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Resumo

Os recentes avanços tecnológicos e as suas aplicações em diferentes áreas em conjunto com o

crescente interesse em veı́culos autónomos marcam o inı́cio de uma nova era para estes últimos. O

domı́nio aeroespacial abrange diferentes veı́culos como naves espaciais para o lançamento de satélites,

lançamento de foguetões e veı́culos aéreos não tripulados com os mais diferentes propósitos como é

o caso de vigilância e transporte. Cada uma destas áreas exige estratégias de controlo cada vez mais

robustas para garantir que os veı́culos interagem de uma forma eficaz com ambientes externos e são

capazes de executar manobras complexas. Contrariamente, os métodos de controlo tradicionais já não

são capazes de satisfazerem de uma forma viável os atuais requisitos, o que impossibilita os sistemas

em questão de alcançar um desempenho ótimo.

Motivada por estes desafios, a abordagem proposta implementa um Modelo de Controlo Preditivo

com restrições especı́ficas, que obrigam o sistema a entrar num conjunto invariante representado como

um Gerador Convexo Restrito, reduzindo o conservadorismo associado. Desta forma, o controlador

garante a viabilidade do mesmo ainda que na presença de perturbações. Além disso, é possı́vel obter

uma descrição exata da região de atração para que o sistema alcance o conjunto terminal. Os resul-

tados da simulação validam o desempenho das trajetórias do Modelo de Controlo Preditivo, enquanto

confirmam que os tempos de computação são adequados para uma aplicação em tempo real.

Palavras-chave: Modelo de Controlo Preditivo (MPC), Gerador Convexo Restrito (CCG),

Região de Atração, Robusto Positivamente Invariante (RPI), Estabilidade, Viabilidade Recursiva
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Abstract

The technological advances and their application across various sectors together with the growing

interest in autonomous vehicles mark the beginning of a new era for the latter. The aerospace domain

encompasses different vehicles such as spacecrafts for satellite deployment, rocket launch, and UAV

with purposes such as surveillance and transportation. Each of these areas demands more robust

control strategies to ensure that the vehicles can interact efficiently with external environments and can

execute complex manoeuvres. Contrarily, traditional control methods are no longer able to viably meet

the evolving requirements, which limits the systems from achieving an optimal operational performance.

Motivated by these challenges, the proposed approach implements a MPC with specific constraints

to force the system to enter into an invariant set represented as a CCG, which reduces the related

conservatism. In doing so, the controller ensures its feasibility even with the presence of disturbances.

Moreover, it is also possible to obtain a description of the region of attraction for the system to reach the

terminal set. Simulation results validate the performance of MPC trajectories whilst confirming that the

computational times are suitable for a real-time application.

Keywords: Model Predictive Control (MPC), Constrained Convex Generators (CCGs), Region

of Attraction, Robust Positively Invariant (RPI), Stability, Recursive Feasibility
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Chapter 1

Introduction

1.1 Context and Motivation

Over the past decade, research in autonomous vehicles has expanded significantly due to technolog-

ical advancements and the rising demand for innovative solutions across various domains. In space, the

complexity of missions, satellite deployment, and exploration requires the development of more stable

and robust control strategies [1]. On Earth, multirotor Unmanned Aerial Vehicle (UAV)s are reshaping

industries through applications such as remote surveillance, photography, inspection, search, transport,

and rescue operations [2]. These applications showcase the versatility of aerospace autonomous vehi-

cles.

The investigation of these control systems continues unabated, driven by the demand for robust

strategies where vehicles interact with external environments and execute complex manoeuvres to fulfil

specific missions or navigate around obstacles. As a result, there is a growing need to ensure the

feasibility and success of each endeavour.

The global space economy continues to expand, reaching $469 billion in 2021 according to The

Space Report 2022 Q2 [3], representing an increase of 9% considering the previous year. This growth

highlights the space market’s exponential expansion, with 72 rockets launching 1022 identified space-

crafts into orbit from January 1 to June 30, 2022. Consequently, more launches have occurred in these

six months than in the first 52 years of the Space Age. These statistics demonstrate the industry’s drive

to innovate and the vision for the upcoming space era.

While control theories have evolved significantly, traditional Proportional-Integral-Derivative (PID)

control remains unmistakably dominant in aerospace. Since 1957, it has served as the baseline con-

troller for over 99% of the spacecraft launched [4]. Demonstrating that PID can satisfy the majority of the

fundamental mission requirements [5]. However, the new era of spacecrafts should exhibit unique char-

acteristics to meet ultimate high-level performance conditions such as high flexibility and high-frequency

oscillations. According to the data provided by Hanson, from 1991 to 2001, 41% of all the failures re-

garding space launches could have been avoided by deploying advanced guidance and control methods.

Thus, the traditional PID controller is gradually becoming unable to satisfy the increasing demands in
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this area [6]. Other techniques include adaptive control [7] developed in the 1960s and robust control [8]

created in the 1970s.

Quadrotors describe a specific category of UAV, distinguished by their exceptional versatility due to

notable characteristics. It excels at manoeuvring through tight spaces, maintaining stable hover during

flight, and offering a lightweight and cost-effective solution [9]. Therefore, the use of quadrotors has

led to the emergence of various control methods aimed at enabling attitude stabilisation and trajectory

tracking for these aerial vehicles.

Kamel et al. defends the importance of precise trajectory tracking for aerial robots, particularly in real-

world environments where external disturbances can significantly impact flight performance. However,

ensuring global stability typically requires addressing the problem of introducing both a terminal cost

and a terminal constraint for the states. This task can be challenging, and simply adding a terminal

constraint may not be feasible. It highlights that in many practical situations, the terminal constraint is

not enforced during the control design procedure but rather verified a posteriori (i.e., by increasing the

prediction horizon if not satisfied).

In an era marked by the desire for more efficient and cost-effective parcel delivery, small-scale un-

manned aircraft have emerged, ranging from fixed-wing to multirotors, tilt-rotors, and tilt-wings. The

REPLACE project [11], driven by this ambition, focuses on harnessing shuttle drones for launch and

capture manoeuvres involving vehicles and objects. It encompasses two primary scenarios: coopera-

tion between shuttle drones and the vehicles they launch or capture and dealing with the launch and

capture of non-cooperative objects or drones. Although there are no assurances of feasibility before

commencing the mission, this lack of certainty can lead to accidents and compromise the successful

execution of intricate manoeuvres. Introducing a risk to the smooth interaction of parcel exchange.

The research by Eren et al. emphasises the potential of Model Predictive Control (MPC) algorithms

to shape control strategies and enhance the development of autonomous systems. The evolving re-

quirements raised the bar for the next generation of these vehicles to increase robustness, adaptability,

and performance. These advanced UAVs must exhibit improved mobility, motion accuracy, and energy

efficiency compared to traditional ones [2]. Islam et al. has conducted extensive studies exploring vari-

ous control methods to UAVs across diverse applications, underscoring the garnered attention in MPC

concerning flight control.

According to [12], the success of MPC is due to its ability to simultaneously handle constraints (e.g.,

design specifications) and optimise performance via repetitive online optimisation. However, because

MPC operates as a feedback loop, conducting stability analysis becomes crucial for ensuring the sys-

tem’s robustness and performance. This methodology allows the optimisation methods to directly im-

pose system constraints on robust controlled invariant sets [14]. In contrast, conventional methods often

exhibit conservatism in describing these sets, restricting the controller from achieving optimal opera-

tional performance. This mismatch becomes more evident in the aerial domain because it is notoriously

difficult to define due to its abundance of uncertainties and disturbances.

This dissertation addresses the challenge of ensuring feasibility and robustness in MPC for au-

tonomous vehicles. As the demand for autonomous vehicle applications increases across various sec-
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tors, from space exploration to parcel delivery, the existing control methods may fall short of meeting the

evolving requirements.

Motivated by these observations, the envisaged solution guarantees the mission feasibility a priori.

Adjusting the optimisation problem and representing the robust controller invariant sets with minimal

conservatism through Constrained Convex Generator (CCG) formulation [15]. This definition adapts

Constrained Zonotope (CZ) [16] for polytopes to ensure generators belong to a convex set. It allows the

system to operate at its limits whilst preventing infeasibility. Such infeasibility poses a significant concern

as it could compromise the integrity of the mission, enhancing the safety and reliability of the MPC control

system. This approach ensures that domains requiring complex manoeuvres for autonomous vehicles

can benefit from guaranteed feasibility before embarking on missions.

1.2 Contributions

The main contributions are summarised as follows:

• Development of a method to backpropagate the minimal Robust Positively Invariant (mRPI) to

determine the region of attraction.

• Design of a robust predictive controller strategy that guarantees MPC feasibility a priori and adapts

constraints for missions with duration exceeding the prediction horizon.

• Conduct a performance evaluation that compares set descriptions using both CZ and CCG formu-

lations.

1.3 Outline

This document is structured into six chapters, including the present one. Chapter 1 provides an

overview of the motivation and objectives of the thesis. Chapter 2 conducts a literature review concerning

the application of MPC in aerospace systems, trajectory generation, aerodynamics modelling, and the

importance of stability and robustness to the controller’s algorithms. Chapter 3 delves into the problem

formulation by presenting the theoretical principles that underpin this research as the MPC and the

stability proof for this controller, the CCGs formulation and the definition for the vehicle model, it finishes

with the problem statement. The subsequent chapters address the core research aspects. Chapter 4

outlines the methodologies for ensuring feasible trajectories, encompassing the reachability analysis

related to CCGs and the implementation of the MPC. Chapter 5 focuses on the results and discusses

the approach employed by comparing the results with other methods. Finally, Chapter 6 concludes the

dissertation by summarising the contributions, discussing the implications of the results, and suggesting

future research directions.
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Chapter 2

Literature Review

This chapter provides an overview of the latest project researching advanced strategies for aerospace

control systems, covering trajectory generation, aerodynamics modelling, stability, and robustness.

2.1 MPC in Aerospace Systems

To achieve accuracy and efficiency in aerospace systems, Eren et al. emphasises the need for ro-

bust control strategies. It considers MPC a promising solution due to promoting an effective manage-

ment of aerospace vehicles across diverse contexts. These encompass scenarios such as spacecraft

rendezvous, autonomous drone flight, and trajectory optimisation for aircraft and rockets.

In MPC formulation, it is possible to create different architectures by modifying cost and constraint

functions. This formulation considers the states’ environmental details (e.g., stall angle of attack, velocity

limits) and inputs (e.g., maximum deflections of control surfaces, thrust limits, minimum impulse bit,

and thruster on/off time). It accounts for complex nonlinearities and couplings (e.g., aircraft dynamics,

control structure interactions, and mission-specific modes) that exhibit powerful dynamics in aerospace

systems.

[17] considers MPC schemes to control the spacecraft during the final phase of the rendezvous ma-

noeuvre to satisfy the mission constraints. With a focus on the robustness and computational efficiency

of a classical MPC, the study introduces a new approach called Tube-based Model Predictive Control

(TMPC). To minimise a particular cost function (e.g., fuel consumption or deviation from the reference

trajectory), the design of the controller tightens the mission constraints (i.e., states and control inputs).

It allows the trajectories of the uncertain system (e.g., affected by disturbance) to lie in a tube centred

on the nominal one, where each path associates with a specific realisation of the uncertainty at each

discrete-time step. Furthermore, this algorithm splits into two components: offline constraint evaluation

and online application to nominal trajectories representing the centre of the tube itself.

Various analyses have been developed to assess obstacle avoidance within the aerospace domain.

An approach related to linear optimisation is discussed in [18], which tackles this topic by substituting the

obstacle constraint with a convex set that effectively avoids the obstacle but remains fixed throughout
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the prediction. A convex collision avoidance formulation provides computationally fast solutions at a

small fuel expense. However, this approach often confines the trajectory within a significantly more

conservative region, leading to infeasibility.

The investigation by [19] in collaboration with the project REPLACE [11] focuses on planning optimal

relay manoeuvres using multirotors to enhance parcel exchanges during flight. The strategy generates

MPC optimal polynomial trajectories with acceleration constraints to ensure effective attitude coordina-

tion between the vehicles during package exchange.

Therefore, the translation dynamics of the multirotor are modelled as a triple integrator, which allows

for the derivation of control input sequences that adhere to specific limits on thrust and angular veloc-

ity. The results reveal that the aircraft demonstrates commendable tracking performance, successfully

enabling the mid-air exchange of parcels between the two vehicles. However, the aircraft exhibits rela-

tively high roll and pitch rates. Despite the planned trajectories being optimal for minimising the required

input body torques, it is desirable to introduce bound constraints on position derivatives. This addition

ensures the management of saturation and rate limits in trajectory generation, although these additional

inequality constraints may lead to numerical issues.

2.2 Trajectory Generation

Reliable trajectory generation methods are critical to safeguarding public trust and the high safety

standards expected of autonomous systems. A trajectory generation algorithm is a computationally

efficient algorithm that generates a discrete multidimensional temporal state and control signal that

meets specifications whilst optimising key mission objectives (e.g., avoiding certain obstacles). A convex

optimisation-based trajectory generation provides a systematic method to deal with nonconvexities and

generate a trajectory based on a convex solver.

As the mission progresses and additional information becomes available to the autonomous vehi-

cle, the trajectory undergoes real-time adjustments and updates. The repetitive trajectories generate

feedback that is employed to control the system. MPC has been applied for simultaneous trajectory

generation and control as it tracks trajectories with a separate feedback controller [20]. At each discrete-

time step, MPC can approximate a nonconvex trajectory generation problem as a convex quadratic

optimisation.

The integration of MPC with Linear-Quadratic Regulator (LQR) offers a promising approach, as de-

fended by Mousavi et al.. Dealing with the challenge of manoeuvring through dynamic environments

while ensuring stochastic target tracking introduces probabilistic constraints. In such scenarios, the

complexity of the optimisation-based path planning problem increases. Consequently, the method takes

on a nonconvex nature, introducing complexities related to solvability and computational demands. A

notable innovation lies in reinterpreting the dimensions of the vehicle and obstacles. By approximating

sharp corners or complex forms with circles, the strategy promotes the generation of smoother and more

efficient vehicle trajectories. Thus, the search space is linearised at discrete-time intervals. It results in

a series of linear constraints enforced at each instant (formerly nonlinear probabilistic constraints), en-
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abling robust obstacle avoidance. This reinterpretation transforms optimisation into a convex problem,

yielding more efficient trajectories and robust navigation.

The baseline trajectory incorporates considerations for various disturbances. UAVs may encounter

variations in weather conditions (e.g., wind and rain), obstacles obstructing their path, and potential

sensor malfunctions. The spacecraft disturbances (e.g., gravitational fields of multiple celestial objects,

solar radiation pressure, third-body effects, and atmospheric drag) are all aimed at designing a robust

controller. A practical trajectory provides optimal support for payload objectives, navigation, power gen-

eration, propulsion, communication, and data transfer, among other subsystem considerations.

2.3 Aerodynamics Modelling

Precisely representing aerodynamic effects holds the utmost significance in controllers for aerospace

systems. Aerodynamics are pivotal in determining the behaviour, trajectory, and control to ensure mis-

sion success and safety. The majority of the complexity of aerodynamic modelling is overlooked due to

several minor details of aerospace engineering that are beyond the scope of this thesis.

In autonomous systems, the study of aerodynamic modelling often entails simplification, with a pri-

mary focus on steady-state thrust and reaction torque within unobstructed space [19]. Nonetheless, this

neglects secondary aerodynamic influences that appear beyond controlled scenarios.

The work presented in [22] investigates various aerodynamics modelling techniques. It aims to in-

corporate and discuss different models focusing on linear systems. This research covers a variety of

elements, such as the effect of perturbations and atmospheric drag forces. Notably, particular models

produce linear differential equations for the relative position, velocity, and acceleration; however, the

linearity does not extend to the angular velocity. Consequently, this dynamic results in a time-variant

nature of relative motion.

2.4 Stability and Robustness

Ensuring the control problem’s feasibility is crucial to providing safe and reliable control performance.

One potential disadvantage of the MPC is the inability to guarantee the feasibility of specific optimisation

difficulties, as stated in [23]. In real-time applications, it is frequently preferable to anticipate system

states using a nominal, linearised model for computational simplicity. Several researchers have con-

ducted substantial studies on the problem of recursive feasibility in the context of MPC.

As analysed in [24], achieving recursive feasibility may be possible by constraining the states to a

pre-computed robust controlled invariant set. Establishing the importance of computing sets that guaran-

tee the robustness of the controller. Although, usually, these robust controlled invariant sets can have a

complicated geometry. As a result, limiting the states in these sets imposes too many state restrictions,

making solving the online optimisation issue computationally costly. In real-time MPC, computing re-

sources must be allocated to account for worst-case complexity, needing extensive resources for global

optimality. However, the high computing load can make real-time applications impracticable.
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Hanema et al. incorporates finite-step terminal conditions within the context of TMPC applied to

Linear Parameter-Varying (LPV) systems. The study demonstrates the property of recursive feasibility

under certain assumptions about tube parameterisation. The primary goal of building such tubes in

TMPC is to ensure that perturbed system trajectories are close to a nominal trajectory. These tubes

consist of translated and scaled examples from the fundamental shape set. Furthermore, analysing a

more robust MPC framework ensures the feasibility of the nominal trajectory by default.

In the study by Limon et al., occurs the substitution of the terminal condition with a contractive

constraint from a sequence of reachable sets. These sets represent a progression, not necessarily

invariant, wherein the system is admissible to steer from one set to the subsequent one, ultimately

converging to the target set. It emphasises the cost-effectiveness of computing the sequence through

offline computation starting from a positively invariant set (i.e., employing an inner approximation to the

terminal set). Combining the MPC controller with this sequence by including the terminal constraint

guarantees the placement of the terminal state within the subsequent computed reachable set.

However, the lack of assurance invariance represents a drawback of the approach by Limon et al..

This ambiguity in achieving invariance arises because the sequence composition might not include the

previous set due to the inherent approximations made. Ultimately, the controller attains asymptotic

stability and local optimality for the Closed-Loop (CL) system. This research enables the development of

computationally less demanding algorithms for determining a sequence of invariant or merely reachable

sets.
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Chapter 3

Problem Formulation

This chapter introduces the required background on MPC formulation, reachability analysis using

CCGs, and vehicle modelling and then presents the problem statement.

3.1 Model Predictive Control

MPC is an iterative feedback control technique with roots in optimal control. MPC is evolving as

an approach for state feedback stabilisation in constrained, nonlinear, discrete-time, and time-invariant

systems [12]. Its state-of-the-art design methodologies are documented in [27], [28], [29], and [30].

In contrast to conventional control, which frequently relies on a pre-computed state or output feed-

back control law, predictive control employs a discrete-time model to obtain an estimate (i.e., prediction)

of its future behaviour. The optimisation problem uses a prediction over a finite horizon N for the state

values that adhere to the dynamics. The feedback control law is then obtained in a receding horizon

by applying only the first element of the computed sequence of optimal controls to the system and re-

peating the whole process at the next discrete-time instant for the updated state. The feedback control

repeatedly runs the CL to correct discrepancies between actual and previously assumed optimal states.

Figure 3.1a depicts a MPC-based control loop and the MPC principle is present in Figure 3.1b.

Control Inputs Plant

Optimizer

Prediction Model

Measured

Outputs

Measured

Disturbances

References

MPC

(a)

Future

Reference Trajectory

Prediction Horizon

Past

Predicted Output

Measured Output

Predicted Control Input

Past Control Input

k k+1 k+N
Sample Time

...

(b)

Figure 3.1: Illustrations of the practical MPC formulation (adapted from [31]). (a) Simplified block
diagram of a MPC-based control loop. (b) The function principle of a MPC.
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Assuming that the prediction model in discrete-time is given by

x(k + 1) = f (x(k),u(k)) , ∀k ≥ 0, (3.1)

where x(k) ∈ Rnx is the state vector at instant k; u(k) ∈ Rnu is the control input vector at instant k; and

f : Rnx × Rnu → Rnx calculates the next state x(k + 1) ∈ Rnx . If f is a linear function, the system is

characterised by the linear state model

x(k + 1) = Ax(k) +Bu(k), ∀k ≥ 0, (3.2)

where A ∈ Rnx×nx represents the state-transition matrix and B ∈ Rnx×nu the control input matrix.

Constraints may also be imposed on the measured state x(k) ∈ X ⊆ Rnx and measured control input

u(k) ∈ U ⊆ Rnu , subject to (x(k),u(k)) ∈ G. The state-control constraint set G ⊆ X×U, derived from the

Cartesian product, represents all constraints resulting from factors such as physical limitations, safety

requirements, and desired operation modes. Eren et al. defends that the success of MPC algorithms in

control systems may be attributed, in part, to its intuitive approach to the control problem and capability

to incorporate state-dependent control constraints.

Quality of performance associated with the pair of state and control variables x(k) and u(k) is mea-

sured via values of a stage cost function ℓ(·) : Rnx × Rnu → R evaluated at (x(k),u(k)) : ℓ(x(k),u(k)).

Therefore, this cost penalises the state and input predicted trajectories up to (but excluding) the terminal

condition. To drive the system’s state towards the reference, it is critical to penalise the state at the

end of the prediction horizon by considering the terminal cost Vf (·) : Rnx → R+. Therefore, the MPC

methodology is defined as the following constrained optimal problem, according to Appendix A:

min
u(0),...,u(N−1)

J (x(k),u(k)) :=

N−1∑
k=0

ℓ(x(k),u(k)) + Vf (x(N)) (3.3a)

s.t. x(k + 1) = f(x(k),u(k)), for k = 0, 1, . . . , N − 1, (3.3b)

x(0) = x0 ∈ X, (3.3c)

(x(k),u(k)) ∈ G, for k = 0, 1, . . . , N − 1, (3.3d)

x(N) ∈ Xf ⊆ X, (3.3e)

where (3.3b) translates the system model; (3.3c) sets the first element of the trajectory as the initial

state; (3.3d) certifies that the pair of state and control variables is contained in the constraint set for

all discrete-time steps; (3.3e) guarantees that the terminal condition belongs to the terminal set Xf ,

representing the target region the system should reach at the end of the prediction horizon.

The value of the objective function (3.3a) represents the cost-to-go from instant 0 to N under the

control inputs. A common choice in MPC is selecting a quadratic cost function because of its numerous

advantages, like being convex, smooth and easy to tune [12]. The quadratic cost function can be
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expressed as

J (x(k),u(k)) = x(N)
⊤
Px(N) +

N−1∑
i=0

(
x(i)

⊤
Qx(i) + u(i)

⊤
Ru(i)

)
. (3.4)

The tuning parameters are the matrices Q ∈ Rnx×nx and R ∈ Rnu×nu , chosen based on performance

specifications. Large values of Q compared to R indicate a higher priority to quickly drive the state

towards the origin, which requires a more expensive control action. Although punishing the control

action with a higher R relative to Q is one way to reduce the control action and slow the rate at which

the state approaches the origin. One of the MPC challenges is the tuning of the matrices Q and R. The

final state penalty has a different weighting matrix, denoted as P ∈ Rnx×nx , calculated for exact Q and

R values to guarantee recursive feasibility and stability.

The ℓ1-norm is also used for the MPC cost function, but it is less common than the quadratic cost

(i.e., ℓ2-norm) [22]. This cost function produces sparse solutions in which the control becomes violent,

implying that the actuators are either fully turned on or turned off. The primary drawback is that the cost

is no longer differentiable at the origin, requiring the employment of non-smooth optimisation techniques

like sub-gradients and proximal operators.

Dynamic Programming (DP) is a method developed in the 1950s by Bellman as an efficient means

for solving multistage optimisation problems. The fundamental idea is to decompose a complex problem

into smaller, simpler sub-problems and solve them recursively. Instead of computing the solution for the

optimal control problem presented in (3.3), there exist similar sub-optimisation problems that are solved.

The method under consideration is denoted as backward DP because the variables are found in reverse

order. Thus, the optimal solutions are discovered as functions of the variables optimised in the following

stage.

In the context of MPC, the DP method seeks to minimise the trajectory cost between sets Xj char-

acterising all the admissible states that can be driven to Xf by an admissible control sequence (i.e.,

a control sequence that satisfies the constraints of (3.3)) in j steps. The value function V ∗(x|j) de-

scribes the cost-to-go between sets, with j representing the time-to-go (i.e., defined in discrete-time

instants). Each value function has an implicit MPC control law κ(x|N) associated. DP delivers a se-

quence of optimal control inputs u∗(k) := {u∗(0),u∗(1), . . . ,u∗(N − 1)} implying the respective control

laws κ∗ = {κ∗(N),κ∗(N − 1), . . . ,κ∗(1)}, with u∗
j : Xj → U. Thus, a MPC’s system satisfies

x∗(k + 1) = f (x(k),κ(x|N − k)), ∀i = 0, 1, . . . , N − 1. (3.5)

For all x ∈ Xj , the DP equations [14] are described by

V ∗(x|j) = min
u∈U
{ℓ(x,u) + V ∗(x|j − 1) | f(x,u) ∈ Xj−1} ,

κ∗(x|j) = argmin
u∈U

{ℓ(x,u) + V ∗(x|j − 1) | f(x,u) ∈ Xj−1} .
(3.6)

Nevertheless, this problem can occasionally become intractable [14], which is unfortunate given that

MPC for constrained systems is rarely linear. However, the model’s linearity along the polytopic struc-
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ture of stage and terminal constraints and the convexity of the cost function results in computationally

practical optimisation problems. In the following, some required definitions are provided.

Definition 3.1.1 (Control Invariant Set, [14]). A setA is control invariant for x(k+1) = f(x(k),u(k)),u ∈

U, if, for all x(k) ∈ A, there exists an u(k) ∈ U such that f(x(k),u(k)) ∈ A ∀k ∈ N0.

In practice, if a state belongs to a specific set, all subsequent states must belong to the same one.

Therefore, the system is invariant.

Definition 3.1.2 (Constraint Admissible Set, [14]). Given a control law κ(·) : Rnx → Rnu , a set of

admissible states X ⊂ Rnx , and a set of state and input constraints Z ⊂ Rnx × Rnu the set X is called

constraint admissible if

∀x(k) ∈ X it holds that (x(k),κ(x(k)) ∈ Z. (3.7)

In conclusion, if the terminal set Xf is control invariant, the set of initial conditions XN , for which (3.3)

is feasible, is positive invariant.

Definition 3.1.3 (Recursive Feasibility, [14]). If the problem is feasible at k = 0, it implies the problem’s

feasibility ∀k ≥ 0.

This property is of the utmost importance because it ensures that the optimal control problem is

feasible for all successor states if it is for the initial condition.

3.1.1 Stability Analysis

Stability is critical in MPC systems for ensuring reliable and robust performance. The ability of the

algorithm to maintain desirable behaviour and avoid erratic or divergent responses is referred to as its

stability. The stability of a control system has been extensively researched in a vast amount of literature.

Its principles are defined by Lyapunov in his studies of the stability and control of dynamical systems

[33]. The central idea of Lyapunov’s theory is to define a Lyapunov Function (LF) that characterises the

system and assesses stability. Figure 3.2 is introduced to better characterise the Lyapunov stability.

ε ballδ ball

0

Figure 3.2: Geometric interpretation of Lyapunov Stability (adapted from [34]).

The origin of a discrete-time dynamical system is Lyapunov stable if

∀ϵ > 0,∃δ > 0 : ∥x(0)∥ < δ ⇒ ∥x(k)∥ < ϵ,∀k ≥ 0. (3.8)
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The origin of a discrete-time dynamical system is Lyapunov asymptotically stable in X ⊆ Rnx if

(3.8) and lim
k→∞

∥x(k)∥ = 0,∀x(0) ∈ X ⊆ Rnx . (3.9)

Consider a discrete-time system x(k + 1) = f(x(k)) with f : Rnx → Rnx continuous and f(0) = 0. A

LF definition is presented below.

Definition 3.1.4 (Lyapunov Function, [14]). A continuous function V : Rnx → R+ is called a LF if:

1. V (0) = 0;

2. V (ξ) > 0,∀ξ ∈ X ∧ ξ ̸= 0;

3. V (f(ξ))− V (ξ) ≤ 0,∀ξ ∈ X.

To ensure 1. and 2. α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) where α1, α2 are K∞ - functions.

Definition 3.1.5 (Class K function, [14]). A continuous function α : [0, a) → [0,∞) is said to belong to

class K if it is strictly increasing and α(0) = 0.

There are different types of LF:

• LF: V (f(ξ))− V (ξ) ≤ 0,∀ξ ∈ X;

• Strict LF: V (f(ξ))− V (ξ) < 0,∀ξ ̸= 0;

• Uniformly strict LF: V (f(ξ))− V (ξ) ≤ −α3(∥ξ∥) ∨ V (f(ξ))− ρV (ξ) ≤ 0, ρ ∈ [0, 1).

Consider a discrete-time system x(k + 1) = g(x(k), u(k)) with g : Rnx × Rnu → Rnx continuous and

g(0, 0) = 0.

Definition 3.1.6 (Control Lyapunov Function, [14]). A continuous function V : X → R+ defined on a

region X ⊆ Rnx containing the origin in its interior is called a LF if guarantees condition 1. and 2. from

Definition 3.1.4 and

3. There exists a control law u = κ(ξ) such that

V (g(ξ, κ(ξ)))− V (ξ) ≤ 0, ∀ξ ∈ X ∧ ξ ̸= 0,

g(ξ, κ(ξ)) ∈ X, κ(ξ) ∈ U, ∀ξ ∈ X.
(3.10)

Proposition 3.1.1. Suppose V is a control Lyapunov function for the system dynamics g and the control

law κ. Then the origin of the CL system x(k + 1) = g(x(k), κ(x(k))) is asymptotically Lyapunov Stable

(LS) in X.

To ensure asymptotic stability for the system x(k+ 1) = (A+BK)x(k) is important to choose P ≻ 0

(i.e., positive definite) such that P − (A+BK)
⊤
P (A+BK) ≻ 0. It means that choosing P to satisfy the

previous equation, for some Z ≻ 0, the discrete Lyapunov Equation

(A+BK)
⊤
P (A+BK)− P = −Z. (3.11)
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So (A+BK) is stable if, and only if, P ≻ 0 is found for any Z ≻ 0.

Theorem 3.1.1 (Stability of MPC). The origin is an asymptotically stable equilibrium point of the CL

system

x(k + 1) = Ax(k) +BKx(k),

if the following conditions are met:

1. Q ≻ 0 and R ≻ 0;

2. Terminal cost weight P satisfies the discrete Lyapunov Equation (3.11) with Z = Q + K⊤RK,

where K ∈ Rnu×nx is any matrix with ρ(A+BK) < 1.

The spectral radius (maximum absolute value of the eigenvalues) of the CL system matrix is denoted

by ρ. It is used as a stability criterion to ensure the CL system is stable. If the spectral radius is less

than 1 (i.e., ρ(A+BK) < 1), the system is stable and converges to a steady-state solution. On the other

hand, if the spectral radius is greater than or equal to 1 (i.e., ρ(A + BK) ≥ 1), the system is unstable

and does not converge to a steady-state solution.

The type of MPC considered determines the stability formulation. Furthermore, two analyses are

performed: unconstrained MPC and constrained MPC. Assuming Q ≻ 0 and R ≻ 0 for an unconstrained

MPC it pursues that

1. V (0) = 0;

2. V (ξ) ≥ ξ⊤Qξ,∀ξ ̸= 0;

3. V (ξ)→∞ as ∥ξ∥ → ∞.

There is a need to ensure, in addition, that

V (x(k + 1))− V (x(k)) < 0, ∀x(k) ̸= 0. (3.12)

The input sequence at the next instant k + 1 is characterised by Ũk+1. The cost function associated

is defined as

Ṽ (x(k + 1)) = J
(
x(k + 1), Ũk+1

)
=+ V (x(k)) Optimal cost at k for x(k)

− ℓ
(
x(k), u∗

0|k
)

First stage cost at k

− Vf

(
x∗

N |k
)

Terminal cost at k

+ ℓ
(
x∗

N |k,Kx∗
N |k
)

Last (N − 1) stage cost at k + 1

+ Vf

(
(A+BK)x∗

N |k
)

Terminal cost at k + 1

where the notation x∗
i|k and u∗

i|k denotes the optimal value of the predicted state and input at instant i,

based on the plant state x(k) at instant k. Thus, x0|k = x(k) and u(k) = u0|k.
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If it is possible to prove that the sum of the last three terms is negative, then (3.12) becomes

Ṽ (x(k + 1))− V (x(k)) ≤ −ℓ
(
x(k), u∗

0|k
)
≤ −x(k)⊤Qx(k) < 0, ∀x(k) ̸= 0, (3.13)

this condition is equivalently represented for any x∗
N |k = ξ as

Vf (f(ξ))− Vf (ξ) ≤ ℓ(ξ,Kξ) ≤ −ξ⊤Qξ < 0,∀ξ ̸= 0, (3.14)

which corresponds to Property 3. of control LF for V (ξ) = Vf (ξ) and u = κ(ξ) = Kξ.

Also, the optimality of the value function V (x(k + 1)) = J
(
x(k + 1), U∗

k+1

)
it holds that

V (x(k + 1)) = J
(
x(k + 1), U∗

k+1

)
≤ J

(
x(k + 1), Ũk+1

)
= Ṽ (x(k + 1)). (3.15)

Hence

V (x(k + 1))− V (x(k)) ≤ Ṽ (x(k + 1))− V (x(k)) < 0, ∀x(k) ̸= 0. (3.16)

Therefore, it is established that the MPC value function V (·) is LF for the CL MPC system, which further

yields asymptotic Lyapunov Stability by Lyapunov’s Theorem.

Consider the CL system subject to the constraints Mx(k) + Eu(k) ≤ b,∀k ∈ N and assuming the

terminal cost satisfies the stability conditions for unconstrained linear MPC. If Xf = {ξ : MNξ ≤ bN}

is chosen to be an invariant and constraint admissible set for the CL system and the constrained linear

MPC problem is feasible at k = 0 for x(0). Thus, the MPC problem is feasible at instant k for x(k),∀k ∈ N,

where x(k + 1) is generated by

x(k + 1) = Ax(k) +Bu∗
0|k = Ax(k) +BKx(k). (3.17)

Some design steps can be taken to ensure constraint fulfilment and stability:

1. Choose Q ≻ 0 and R ≻ 0;

2. Compute a stabilising terminal control law u(k) = Kx(k) (i.e., ρ(A+ BK) < 1);

3. Compute the terminal cost weight P such that P ≻ 0 and

(A+BK)⊤P (A+BK)− P ⪯ −Q−K⊤RK,

which means that the terminal cost Vf (x) = x⊤Px is a Control Lyapunov Function for the CL

dynamics (A+BK);

4. Compute a terminal set Xf = {ξ ∈ Rn : MNξ ≤ bN} such that for all ξ ∈ Xf it holds that (M +

EK)ξ ≤ b is constraint admissible and MN (A+BK)ξ ≤ bN is invariant.
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3.2 Constrained Convex Generators

Modern control algorithms extensively operate with sets such as intervals, ellipsoids, zonotopes, and

polytopes as computational objects to characterise reachable or invariant sets of dynamical systems

[35]. Nonetheless, this may introduce unnecessary conservatism into the solution. In [15], a direct

approach can over-approximate sets by a polytope, whether described in hyper-plane or CZ formulation.

Definition 3.2.1 (Constrained Zonotope, [16]). A set Z is a CZ defined by the tuple (G, c,A, b) ∈ Rn×ng×

Rn × Rnc×ng × Rnc such that:

Z = {Gξ + c : ∥ξ∥∞ ≤ 1, Aξ = b},

where n is the number of states, ng the number of generators and nc the number of constraints.

Computations for linear estimation and control problems typically involve standard set operations

such as Minkowski sums, linear mappings, and intersections.

Consider three CZs: Z = (Gz, cz, Az, bz) ⊂ Rn; W = (Gw, cw, Aw, bw) ⊂ Rn; Y = (Gy, cy, Ay, by) ⊂ Rm;

matrix R ∈ Rm×n and vector t ∈ Rm. The set operations are as follows:

RZ + t = (RGz, Rcz + t, Az, bz), (3.18)

Z ⊕W =

[Gz Gw

]
, cz + cw,

Az 0

0 Aw

 ,

bz
bw

 , (3.19)

Z ∩R Y =

[Gz 0
]
, cz,


Az 0

0 Ay

RGz −Gy

 ,


bz

by

cy −Rcz


 . (3.20)

These operations are obtained in the CZ formulation for Z, W , and Y as:

RZ + t = {RGzξ +Rcz + t : ∥ξ∥∞ ≤ 1, Azξ = bz} = {RGzξ +Rcz + t : ξ ∈ Cz, Azξ = bz}, (3.21)

Z ⊕W = {Gzξz +Gwξw + cz + cw : Azξz = bz, Awξw = bw, ξz ∈ Cz, ξw ∈ Cw}, (3.22)

Z ∩R Y = {Gzξz + cz : Azξz = bz, Ayξy = by, ξz ∈ Cz, ξy ∈ Cy, RGzξ +Rcz = Gyξy + cy}. (3.23)

Cz,w,y represents the unit ℓ∞-norm ball. It is clear that nothing is pushing the use of the unit ball following

a p-norm as the generator and could also extend the definition to convex cones.

To represent state estimation sets for discrete-time Linear Time-Varying (LTV) systems as interval

arithmetic, zonotopes, ellipsoids, CZ, and polytopes can be employed, especially when dealing with

nonlinear systems. In this case, the dynamics are approximated by a linear function that allows set

propagation. However, these approaches are infeasible if the intended goal is to ensure safe vehicle

passage without collision with obstacles modelled as convex bodies.

Silvestre observed that CZ for polytopes may be extended to incorporate generators from within a

convex set, which motivated the CCGs formulation. This innovative concept for sets includes ℓ2 unit

balls to generate smooth surfaces, ℓ∞ unit balls to develop facets, and cones to yield unbounded sets.
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Definition 3.2.2 (Constrained Convex Generators, [15]). A CCG Z ∈ Rn is defined by the tuple (G, c,A, b,C)

with G ∈ Rn×ng , c ∈ Rn, A ∈ Rnc×ng , b ∈ Rnc , and C :=
{
C1, C2, . . . , Cnp

}
such that:

Z =
{
Gξ + c : Aξ = b, ξ ∈ C1 × · · · × Cnp

}
.

The sets Z, W , and Y are able to be specified as CCGs: Z = (Gz, cz, Az, bz,Cz) ⊂ Rn; W =

(Gw, cw, Aw, bw,Cw) ⊂ Rn; Y = (Gy, cy, Ay, by,Cy) ⊂ Rm; matrix R ∈ Rm×n, vector t ∈ Rm, and the set

operations as:

RZ + t = (RGz, Rcz + t, Az, bz, Cz), (3.24a)

Z ⊕W =

[Gz Gw

]
, cz + cw,

Az 0

0 Aw

 ,

bz
bw

 , {Cz, Cw}

 , (3.24b)

Z ∩R Y =

[Gz 0
]
, cz,


Az 0

0 Ay

RGz −Gy

 ,


bz

by

cy −Rcz

 , {Cz, Cy}

 . (3.24c)

The three primary set operations are presented as closed-form solutions with results on efficient

computational times for real-time scenarios. Due to these inherent characteristics, coupled with the in-

trinsic convexity of CCGs, this approach is suitable for tasks such as state estimation and fault detection

in LTV models [15]. Keeping track of the generator type associated with each entry of the auxiliary vari-

able vector ξ becomes imperative. This representation allows an arbitrary set of convex sets to cover the

generator variables, characterising a novel concept of the CZ polytopes. It strikes a trade-off between

the accuracy required to represent the set and the complexity of the computations.

3.3 Vehicle Model

This thesis resorted to the quadrotor model as the application. The quadrotor consists of four identi-

cal rotors and propellers arranged in a configuration resembling a square, displayed in Figure 3.3. Thrust

and torque are generated perpendicular to the plane formed by the square configuration of these com-

ponents. The references are the inertial frame {−→x I ,
−→y I ,
−→z I} and the body-fixed frame {−→x B ,

−→y B ,
−→z B}

with the origin positioned at the vehicle’s centre of mass.

Figure 3.3: Quadrotor model (adapted from [36]).
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The attitude of any rigid body is typically represented by a rotation matrix belonging to the Special

Orthogonal Group SO(3). Nonetheless, the configuration is defined concerning the centre of mass and

attitude of the inertial frame, represented by the rotation matrix R. Therefore, the configuration manifold

is the Special Euclidean group SE(3) [37]. Furthermore, this thesis refrains from delving into the intrica-

cies of rotor and propeller dynamics. As a result, it assumes the following system configuration: i) the

thrust of each propeller is directly controlled; ii) the torque generated by each propeller is directly propor-

tional to its thrust; iii) a sequence of alternating propeller rotations: one propeller rotates anticlockwise,

followed by another that rotates clockwise, and so on. The torque generated by the i-th propeller τi ∈ R

can be described as τi = (−1)i c ti, where ti ∈ R is the thrust generated by the i-th propeller and c a

fixed constant. Hence, the total moment M ∈ R3 is given by

M =
[
d(t4 − t2) d(t1 − t3) c(−t1 + t2 − t3 + t4)

]⊤
, (3.25)

where d ∈ R is the horizontal distance from the centre of mass to the centre of a rotor.

The equations of motion of this quadrotor UAV can be described as

ṗ = v, (3.26a)

mv̇ = mgzI − TRzI , (3.26b)

Ṙ = R× ω, (3.26c)

Jω̇ + ω × Jω = M , (3.26d)

where: p ∈ R3×3 and v ∈ R3×3 are the position and velocity for the inertial frame of the vehicle; m ∈ R+

is the total mass; g is the constant g = 9.8 m s−2 for the Earth’s gravity; zI ∈ R3 is the standard basis

vectors in the inertial frame; T ∈ R is the total thrust resulting from the sum of the thrust generated

by each propeller; R ∈ R3×3 symbolises the rotation transformation from the body-fixed to the inertial

frame; for the body-fixed frame: J ∈ R3×3 is the inertia tensor; ω ∈ R3 is the angular velocity; and

M ∈ R3 is the total moment.

The details for this formulation are presented in the study [37]. The vehicle model serves as the foun-

dation for subsequent set-based analyses, allowing the investigation of its states and the development

of effective control strategies to improve performance.

3.4 Problem Statement

The quadrotor is modelled as a triple integrator, which fits the formulation for a linear dynamical

system. The vehicle dynamics are given by

x(k + 1) = Ax(k) +Bu(k) + d(k), ∀k ≥ 0, (3.27)
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where x(k) ∈ Rnx , u(k) ∈ Rnx , and d(k) ∈ Rnd are respectively the state, input and disturbance signals

at instant k. Additionally, the MPC is defined by the constrained optimal problem in (3.3). The system is

subject to constraints on states and control inputs and is susceptible to bounded disturbances.

Under such circumstances, the research directs attention to two separate yet interconnected prob-

lems.

Problem 3.4.1 (Region of Attraction). The objective is to define the exact region of attraction, which

encompasses all the initial states that guarantee the feasibility and stability of the system throughout

its mission. Therefore, this set must exhibit invariance, adhere to constraints, and ensure recursive

feasibility for all states within its boundaries (Definition 3.1.1, 3.1.2, and 3.1.3).

Problem 3.4.2 (Model Predictive Controller). Design the MPC considering the following requirements:

• Subject to the physical and safety constraints inherent in the quadrotor model.

• Focusing on acceleration constraints to ensure effective attitude coordination whilst handling satu-

ration and rate limits in trajectory generation.

• Once the system reaches the terminal set, it remains there indefinitely, facilitating a seamless

transition to the LQR.

• Feasibility is guaranteed for a duration significantly exceeding the prediction horizon.
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Chapter 4

Proposed Solution

After reviewing fundamental concepts and theoretical foundations in the preceding chapters, the

present chapter consolidates the prior knowledge to emphasise the development of the proposed solu-

tion. This solution determines all the launch points of the manoeuvre that certify the vehicle attains a

suitable relative orientation. Consequently, the problem feasibility is guaranteed a priori accounting for

the worst-case estimation for sets analysis.

4.1 Methodologies

The vehicle dynamics presented in Section 3.3 is the basis for accurately defining the constraint sets

in Section 4.2.1. The controller is employed to manage the translation dynamics of a quadrotor, wherein

the mathematical model represents it as a triple integrator, accounting for acceleration, velocity, and

position variables. The novel technique for set-valued state estimation presented in Section 3.2 enables

the accurate representation of the worst-case estimation of the states. Furthermore, the strategy relies

on the exact definition of the terminal set that the system eventually reaches and remains there despite

disturbances. This set is defined as a mRPI in Section 4.2.2, which allows the smooth transition to the

LQR controller after MPC reaches the set. Additionally, the robust terminal set enables the backward

propagation to define the region of attraction presented in Section 4.2.3. Given the admissible values

for the unknown signals, this region encompasses all the possible values for the initial state, yielding a

feasible trajectory. The system is examined under severe conditions to guarantee its precise estimation.

The quadrotor model provides a linear system, admitting the integration of CCGs as constraint sets

of the MPC designed in Section 4.3. The backward propagation allows the definition of the admissible

states in each instant of the trajectory (i.e. respecting system constraints and avoiding obstacles),

incorporated as a varying terminal set in the MPC. Finally, attention is devoted to the critical aspects

of obstacle avoidance in Section 4.4 outlining the strategies and algorithms.
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4.2 Set-Based Analysis

This section delves into the globe of set-based analysis to understand the complexities of modelling

vehicle dynamics and harness its potential for improved control strategies. It accounts for all the dis-

turbances that affect the system to ensure safety for future instances and prevent collisions. The set

estimations technique builds upon the CCGs formulation and operations presented in Section 3.2.

The CCGs are directly encoded in YALMIP [38] on MATLAB [39] using the Reach Toolbox [40] de-

veloped by Silvestre. YALMIP is a modelling language that eases the development of optimal problems.

4.2.1 Admissible Sets

Admissible sets define the feasible system states that satisfy specified constraints and performance

criteria. As mentioned by Yang et al., these sets often exhibit intricate geometries. The inclusion of

CCGs plays a pivotal role in this facet of the research, as it facilitates the establishment of a robust

geometry. By defining these sets, it is possible to earn insights into the vehicle’s manoeuvrability and

operational boundaries.

The translation dynamics are modelled as a triple integrator to access the vehicle’s orientation and

angular velocity. To effectively control a vehicle’s motion, it is essential to consider translation aspects

(e.g., position and velocity) and rotational elements (e.g., orientation and angular velocity). The orienta-

tion in vehicle dynamics refers to the vehicle’s spatial positioning, including roll, pitch, and yaw angles.

Understanding and controlling orientation is vital for tasks like attitude stabilisation, autonomous flight,

or precise manoeuvring. Angular velocity characterises the rate at which a vehicle rotates around its

axes. Assumes critical importance in fundamental tasks, such as sustaining stable flight, managing a

vehicle’s heading, and preventing undesirable spinning or tumbling. The triple integrator is implemented

as
ṗ = v,

v̇ = a,

ȧ = u,

(4.1)

where the states are the position p ∈ R3×3, the velocity v ∈ R3×3 and the linear acceleration a ∈ R3×3,

which is driven by the control input u ∈ R3. Thus, each state is related to x, y, and z directions.

Firstly, the triple integrator is discretised with sampling time Ts and the assumption that the input u

and disturbances d remain constant between sampling instances,

p(k + 1) = p(k) + Tsv(k) +
Ts

2

2
a(k) +

Ts
3

6
u(k) + d(k),

v(k + 1) = v(k) + Tsa(k) +
Ts

2

2
u(k) + d(k),

a(k + 1) = a(k) + Tsu(k) + d(k),

(4.2)
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which is represented in the following state-space model
p(k + 1)

v(k + 1)

a(k + 1)

 =


I TsI

Ts
2

2 I

0 I TsI

0 0 I



p(k)

v(k)

a(k)

+


Ts

3

6 I

Ts
2

2 I

TsI

u(k) + d(k), (4.3)

where I ∈ R3×3.

To describe a correct trajectory and to be aware of the vehicle’s limitations, position, velocity, and

acceleration bounds must be defined. Thus, the linear velocity can be enforced to prevent the vehicle

from reaching speeds where the aerodynamic drag force is no longer negligible [19]. The set P is

related to the position and V to the velocity. Regarding the CCGs representation (Definition 3.2.2), these

constraints are expressed as a hypercube (i.e., defined by an ℓ∞-norm) centred at the origin in which

the generator matrix G contains the maximum of each parameter on the diagonal,

GP = diag
(
pmaxx

, pmaxy
, pmaxz

)
,

GV = diag
(
vmaxx

, vmaxy
, vmaxz

)
,

cP = cV =
[
0 0 0

]⊤
.

(4.4)

The final state constraint A should consider the maximum thrust and angular rates the vehicle can

achieve and the gravity force. The maximum value of thrust Tmax ∈ R is associated with the rotating

propellers. According to the linear velocity dynamics (3.26b), the acceleration results in a sphere

ax
2 + ay

2 + (az − g)
2 ≤

(
Tmax

m

)2

. (4.5)

Hence, the CCG set is represented by an ℓ2-norm and the matrices

GA =
Tmax

m
I3,

cA =
[
0 0 g

]⊤
.

(4.6)

In [19], the boundary of this sphere is approximated with a polyhedron, underscoring the significant

advantages of employing CCGs to depict this set.

To have the sets in agreement with the limitations of the states, a Cartesian product must be applied

as presented in the following definition.

Definition 4.2.1 (Cartesian Product between Constrained Convex Generators (CCGs)). Given the sets

Z and W able to be specified as CCGs: Z = (Gz, cz, Az, bz,Cz) ⊂ Rn; W = (Gw, cw, Aw, bw,Cw) ⊂ Rn.

The Cartesian product is characterised as

Z ×W =

Gz 0

0 Gw

 ,

cz
cw

 ,

Az 0

0 Aw

 ,

bz
bw

 , {Cz, Cw}

 . (4.7)

The set of admissible states X is obtained as X := B × A, where B := P × V. The matrices A
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and vectors b for the states set are empty with defined dimensions to maintain consistency through

operations.

The study conducted by da Silva Pinto et al. illustrates that the roll p and pitch q rates can be ex-

pressed through the dot product between u and the basis vectors in the body frame as

p = −m

T
uxxB ,

q = −m

T
uyyB .

(4.8)

The vector’s norm ∥u∥ must be bounded to control the roll and pitch rates, imposed by ω = [p q r]
⊤.

Assuming pmax = qmax = Ω ∈ R0
+ it comes

∥u∥ ≤ T̃

m
Ω, (4.9)

where T̃ ≤ Tmax. The selection of T̃ signifies the degree to which the design allows angular rate inputs

to exceed the maximum achievable value.

The admissible control inputs U results in a sphere. As mentioned earlier, the approach presented

in [19] does not consider this geometry. It samples points from the sphere’s edge and calculates the

convex hull of those points, resulting in U described as a polyhedron. The set is represented in CCG

format by ℓ2-norm with the centre at the origin and the radius on the diagonal of the generator matrix as

GU =
T̃

m
ΩI3,

cU =
[
0 0 0

]⊤
.

(4.10)

Lastly, the disturbance signals must be bounded to guarantee d(k) ⊂ D, ∀k ≥ 0. These disturbances

affect the measured control input, influencing the vehicle’s acceleration. The set D is defined as an ℓ∞-

norm centred at the origin, with maximum disturbance values Dmax ∈ R concerning the acceleration

within the generator matrix as

GD =
[
0 0 DmaxI

]⊤
,

cD =
[
0 0 0

]⊤
,

(4.11)

where I ∈ R3×3 and 0 ∈ R3×3.

4.2.2 Robust Positively Invariant Set

The concept of a Robust Positively Invariant (RPI) set is crucial for designing control strategies that

guarantee the vehicle’s stability, even in the presence of disturbances. Once entered, the system re-

mains within it indefinitely. When the system is stable without disturbances, the RPI is trivially a set with

zero because all trajectories converge to zero after a sufficient time.

As examined in [24], one approach to guarantee feasibility involves formulating a terminal set as a

pre-computed robust controller invariant set by imposing constraints on the states. Thus, the terminal
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region is controlled invariant, constrained admissible and guarantees the recursive feasibility for the rest

of the trajectory, leading to a positively invariant set.

The system under investigation is designed to be CL stable (i.e., ρ(A + BK) < 1) and contains

unknown disturbances. Consequently, the conditions to compute a RPI have been met. Looking into the

vehicle dynamics of the CL system

x(k + 1) = (A−BK)x(k) + d(k), ∀k ≥ 0. (4.12)

Therefore, the dynamics in order of x(k) can be simplified as

x(k) = (A−BK)
k
x(0) +

k=N∑
i=0

(A−BK)
k−i

d(i). (4.13)

The terminal set depicts the domain to where all states converge in infinity, which may be computed

as

Xf := lim
k→∞

x(k) = Akx(0)︸ ︷︷ ︸
→0

+
k=N∑
i=0

Ak−id(i), (4.14)

where A ∈ Rnx×nx represents the CL-matrix of the system A := A− BK. It is important to note that if,

and only if, d(k) ⊂ D and D does not change over time, the terminal set can be described as

Xf :=

k=N∑
i=0

Ak−iD. (4.15)

The RPI sets typically have many approximations, but there are techniques for simplifying the com-

putations. Due to their computational efficiency, zonotopes have been implemented in MPC reach set

calculations, as stated in [41] and [42].

The proposed method uses CCGs to represent sets which portray a new concept of CZs of polytopes

that allows the application of some of the methods presented by Raghuraman and Koeln to calculate

the RPI. One of the strategies involves operations like the Minkowski sum, which can be performed on

CCGs as demonstrated in (3.24b). However, computing such a set raises a trade-off between accuracy,

complexity, and computation time.

Inner approximations are commonly employed in the set domain. This technique improves the practi-

cality of these sets’ representation and ensures accuracy - a significant aspect for computing backwards

reachable sets from the RPI. If the representation lacks accuracy, the inaccuracy is carried forward

throughout the process. This technique restricts the complexity of the set, ensuring it satisfies a prede-

termined upper limit on the number of generators and constraints. Additionally, it facilitates the calcula-

tions required for the analysis and control process. The approximation of RPI generates a set named

mRPI, defined below.

Definition 4.2.2 (The minimal Robust Positively Invariant, [42]). The mRPI set F∞ is the RPI set that is
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contained in every closed RPI set of (4.12) and is given by

F∞ =

∞⊕
i=0

AiD. (4.16)

However, due to the infinite sequence of Minkowski sums, obtaining an explicit characterisation of

F∞ presents a challenge. As a result, the mRPI is defined in this dissertation by the calculation of Fs

iteratively as

Fs =

(
N⊕
i=0

Ai D

)
⊕

((
(Inx

−A)−1 −
N∑
0

Ai

)
D

)
, (4.17)

where D is the disturbances set. In this case, D is a set with disturbances only in the three dimensions

influencing the vehicle’s acceleration.

Analysing (4.17), the left side calculates the inner approximation of the RPI by only summing until N .

Also, the right side performs a numerical evaluation of the upper limit (i.e., overbound) for the residual

portion of the expression. Consequently, the impact of this upper limit on the disturbances set is con-

sidered by employing the linear map. This technique allows the robust estimation of the upper bound by

effectively accounting for all dimensions influenced by disturbances. Finally, the Minkowski sum of these

two parts guarantees an overbound of the inner approximation of the RPI, representing the mRPI.

Algorithm 1 implements the Fs computation. It improves the method’s time by considerably reducing

the number of iterations required to calculate the mRPI, achieving a good balance between computa-

tional time and accuracy with this strategy.

Algorithm 1 mRPI considering an inner approximation.
Input: A, D
Output: mRPI

1: innerRPI← D
2: for i = 1 : N do
3: Calculate the inner approximation: innerRPI← innerRPI⊕ (AiD)
4: end for
5: R← (Inx −A)

−1

6: for i = 0 : N do
7: Numerical evaluation of the upper limit: R← R−Ai

8: end for
9: Compute the upper limit within the set: O← RD

10: Compute the mRPI: Fs ← innerRPI⊕ O

The concept of inner approximations proves highly valuable in practical applications. By accurately

approximating the RPI, the offline computation of the backward reachable sets from a mRPI results

in a decreased computational cost, as highlighted by [26]. These successive computations result in an

accurate and reliable set of initial states (i.e., the region of attraction), ensuring that the system eventually

reaches a specified target region (i.e., the mRPI).

The region of attraction is determined by the size of the terminal set and the control horizon. As

a result, enlarging the control horizon expands the zone but at a higher computational cost, whereas

increasing the terminal set produces an enlargement at no extra cost [26].
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4.2.3 Region of Attraction

The region of attraction encompasses all the initial states that guarantee the feasibility and stability of

the system. The proposed approach computes this region through backward propagation to ensure that

the system ultimately converges for the terminal set, defined as a mRPI. Thus, it is possible to switch

to the LQR and remain in the set regardless of disturbances. This concept is depicted in Figure 4.1

by tracing the state trajectory, elucidating the vehicle’s progression with each state residing within its

respective set.

Region of Attraction

Terminal Set

Intermediate Regions

State Trajectory

Figure 4.1: Illustration of state trajectories within specific regions.

The method relies on the principles outlined in Section 3.1 regarding DP to minimise the trajectory

cost across sets. A fundamental aspect of computing backwards reachable sets is ensuring invariance.

Once each set contains the previous one, the region of attraction is invariant, guaranteeing the recursive

feasibility of the controller. This characteristic provides a significant advantage compared to the method

introduced by Limon et al., which does not account for invariance sets due to the approximations made

during the backward computation.

To obtain the mathematical formulation of the initial conditions of the system that converges to the

terminal set, it is necessary to incorporate the computation of the backward reachable sets from the

mRPI as

Xf = AXj +BU ⇒ Xj = A−1 (Xf −BU) , (4.18)

where Xf represents the mRPI and Xj := X1 is the set that in a single discrete-time step reaches

the mRPI considering the worst-case for the disturbances that can impact the system. This process

is iterative, wherein each subsequent step, Xf := X1 and Xj := X2, and so on. It continues until Xj

becomes the region of attraction.

Moreover, it is noteworthy that (4.18) does not account for disturbances as they are considered in

the backward propagation process initiating from the mRPI (i.e., which contemplates disturbances).

The subtraction operation on the right side of (4.18) is a Pontryagin Difference of two sets, and it is

also commonly referred to as the Minkowski difference.

Definition 4.2.3 (Pontryagin Difference, [35]). Given two sets Z1, Z2 ∈ Rn, the Pontryagin difference

Zd = Z1 ⊖ Z2 is defined as

Zd = {z ∈ Rn|z ⊕ Z2 ⊆ Z1}. (4.19)

Algorithm 2 is deployed for CCGs, based on the technique by Raghuraman and Koeln. Ultimately,
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the final set appended to the sequence is the region of attraction, which defines the set encompassing

all states after a specified number of steps K (i.e., the number of steps is larger than the prediction

horizon) converge to the mRPI.

Algorithm 2 Sequence of backwards reachable sets.
Input: mRPI
Output: Sequence of reachable sets

1: Define the number of steps K to converge to the mRPI
2: Xj ← mRPI
3: for i = 1 : K do
4: Compute the set estimation: X̂j ← A−1Xj ⊕

(
−A−1B

)
U

5: Compute the intersection between X̂j and X : Xj ← X̂j ∩ X
6: Add Xj to the sequence
7: end for

When conducting a Monte Carlo simulation to test the model, it is essential to consider different

potential scenarios the vehicle might encounter. The vehicle is positioned at the system’s boundaries

at launch to confirm its optimal performance under extreme conditions. This positioning means that the

initial condition x(0) lies precisely on the boundary of the region of attraction x0 ∈ ∂Xj . In this case,

it requires maximum actuation in some directions. As a result, the MPC’s alternatives are limited. If it

reaches the mRPI, it guarantees the system adheres to the intended trajectory for any initial condition,

underscoring the effectiveness of the regions of attraction’s calculation. Otherwise, if x(0) ∈ Xj (i.e., not

in the boundary), the solver has more options.

The following methodology is designed to address the numerical challenges posed by the solver,

which enhances the effectiveness of the testing process at the set’s boundary to exclude states beyond

the region of attraction.

To determine the initial condition of the controller, the optimal variable is ξ within the ξ space (i.e.,

the set of generators). This space is subject to inherent numerical errors, which propagate to the corre-

sponding state within the region of attraction. Consequently, it is imperative to consider error propagation

directly from the initial stage of optimising ξ. Figure 4.2 is depicted to present this idea more clearly. For

a comprehensive understanding of the procedure, the definition of CCGs (Definition 3.2.2) should be

revisited.

prediction

real value

ξRA

Region of

Attraction

prediction

real value

(G
RA

,c
RA

,A
RA

,b
RA

,
RA

)

(a)

ξRA

prediction

real value

Region of

Attraction

prediction

real value

(G
RA

,c
RA

,A
RA

,b
RA

,
RA

)

Region before the technique

Region after the technique

(b)

Figure 4.2: The ξ space of the region of attraction and the set itself, along with the corresponding
error propagation between the prediction and the actual value obtained by the solver. (a) Without

preventing numerical errors. (b) Preventing numerical errors.
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To provide a more detailed explanation of the concept portrayed in Figure 4.2a, it is essential to

understand that when the optimiser seeks the optimal ξ value, it may initially seem as though it is

selecting the red value. Nevertheless, in reality, the solver chooses the blue value. Consequently, when

this selected value is matched with the tuple (GRA, cRA, ARA, bRA,CRA), the state should ideally align

with the red state, but it corresponds to the blue one, located outside of the region of attraction. This

discrepancy results in an infeasible initial condition.

The concept underlying the process is elucidated in Figure 4.2b. This illustrative representation

demonstrates that upon implementing the technique, the actual value no longer resides within the newly

defined region but remains within the original domain, ensuring the feasibility of the initial conditions.

In the context of CCGs formulation, a more straightforward strategy involves the adjustment of the

matrix of generators. As a result, it is more intuitive to scale all the entries by a factor rather than

performing other operations. Thus, two critical aspects are considered when reducing the set to make

it more robust: the error ϵ that is decreased around it and the set’s maximum distance d (i.e., distance

from the centre to the furthest point).

Firstly, a hypercube is formed with a side length equivalent to the maximum error tolerated by the

solver. This strategy establishes a space encompassing all the discrepancies introduced by the solver.

However, to incorporate this deviation accounting for its correlation with the set undergoing the tech-

nique, a linear map occurs between this space and GRA. Consequently, a set that systematically takes

the propagation of errors when applied to the region of attraction is derived. Moreover, a bounding box

is employed to contain the outcome of the linear mapping, allowing for an estimation of the maximum ex-

tent of the set. This estimated value corresponds to ϵ, the intended importance to be decreased around

the set.

The generator matrix of the set under consideration (i.e., the region of attraction) is analysed to

identify the distance from the centre to the furthest point in each set’s parameter. This assessment

facilitates the calculation of the vector d, which encompasses distinct maximum distances for position,

velocity, and acceleration. The vector d is calculated as

d = |GRA(a : b, :)|∞, (4.20)

where a and b represent the limits of each set’s parameter (i.e., position, velocity, and acceleration).

After taking all of this into account, the factor that is multiplied by each entry of G is

d− ϵ

d
= 1− ϵ

d
. (4.21)

Algorithm 3 is presented to provide an overview of the described method.
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Algorithm 3 A method for preventing numerical errors when selecting the initial condition within the
region of attraction.
Input: Region of Attraction: Set RA
Output: Smaller Region of Attraction: Set RRA

1: Define the maximum error of the solver Emax

2: Create the set of errors: E← (Emax · Inx
, 0nx

, 0nx
, 01,B∞)

3: Create a box set B around the linear map GRA · E
4: Compute the value to be decreased around the set: ϵ← max(max(GB))
5: idx← 1
6: for i = 1 : nu : nx do
7: for j = 0 : (nu − 1) do
8: Compute the distance for each parameter: d(i+ j) = |GRA (i : (idx · nu), :)|∞
9: end for

10: idx← idx + 1
11: end for
12: for i = 1 : size(GRA, 1) do
13: for j = 1 : size(GRA, 2) do
14: Compute the new generator’s matrix: GRRA(i, j) = GRA(i, j) ·

(
1− ϵ

d(i)

)
15: end for
16: end for

4.3 Adaptive Model Predictive Control

This section outlines the methodology used to control a drone’s translation to force it to enter into a

specific set considering the vehicle and the environment’s boundaries. The proposed solution relies on

the computation of the set containing all the states once the pre-defined steps converge to the mRPI,

with these steps extending beyond the prediction horizon.

The MPC cost function is quadratic, chosen for its favourable characteristics as outlined earlier in

Section 3.1. Additionally, the optimisation problem resembles the one introduced in [26], primarily due

to the terminal constraint within the sequence of Nc ·N reachable sets, where N denotes the prediction

horizon and Nc the number of convergence steps. Convergence steps simplify the idea of the proposed

MPC by counting the times the algorithm runs over N to reach mRPI. The optimisation problem is

established as

min
u(0),...,u(N−1)

x(N)
⊤
Px(N) +

N−1∑
i=0

(
x(i)

⊤
Qx(i) + u(i)

⊤
Ru(i)

)
s.t. x(k + 1) = Ax(k) +Bu(k) + d(k), for k = 0, 1, . . . , N − 1,

x(0) = x0,

x(k) ∈ X, for k = 0, 1, . . . , N − 1,

u(k) ∈ U, for k = 0, 1, . . . , N − 1,

d(k) ∈ D, for k = 0, 1, . . . , N − 1,

x(N) ∈ Xj ⊆ X, j = max ((Nc − 1) ·N − k, 0) .

(4.22)

In each discrete-time step, the terminal desired region is updated to tend the system to the mRPI.
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Including this terminal constraint guarantees the placement of the terminal state within the subsequent

computed reachable set [26]. Figure 4.3 is depicted to illustrate the methodology implemented.
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Figure 4.3: Illustration of the adapted MPC process with xk+1(0) ∈ XNc·N−k then Xf := Xj ,
j = max ((Nc − 1) ·N − k, 0).

The simulation is conducted using YALMIP [38]. One of YALMIP’s key advantages is the ability to pre-

compile controllers with pre-defined cost functions and constraints using the optimizer [43] command.

The implementation relies on external solvers MOSEK [44] and GUROBI [45] in MATLAB Hybrid Toolbox.

The solver’s choice is automated and relies on the problem’s structure and properties. More precisely,

MOSEK is employed for the controller (e.g., generating the optimal sequence of control inputs), and

GUROBI is used for set searches (e.g., identifying initial conditions for testing the controller in a Monte

Carlo simulation, verifying at each step if the system reaches the terminal set).

4.4 Obstacle avoidance

Obstacle avoidance is a critical challenge for autonomous vehicles, ensuring safe and effective op-

eration in complex and dynamic environments. These systems must perceive and react to obstacles in

their path, preventing collisions and enabling intelligent decision-making to adapt to changing surround-

ings. Evaluating the effectiveness of MPC-based trajectories in obstacle avoidance provides real-world

insights, validating the approach’s efficacy and enhancing the reliability and safety of autonomous sys-

tems.

To incorporate obstacles in the MPC trajectory, it is imperative to ensure the convexity of each set,

confirming that it remains in CCGs formulation. Highlighting that constructing a set with voids is not

feasible, it becomes evident that the region where the obstacle is introduced undergoes modifications

to ensure convexity. Introducing an obstacle at a particular set k on the sequence implies the inter-

section operation of both sets (the obstacle’s set and the corresponding set at index k). Therefore, all

subsequent sets up to the mRPI necessitate adjustments considering a forward method, presented in

Algorithm 4.
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Algorithm 4 Sequence of forward reachable sets considering obstacles.
Input: Obstacle set O and the sequence of backward reachable sets Xj , j = 0, . . . , j = 0, . . . ,K
Output: Sequence of forward reachable sets considering obstacles Oj , j = 0, . . . , j = 0, . . . ,K

1: Define the index k where the obstacle is introduced
2: for the set i being the region of attraction to the mRPI do
3: if the set is previous to the set where the obstacle is introduced then
4: The set is equal to the one at the backward sequence: Oi ← Xi

5: else if the set is where the obstacle is introduced (i.e., the index is k) then
6: Compute the intersection between Xi and O: Oi ← Xi ∩O
7: else if the set is subsequent to the set where the obstacle is introduced then
8: Compute the set estimation: Ôi ← AOi ⊕BU
9: Compute the intersection between Ôi and Xi : Oi ← Ôi ∩ Xi

10: end if
11: Add Oi to the forward sequence
12: end for

When facing an obstacle, it restricts the range of possible states, forming a subset of the previous

set, essentially narrowing down the allowable space. To illustrate this concept, consider a car on a road.

The road’s limits at each moment define the set’s boundaries. When an obstacle appears on one side of

the road, it does not create new limits but restricts the available space. In the context of this approach,

the intersections following the obstacle introduction involve the corresponding sets from the backward

sequence, encompassing all potential states at each instant.

The offline computation of the sequence serves the primary purpose of reducing computational com-

plexity. Additionally, it addresses a crucial scenario where the MPC may confront unexpected obstacles

before predicting their presence N steps ahead. If these computations are performed in real-time during

MPC execution, the navigation around unanticipated obstacles is a challenge. Consequently, the MPC

remains analogous to the one described in Section 4.3, with the difference being the sequence provided

to the controller.
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Chapter 5

Simulation Results and Discussion

The codebase and resources related to the research presented in this thesis can be found in the

GitHub Repository [46].

This chapter presents the results of this research and discusses their implications. It shows the ad-

vantages of using CCGs to represent the sets under study regarding accuracy and computational time.

Additionally, it demonstrates the implications of different RPI methods, the conservatism associated with

the region of attraction and the results of the proposed approach to mitigate numerical issues arising

from the solver. Subsequently, it delves into the domain of control using the MPC regulator, offering

insights into its performance across different trajectories and considering obstacles.

The quadrotor model implemented to present the following results is the DJI Phantom 4 Pro depicted

in Figure 5.1.

Figure 5.1: DJI Phantom 4 Pro V2.0. [36].

5.1 Admissible Sets Representation

As clarified in Section 4.2.1, the precise definition of the vehicle’s parameters (i.e., position, velocity,

and acceleration) plays a crucial role in the controller’s operation to further define the robust controlled

invariant sets in the sequence. The preference of representing the sets using CCGs is based on the

advantages discussed previously.

Firstly, it is necessary to establish the boundaries for each parameter to provide the initial framework

for the proposed algorithm. These limits are determined using the model presented in Figure 5.1 and

outlined specifications in [47]. Based on the assumptions summarised in Section 4.2.1, it is possible to

define the set of states X, as shown in Figure 5.2.
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Figure 5.2: Projection of the states set X for DJI Phantom System.

The state set X exhibits a distinct geometric structure due to the employment of CCGs. Notably,

the position and velocity are hypercubes, but the acceleration component takes the form of a sphere,

established in (4.5).

As proven in (4.9), the configuration of U takes the form of a sphere illustrated in Figure 5.3.

Figure 5.3: Control Input set U for DJI Phantom System.

While the theoretical ideal portrays the acceleration and the control input as a sphere, an approxima-

tion undertaken by da Silva Pinto et al. departs from this ideal, employing a polyhedron representation.

Nonetheless, it does not accurately depict these sets, potentially compromising the vehicle’s perfor-

mance. This observation supports the reduction of conservatism when representing sets using CCGs.

As stated earlier, the disturbance set D is constructed across all the dimensions; however, its impact

is limited to the control input of the system, specifically influencing the vehicle’s acceleration. Figure 5.4

displays the set D.
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Figure 5.4: Projection of the disturbances set D for DJI Phantom System.

5.2 Computation of the minimal RPI

The mRPI representation describes the feasible region where system states converge and stay in-

variant despite disturbances. An analysis of the different methodologies described in Section 4.2.2 to

calculate the mRPI is presented in Table 5.1, along with a visual representation in Figure 5.5.

The computation of F∞ is based on (4.16) and given by

K⊕
i=0

Ai D, (5.1)

with K ≫ N . The set denoted as inner RPI is computed through (5.1) with K = N , corresponding to

the left side of (4.17). Fs is calculated via (4.17), which is the mRPI of the proposed solution. Lastly, it is

worth noting that the selection of K in (5.1) is determined through various simulations using different K

values until there are no observable differences in the resulting set.

Table 5.1: Number of generators and computational time for different mRPI computation methods.

F s Inner RPI F∞

Nº of Generators 39 36 30 003

Computational Time [s] 3.04× 10−3 2.26× 10−3 3.98
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Figure 5.5: Projection of different RPI computation methods.

In Figure 5.5, it is evident that the inner RPI effectively serves as an inner approximation of the

mRPI. While this set offers optimal computational efficiency, it lacks precision in the representation of

the mRPI. On the other hand, the set Fs offers an outstanding approximation of the F∞. This set has

fewer generators (39 instead of 30 003) and maintains excellent computational performance. In this

manner, the proposed method to compute the mRPI has remarkable computational efficiency whilst

keeping accuracy.

The parameters for landing a drone in terms of position, velocity, and acceleration are determined by

the specific requirements, the capabilities of the drone, and the surrounding environment. The preferred

landing position is usually near the ground, ideally at a designated landing pad or target region. The

value depends on the drone’s height, the altitude of the landing pad, and any obstacles in the landing

space. The drone’s descent seeks a gentle landing by carefully regulating its vertical velocity towards

zero. To avoid collisions, the vertical velocity of the drone is gradually slowed as it approaches the target

landing place. Acceleration control is often employed indirectly through velocity control and rarely applied

directly during landing. The mRPI for the system under study is portrayed in Figure 5.6 (corresponds to

Fs in Figure 5.5).

Figure 5.6: Projection of the mRPI for DJI Phantom System.

The successful computation and visualisation of the mRPI reaffirm its effectiveness in designing

stable systems. The set depicted in Figure 5.6 aligns with the specific specifications and constraints of

36



the drone system under consideration. By incorporating the system parameters, dynamics, and convex

set representing disturbances, the mRPI characterise the feasible region where the drone can easily

switch to the LQR controller and remain there. This tailored technique ensures stability and respects the

drone’s physical limits and operating boundaries.

5.3 Conservatism of Region of Attraction

Computing the region of attraction with the highest precision is critical to verify the stability and

feasibility of control systems. This section underscores the impact of the mRPI computation on the

region of attraction and compares two distinct approaches to its computation. The primary objective is

to investigate and evaluate the advantages and disadvantages of each technique.

The number of generators and computational time needed to calculate the region of attraction is

examined through backward propagation starting from the sets Fs and F∞ (i.e., calculated with (5.1) with

K ≫ N ). The results are displayed in Table 5.2, highlighting the computational efficiency of the proposed

method to represent the region of attraction with fewer generators considering the mRPI definition via

Fs.

Table 5.2: Number of generators and computational time for the region of attraction computation
using different mRPI sets for backwards propagation.

F s F∞

Nº of Generators 183 30 147

Computational Time [s] 1.12× 10−2 4.27

Figure 5.7 depicts the computation of the region of attraction using CCGs and CZs to define the

control input set U with a narrow horizon (i.e., N = 4) in 2-Dimensions (2D). The strategy delivered by

da Silva Pinto et al. to determine the region of attraction tends to over-approximate the ℓ2-norm balls

by a polytope. When doing the backwards propagation, it increases the possibility of selecting an initial

condition that does not converge to the terminal set. This case is represented in Figure 5.7a. However,

when the control input set is represented by ℓ∞-norm ball, the computation of the region of attraction

with CCGs or CZ coincides, displayed in Figure 5.7b.
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Figure 5.7: Region of attraction computed with CCGs (coloured filled sets) and CZs (black outline
sets) with the control input set U described as (a) ℓ2-norm. (b) ℓ∞-norm.

From Figure 5.7a, it is observable that the X1 is over-approximated when computed with CZs (the

nearest polytope representation), and then the error is propagated for the following sets, especially in

the x-axis given the system model (A = [2, 1; 0, 2], B = [1, 0; 0, 1]). When U is described as ℓ2-norm,

the strategy of da Silva Pinto et al., in a Monte Carlo simulation, has approximately 32% of states as

infeasible initial points. Confirming the capacity of CCGs to depict sets with reduced conservatism.

Moreover, the focus shifts to the practical application of this comparative analysis within the quadro-

tor model. This case is represented in Figure 5.8, showcasing the principal differences between both

procedures.

Figure 5.8: Comparison of the projected region of attraction when computed with a sequence of
CCGs and CZs for DJI Phantom System.

The reduction of conservatism provided by the developed method confers a notable advantage as

it facilitates the precise description of ℓ2-norm sets, which holds particular significance when consid-

ering the maximum thrust rotating propellers can produce, as detailed in Section 4.2.1 and proven in

Section 5.1.

The linear velocity dynamics (4.5) yields a set in the shape of a sphere for acceleration portrayed in

Figure 5.2. Also, the control input (4.9) illustrated in Figure 5.3 is a sphere. By accurately representing

these ℓ2-norm sets, the CCG representation ensures precise and reliable control over the vehicle’s
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motion. Furthermore, in a Monte Carlo simulation considering the region of attraction defined with CZ

formulation, approximately 23% of states are infeasible. This proportion can considerably impair the

controller’s performance, emphasising the need for a more precise and robust representation of the

region of attraction. These results validate the CCG formulation to represent these sets.

5.4 Preventing Numerical Errors

The forthcoming section delves into the outcomes of the technique presented in Algorithm 3. By

harnessing this methodology, the search for initial conditions beyond the region of attraction is avoided.

For each parameter (i.e., position, velocity, and acceleration), the difference between the previous set

and the current set varies.

The results are demonstrated through a 2D simulation with a triple integrator in Figure 5.9. The frame

encircles the region of attraction, illustrating the area before the process (in cyan). Notably, its size is

minimal, considering the solver’s error magnitude of 10−6 concerning ξ.
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Figure 5.9: Technique to reduce numerical errors applied to the projected region of attraction in x
and y directions.

In Figure 5.10, the same technique is applied in this dissertation’s case employing the quadrotor.

Figure 5.10: Technique to reduce numerical errors applied to the projected region of attraction for
DJI Phantom System.
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Because of the non-uniform shape of this region of attraction, the process does not follow a linear

pattern. One possible cause is that certain irregularities cannot be accommodated within the bounds of

the prior region of attraction, resulting in some minor imperfections.

When working with predefined solvers in the MATLAB toolbox, it is common for numerical issues to

emerge, making it challenging to eliminate them. However, this strategy aims to mitigate these issues

to the greatest extent possible. Performing a Monte Carlo simulation with 500 runs for the quadrotor

results in a substantial decrease in numerical issues during the MPC process. Specifically, it decreases

the percentage of issues from 4.29% to a significantly improved 0.2%.

5.5 MPC Regulator

To explain the controller’s behaviour, the following simulation focuses on the x and y directions de-

picted in 2D and 3D (with discrete-time instants indicated on the x-axis) for different perspectives. The

2D representation is displayed in Figure 5.11, and the 3D is provided in Figure 5.12. The disturbances

only manifest in acceleration to illustrate the context explored in this thesis.
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Figure 5.11: Projection of sequence sets Xi, i = 0, . . . , Nc ×N in x and y directions. The MPC
trajectories from different initial conditions.

Figure 5.12: Projection of sequence sets Xi, i = 0, . . . , Nc ×N in x and y directions over
discrete-time instants. The MPC trajectories from different initial conditions.

Several observations are derived from these visual representations:
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• The blue trajectories represent cases where the initial condition belongs to the mRPI, denoted as

X0. Consequently, these trajectories consist of only one state.

• The yellow trajectories illustrate scenarios in which the initial condition falls between the penulti-

mate set X1 and the second set X11. From the scenario where the initial condition resides within

the mRPI in some parameter (e.g., position, velocity and acceleration), the trajectory tends to

progress towards the mRPI in the dimensions that have yet to be reached. Thus, these yellow

trajectories demonstrate that when the initial condition is further from the mRPI, it necessitates

more discrete-time instants to reach the mRPI.

• To test the MPC under maximum circumstances, the initial conditions are placed on the boundary

of the region of attraction. These trajectories, depicted in orange, indicate that the MPC operates

at its limits and requires maximum actuation in particular directions, as detailed in Section 4.2.3.

Notably, when the initial state is positioned at the edge of the region of attraction, the final condition

also lies along the boundary of the mRPI, underscoring the calculation’s accuracy.

• When an initial condition lies outside the region of attraction, the MPC is infeasible. In such cases,

the initial condition is represented by an asterisk.

The visual representation in Figure 5.13 illustrates the MPC trajectories within the DJI Phantom

System scenario. Only the sets Xi×N , i = 0, . . . , Nc are displayed to simplify trajectory visualisation.

Figure 5.13a is included to confirm the start of particular trajectories from the boundary of the region of

attraction. Figure 5.13b showcases a selection of trajectories derived from a Monte Carlo simulation,

converging towards the mRPI (depicted as the smaller blue set).

(a) (b)

Figure 5.13: Projection of sequence sets Xi×N , i = 0, . . . , Nc in x, y and z directions for DJI
Phantom System. The MPC trajectories from different initial conditions. (a) Zoom-out. (b) Zoom-in.

The controller’s performance reflects the previous observations for the x and y directions (Figure 5.11

and 5.12). It reaffirms the accuracy and robustness of the proposed MPC.

Finally, during a simulation employing the region of attraction with 30 147 generators (i.e., regarding

Table 5.2), it requires over one hour for pre-compiling the optimisation problem before further integration

to execute the MPC. In contrast, when performing with the proposed mRPI, it takes approximately 1.39
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s to pre-compile the problem and 1.41 s to generate the MPC trajectory. It underscores the computa-

tional impact of performing with an mRPI with few generators on the MPC process, confirming that the

computational times are suitable for a real-time application.

5.6 Obstacles on the Trajectory

The controller’s performance depends on different factors. A series of simulations are conducted to

assess the result of these factors, followed by a meticulous analysis.

Considering a simulation with Xi, i = 0, . . . , 12 sets, with N = 4 and Nc = 3. The obstacle is

introduced into the trajectory at set X8. This obstacle remains stationary, primarily affecting the position.

To illustrate the formulation discussed in Section 4.4, Figure 5.14 is presented. Depicting the differences

within this set, both before X8 and after the obstacle O8.
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Figure 5.14: Projection of set X8 in each direction, before and after the obstacle’s introduction.

In Figure 5.15, the impact among all the sets within the sequence before and after the obstacle is

presented. The various trajectories along this sequence of sets with the obstacle are highlighted, each

initiated from different initial conditions.

Figure 5.15: Projection of sequence sets in x and y directions over discrete-time instants and the
MPC trajectories from different initial conditions. The obstacle is situated in X8, leading to the

creation of the resulting sequence Oi, i = 0, ..., Nc ×N , with N = 4.

Several observations are derived from the results in Figure 5.15:
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• Due to the intersection of the obstacle set and X8, when the obstacle assumes a more extensive

set, the potential manoeuvring space for circumventing the object increases.

• As mentioned earlier, when considering other factors, it becomes evident that the initial state signif-

icantly influences whether the solution is feasible or infeasible. Considering that the initial condition

lies in the sets before the obstacle (X12, . . . ,X7):

– Initial conditions located at the boundary of X12 already demand maximum actuation to reach

the edge of each terminal set in the sequence. Consequently, when considering the intro-

duction of obstacles, the MPC immediately determines infeasibility, as the last state of the

prediction x(N) cannot reside within O8. This example is illustrated with the orange square.

– The initial condition is positioned in a manner that allows reaching the new mRPI. This case

is represented in yellow and purple trajectories.

• The behaviour differs when the initial condition lies in the sets after the obstacle (X7, . . . ,X0):

– The MPC fails to adapt to the new sequence of sets due to the location of the initial condition

near the boundary. Similar performance to the one at the boundary of the region of attraction.

It is noteworthy to realise that this scenario is far less common.

– The state encounters no obstacle, allowing the trajectory to progress as expected. These

scenarios are depicted in blue and green.

Highlighting some of the previously discussed insights, a simulation featuring the obstacle set results

in Figure 5.16 represented in Figure 5.17. The prediction horizon is set to N = 3 to illustrate the effect

of this factor. Additionally, to test the obstacle’s impact at a different point in the trajectory, it is placed

within X4.
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Figure 5.16: Projection of set X4 in each direction, before and after the obstacle’s introduction.
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Figure 5.17: Projection of sequence sets in x and y directions over discrete-time instants and the
MPC trajectories from different initial conditions. The obstacle is situated in X4, leading to the

creation of the resulting sequence Oi, i = 0, ..., Nc ×N , with N = 3.

The obstacle’s location along the trajectory may significantly affect the performance. An obstacle at

the beginning of the trajectory might allow more instants to adjust the course, while an obstacle closer

to the end could have more impact.

Furthermore, the trajectories started in the boundary of the region of attraction terminated prema-

turely after just three states. It occurs because x0 ∈ X9 (region of attraction) and at the third MPC

it means Xf := O5, which coincides with the obstacle location. This case is illustrated in the orange

trajectory. The dark blue and green examples represent initial conditions placed within sets where the

obstacle does not affect the trajectory. Finally, the light blue and purple example features a trajectory

that does not encounter the obstacle. In the purple case, the initial condition is already within the mRPI.

In conclusion, obstacle avoidance is a crucial aspect of autonomous system control. This section

has provided insights into the diverse behaviours of the MPC controller when confronted with obstacles.

These considerations are summarised as follows:

• Obstacle Location: Placing an obstacle at the beginning of the trajectory (i.e., after a minimum of

N steps to guarantee that MPC can detect) tends to yield better performance.

• Obstacle set size: When the obstacle set occupies a larger area, it expands the available space

for manoeuvring around it. Thus, the likelihood of encountering infeasibility is greater with less

extensive sets of obstacles.

• Initial condition:

– When lies on the boundary of the region of attraction, no control action can be applied to

manoeuvre around the obstacle, thus rendering the problem infeasibility. A Monte Carlo

simulation with 500 runs yields 100% infeasible trajectories.

– Specific conditions outside the centre of the region of attraction can result in infeasibility, as

the trajectory’s terminal set (for that prediction) fails to align with the newly introduced set.

– Conversely, if it is close to the mRPI, the state might reach it without encountering the obsta-

cle.
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– For the ones that are neither close to the mRPI nor on the boundary of the region of attraction,

the problem’s feasibility depends on specific circumstances.

• Prediction Horizon: The size of the control horizon influences performance. A shorter horizon

may restrict the controller’s capacity to navigate obstacles, reflecting poorer performance. How-

ever, it is noteworthy to acknowledge the existence of a trade-off, as significantly increasing the

control horizon can lead to heightened computational complexity.

The same behaviour is observed when considering the drone case, although perception becomes

more challenging due to the three-dimensional character of the problem. The analysis and observations

align with the previously discussed for the two-dimensional case.

45



46



Chapter 6

Conclusion

6.1 Conclusions

The dissertation’s goal was to analyse the stability of the predictive controllers by the innovative ap-

plication of CCGs as the primary method for characterising the reachable sets. The CCGs have revealed

the capability to reduce the conservatism traditionally linked with set representations whilst improving

computational efficiency. Underscoring the practicality of such set-based methodologies to estimate the

sets in quadrotor control to enhance feasibility, ultimately strengthening controller robustness.

A comprehensive investigation is conducted to analyse the accuracy and reduced conservatism

achieved with CCGs. This study compares CCGs with CZs, which tend to overestimate the actual set,

resulting in more extensive and less precise representations. This divergence in conservatism becomes

particularly noted when searching for initial conditions. CZs often yield more infeasible solutions due to

their overestimation of the feasible region. Therefore, the region of attraction represented through CZ for

the quadrotor model encompasses 23% of states that are, in reality, infeasible states. Consequently, it

can result in infeasibility of the control system, posing a risk to aerospace missions. In other scenarios,

it may lead to sub-optimal control decisions that might not fully exploit the system’s potential.

The novel approach of integrating CCGs into the design of a predictive controller hinges on the MPC

with a variable terminal condition. In this framework, each MPC iteration has a unique terminal set pre-

cisely defined by CCGs. This process forces the system to enter into an invariant set represented as

CCG, which reduces the related conservatism. Moreover, The mRPI representation defines the feasi-

ble region where system states converge and remain invariant, even when subjected to disturbances.

Therefore, when the system’s state falls within the mRPI, it can seamlessly transition to the LQR con-

troller and operate within this region. It confers a distinct advantage to autonomous vehicles. With

this controller transition, the new controller requires fewer computational resources and maintains an

adherence to the system’s constraints.

For the effective operation of the MPC, an essential factor to consider is the search within the CCGs,

where the number of generators plays a pivotal role in determining its performance. When this number

becomes excessively high, it is challenging for the MPC to predict the control inputs (e.g., the scenario
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with 30 147 generators to describe the region of attraction requires more than an hour to formulate the

optimisation problem). In this case, it can lead to a situation where, over time, numerical issues or even

infeasibility arise. These results underline the significance of the proposed method, which presents an

optimal representation of the mRPI with fewer generators (e.g., 39 instead of 30 003) and an excellent

computational time (e.g., 3.04 ×10−3 s instead of 3.98 s). A reduced number of generators in the mRPI

facilitates the backward propagation and creates a region of attraction with fewer generators (e.g., 183

instead of 30 147).

Recognising perturbations is an inevitable facet of real-world scenarios. This dissertation delves

into the theoretical exploration of their effects and outputs. The introduction of obstacles, situated in

diverse locations and varying sizes, assumes central significance. Maintaining the convexity of the new

estimations is imperative to facilitate precise simulations. These obstacles, treated as CCGs, ensure

that the investigation remains aligned with the previous rigour and methodology employed during MPC

testing in an obstacle-free environment. The results demonstrate the controller’s capability to navigate

around obstacles under such circumstances. However, it is important to note that if the trajectory initiates

within the boundary of the region of attraction, obstacle avoidance becomes unfeasible, underscoring

the precision of the region.

UAVs demand more robust control strategies to guarantee that the vehicles can effectively interact

with external environments and execute complex manoeuvres. Incorporating CCGs into MPC to rep-

resent the control invariant sets significantly enhances the feasibility of the control system. It reduces

conservatism and enables operations near the set boundaries. Consequently, the rising demand for

robustness, adaptability, and improved performance in quadrotor control is addressed.

In summary, this research precisely defines the region of attraction for aerospace vehicles subject to

different constraints and disturbances, ensuring mission feasibility from the outset. It ensures that if any

initial condition is located within the region of attraction, the MPC successfully reaches the terminal set

100% of the time with a computational time suitable to a real-time application (e.g., 1.41 s to generate

an MPC trajectory). The outcome of this study stands as a validation of a concept, underscoring the

potential of advanced control methods in shaping the trajectory of autonomous vehicles in the future.

6.2 Future Work

The present research represents a step forward in set representation for control systems stability, yet

there is ample room for future exploration and improvement.

One of the notable limitations in the application of MPC is its considerable computational demand.

Overcoming this is crucial to expand the proposed solution to larger trajectories and more complex

systems. A promising approach involves over-approximating the sets within each backward sequence.

Moreover, the paving techniques divide these sets into smaller and more manageable subsets, facilitat-

ing efficient representation and computation, even in the presence of uncertainty or disturbances. One

of the techniques employed in paving is via inner approximations, which ensures that the accuracy of

the sets is preserved.

48



To augment the foundation of this dissertation, practical testing of the proposed theory in a real-

world setting would be a valuable addition. Nonetheless, before embarking on such empirical tests, it is

imperative to construct extensive simulation environments to facilitate the assessment and visualisation

of aerospace vehicle behaviours on a broader scale. One effective method is to undertake Hardware-in-

the-Loop (HiL) testing, which involves integrating UAVs components like thrusts, sensors, and onboard

computers into the simulation.

The spotlight on autonomous vehicles has grown considerably in recent years. There are possible

lines of further research, such as expanding the application of the introduced control strategies to encom-

pass various industries where UAVs are typically employed, like surveillance, photography, inspection,

search, and rescue operations. Furthermore, exploring the intricacies of coordination and collaboration

mechanisms among the vehicles engaged in complex missions offers substantial potential. The insights

from studying these dynamics can be readily transferred and customised for other autonomous vehicle

domains.

Finally, for these simulations to be more robust and ensure the feasibility of reference trajectories

for performing aggressive manoeuvres, it is crucial to incorporate more robust disturbances models

(e.g., gravitational perturbations and atmospheric drag). While current research has made substantial

progress in avoiding obstacles, dynamic obstacles present a unique challenge. Consequently, future

work in obstacle avoidance should expand its focus to address obstacles that are not static.

Beyond these focused research directions, it is crucial to emphasise the importance of collaboration

and interdisciplinary. This work strives to bridge the gap between academic research and practical appli-

cation. Implementing techniques like MPC in real-world aerospace systems demonstrates the potential

for academic findings to drive practical innovations. Collaborative efforts involving industry stakeholders

and academia are pivotal in furthering the theory and application of aerospace control. These collabo-

rations foster innovative ideas and real-world solutions, propelling advancements in this domain.
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Appendix A

Convex optimisation

This appendix delves into the critical field of convex optimisation, a basis for understanding the

mathematical foundations and computational aspects that drive the control strategies presented in this

research.

An optimisation problem is a mathematical object of the following form:

minimise
x

f(x),

subject to hi(x) = 0, i = 1, . . . , p,

gj(x) ≤ 0, j = 1, . . . ,m,

(A.1)

where x ∈ Rn is the optimisation variable, f : Rn → R is the objective or cost function to minimise,

h1, . . . , hp, g1, . . . , gm : Rn → R are constraint functions.

Convex optimisation aims to minimise a convex objective function whilst satisfying a set of convex

constraints. The succeeding rules must be satisfied for the problem to be considered convex: f is a

convex function; hi is an affine function for 1 ≤ i ≤ p
(
that is, hi(x) = ai

Tx− bi
)
; gj is a convex function

for 1 ≤ j ≤ m. These impositions ensure the feasible set is always convex, as demonstrated by the

veracity definitions below.

Definition A.0.1 (Convex set, [48]). A set A ⊆ Rn is convex if, and only if, contains a line segment

between any two points in the set x, y ∈ A, 0 ≤ α ≤ 1, then

(1− α)x+ αy ∈ A. (A.2)

Definition A.0.2 (Convex function, [48]). A function f : Rn → R if

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y), ∀x, y ∈ Rn ∧ 0 ≤ α ≤ 1. (A.3)

It means the function exists only below the chord connecting any two points on the function graph.

The visual representation of this concept can be observed in Figure A.1.
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Figure A.1: A notional convex set and convex function (adapted from [48]). On both, the variable
(1− α)x+ αy generates a line segment between two points. The epigraph (epi) f ⊆ Rn × R is the
set of points that lie above the function and itself defines a convex set. (a) Convex set. (b) Convex

function.

One of the main advantages of convex functions is that some specific operations preserve the sys-

tem’s convexity. These succeeding properties aid in the recognition of complex convex functions.

Definition A.0.3 (Non-negative weighted sums of convex functions, [48]). Considering fi : Rn → R is

convex for i = 1, 2, . . . ,m and ti ≥ 0, then tmfm is convex and

t1f1 + t2f2 + . . .+ tmfm : Rn → R is convex. (A.4)

Definition A.0.4 (Composition of a convex function with an affine mapping, [48]). Assuming f : Rn → R

is convex and g : Rm → Rn, g(x) = Ax+ b, then

f ◦ g : Rm → R is convex. (A.5)

Definition A.0.5 (Composition with non-decreasing function, [48]). f : R → R is convex and non-

decreasing and g : Rn → R is convex, then

f ◦ g : Rn → R is convex. (A.6)

Definition A.0.6 (Maximum of convex functions, [48]). fi : Rn → R is convex for i = 1, 2, . . . ,m, then

max{f1, f2, . . . , fm} : Rn → R is convex. (A.7)

The convex formulation is appealing due to its ability to capture a broad spectrum of trajectory gen-

eration and control applications. The following criteria apply to the available solution algorithms: If a

feasible solution exists globally optimal solution is found; when there is no solution, a certificate of in-

feasibility is issued; the run-time complexity of the problem is polynomial in size; and the algorithms

can self-initialise, eliminating the need for an expert initial guess. These characteristics are inherited by

convex optimisation-based trajectory generation and control algorithms. Convex programming is thus

safer and faster than other optimisation methods for autonomous applications.
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