4),

where:

– tn represents the current time,

– yn is the current approximation of the solution at time tn,

– h is the step size, which determines the time increment between each iteration,

– f(t, y) is the function representing the derivative of the solution.

69

70

Appendix B

Khachiyan’s algorithm for
Minimum-Volume Enclosing
Ellipsoids

Khachiyan’s algorithm is an iterative algorithm that computes the minimum-volume enclosing ellipsoid
(MVEE) of a given set of points in high-dimensional space. The algorithm starts with an initial ellipsoid
and iteratively refines it until convergence. The key idea is to iteratively update the centre and shape of
the ellipsoid to minimise its volume while still containing all the given points.

The algorithm can be summarised as follows:

1. Given a set of n points X = {x1, x2, . . . , xn} in d-dimensional space.

2. Initialise an ellipsoid E0 with centre c0 and shape matrix A0.

3. Repeat until convergence:

(a) For each point xi, compute its Mahalanobis distance di from the current ellipsoid Et.

(b) Update the centre of the ellipsoid as the weighted average of the points:

ct+1 =
∑n

i=1 wixi∑n
i=1 wi

where wi = 1√
1+d2

i

.

(c) Update the shape matrix of the ellipsoid as:

At+1 =
∑n

i=1 wi (xi − ct+1) (xi − ct+1)⊤∑n
i=1 wi

4. Output the final ellipsoid Et as the minimum-volume enclosing ellipsoid.

71

72

Appendix C

Simulation Results

This appendix section provides additional snapshots based on the same experimental scenarios covered
in the main body of the dissertation, which include overtaking scenarios, with both static and dynamic
obstacles, respectively Figure C.1 and Figure C.2, and lastly Figure C.3 from the baseline comparison
performed.

73

Figure C.1: In-depth snapshots of Figure 5.8.

74

Figure C.2: In-depth snapshots of Figure 5.10.

75

Figure C.3: In-depth snapshots of Figure 5.11.

76

	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	Acronyms
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background
	Vehicle Modelling
	Kinematic unicycle model
	Kinematic bicycle model
	Kinematic model for the general n-trailer

	Model Predictive Control
	Nonlinear Model Predictive Control
	Control Lyapunov Function
	Control Barrier Functions

	From Centralised to Distributed Predictive Control
	Graph Theory
	Multi-Agent Systems
	Leader-follower Multi-agent Systems

	State-of-the-Art
	Safety Guarantees
	Cooperative Communication
	The ACC Model
	The CACC Model

	Method
	Problem Statement
	Proposed Algorithm
	Ego Vehicle
	Follower Vehicles
	CACC

	Implementation
	Localisation
	Perception
	Sensor Fusion
	Control of Vehicles
	Distributed Control

	Validation
	Experimental Setup and Methods
	Performance Metrics
	Computational Resources

	Experiments
	Lane Changing Manoeuvres
	Static and Dynamic Obstacle Avoidance
	Abrupt Braking of the Ego Vehicle

	Discussion
	Control of Nonlinear Systems
	Real-World Applications
	Overtaking
	Emergency Braking

	Conclusion
	Key Findings and Contributions
	Future Work

	Explanation of the 4th Order Runge-Kutta Method
	Khachiyan's algorithm for Minimum-Volume Enclosing Ellipsoids
	Simulation Results

