
UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Distributed Trajectory Generation for Multiple

Autonomous Vehicles Using

Bernstein Polynomial-based Methods

Bahareh Sabetghadam

Supervisor: Doctor Rita Maria Mendes de Almeida Correia da Cunha

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction

2023

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Distributed Trajectory Generation for Multiple

Autonomous Vehicles Using

Bernstein Polynomial-based Methods

Bahareh Sabetghadam

Supervisor: Doctor Rita Maria Mendes de Almeida Correia da Cunha

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury
Chairman: Doctor Paulo Jorge Coelho Ramalho Oliveira

Instituto superior Técnico da Universidade de Lisboa

Members of the committee: Doctor Isaac Kaminer
Naval Postgraduate School, USA

Doctor António Pedro Rodriguez Aguir
Faculdade de Engenharia de Universidade do Porto

Doctor António Manuel dos Santos Pascoal
Instituto superior Técnico da Universidade de Lisboa

Doctor João Manuel de Freitas Xavier
Instituto superior Técnico da Universidade de Lisboa

Doctor Rita Maria Mendes de Almeida Correia da Cunha
Instituto superior Técnico da Universidade de Lisboa

2023

Abstract

This thesis presents an efficient and reliable trajectory generation framework that enables
the computation of feasible, safe and collision-free trajectories for teams of autonomous vehicles
while satisfying timing constraints imposed by real-time applications. The proposed framework
aims to address a few key issues related to multi-vehicle trajectory generation:

(i) Satisfying safety and collision-avoidance constraints at all time instances during a mission;
Majority of the existing trajectory generation methods rely on discretization in time or
space and, thus, ensuring that collision avoidance constraints are satisfied in between dis-
cretization nodes is only possible by employing a fine enough discretization grid. This,
however, usually translates into a significantly large number of constraints that can hinder
the application of these methods to real-time multi-vehicle trajectory generation scena-
rios. To avoid the complications associated with time gridding, we parameterize trajec-
tories with Bézier curves and propose the Bernstein relaxation and refinement method
to guarantee that collision avoidance requirements are satisfied at any time instant, even
for extended travel times. The proposed method exploits the unique properties of Bézier
curves to replace the infinitely many constraints in the problem with a finite set of cons-
traints. The proposed method also enables a flexible trade-off between conservatism of the
resulting set of constraints and computational complexity.

(ii) Considering the rotational motion of a drone to avoid infeasibility problems with flights
in tight spaces; To incorporate the rotational motion of a drone into the trajectory ge-
neration problem, in contrary to the commonly used sphere model, we approximate the
drone body as an ellipsoid whose principal axes are aligned with the body frame axes.
Although the symmetrical approximation of the vehicle’s body (with a disc or a sphere in
2D and 3D planning) results in straightforward construction of the configuration space, it
is very conservative and fails to validate trajectories that are feasible upon considering the
vehicle’s orientation. The ellipsoid model instead allows an explicit consideration of the
drone’s shape and orientation which is necessary for trajectory generation in unstructured
environments with narrow gaps and small spaces between obstacles. In order to derive
constraints for collision avoidance between ellipsoid-shaped bodies we use the separating
hyperplane theorem of convex sets. The resulting set of constraints is seamlessly integrated
into the proposed Bernstein-based trajectory generation method.

(iii) Decoupling inter-vehicle collision-avoidance constraints for a synchronous distributed scheme
with low computation and communication demands; To alleviate the computational com-
plexity of solving the problem centrally for a large group of vehicles, we present a scheme
that enables local distributed trajectory generation by solving a small-scale optimization
problem that only involves a vehicle’s individual variables. To ensure that local decisions

iii

satisfy the coupling collision avoidance constraints we adopt the Voronoi partitioning of
space and enforce each vehicle to generate its trajectory inside (a subset of) its Voronoi
cell towards the closest point (in the cell) to its goal position. A sequence of sub-problems
are then solved in a receding-horizon manner, using only the relative position information
exchanged between the neighboring agents, until the vehicles reach their goal positions.
The set of local collision-avoidance constraints is derived taking into account the vehicle’s
orientation in order to avoid infeasiblity issues with generating trajectories in tight spa-
ces for hundreds of drones. Also, the resulting set of constraints can be evaluated with
the proposed Bernstein relaxation method to ensure that safe separation criteria between
trajectories are met at any time instant of the planning horizon.

The thesis concludes with extensive simulation and experimental results, with up to 100
drone, to illustrate the efficacy of the proposed trajectory generation framework.

Keywords: Trajectory Generation, Multi-vehicle Applications, Bézier Curve, Ellipsoids,
Separating Hyperplane, Voronoi Diagram, Real-time Re-planning

iv

Resumo

Esta tese apresenta uma metodologia eficiente e confiável para geração de trajetórias exeqúıveis,
seguras e livres de colisões para grupos de véıculos autónomos e que satisfaz os requisitos tem-
porais de aplicações de tempo real. A metodologia proposta visa abordar as seguintes questões-
chave:

(i) Satisfazer restrições que permitem evitar colisões em todas as instâncias de tempo de uma
missão; A maioria dos métodos de geração de trajetórias existentes depende da discre-
tização no tempo ou no espaço, o que faz com que só seja posśıvel garantir que as res-
tricões são satisfeitas entre os nós de discretização empregando uma grelha de discretização
fina. Em alternativa, parametrizam-se as trajetórias como curvas de Bézier e recorre-se
ao método de relaxamento e refinamento de Bernstein para garantir que as restrições são
satisfeitas em todos os instantes de tempo.

(ii) Considerar o movimento rotacional de um drone para evitar problemas de exequibilidade
para voos em espaços confinados; Para incorporar o movimento rotacional de um drone
no problema, aproxima-se o corpo do drone por um elipsóide cujos eixos principais estão
alinhados com os eixos da estrutura do corpo. O modelo elipsóide permite considerar
explicitamente a orientação do drone e gerar trajetórias em ambientes com passagens
estreitas.

(iii) Desacoplar restrições para evitar colisões entre véıculos e obter um esquema distribúıdo
com baixas exigências de comunicação; Para aliviar a complexidade computacional de re-
solver o problema de forma centralizada, apresenta-se uma estratégia que permite gerar
trajetórias de forma local e distribúıda através da resolução de um problema de otimização
de pequena escala que envolve apenas as variáveis individuais de cada véıculo. Para ga-
rantir que as decisões locais satisfazem as restrições anti-colisão, adota-se a partição do
espaço de Voronoi e força-se cada véıculo a gerar a sua trajetória dentro da sua célula de
Voronoi.

A tese conclui com extensos resultados de simulação, envolvendo até 100 drones, que ilustram
a eficácia da metodologia de geração de trajetórias proposta.

Palavras-chave: Geração de Trajetórias, Aplicações Multivéıculo, Curvas de Bézier,
Hiperplano de Separação, Diagrama de Voronoi

Acknowledgements

As I present my thesis, I am filled with gratitude for the diverse experiences that I have
had during my PhD journey. These experiences have significantly contributed to my growth not
only as a researcher but also as an individual. I am immensely grateful to the incredible people
that have stood by my side throughout this journey. This work would not have been possible
without their support and encouragement.

First and foremost, I want to express my appreciation for the invaluable guidance and cons-
tant support provided by my supervisor, Prof. Rita Cunha. Her keen insights and patient
discussions have played a pivotal role in shaping the trajectory of my research work. Thank
you, Rita, for you help.

I extend my sincere thanks to Prof. António Pascoal for his unwavering encouragement
throughout the entire process. His generosity in sharing his valuable insights and willingness to
help whenever needed eased my journey through the complexities of pursuing my PhD. Thank
you, António, for your support.

I must thank Stephanie Pascoal and Filipa Almeida for their exceptional kindness upon my
arrival in Portugal. Their warm welcome made a world of difference in my adaptation process.
Thank you for your hospitality.

A special appreciation goes to my friends and colleagues, Ali, Azar, Duyen, Helena, Hung,
Meysam, Leopoldo, Rômulo, Shuhbam, and Vasco. Our informal conversations, whether over
lunch breaks or through screens during lockdowns, provided a lifeline during the most challenging
times. I am thankful for all the memorable moments we have shared.

I would also like to acknowledge the financial support provided by Fundação para a Ciência
e Tecnologia under projects PTDC/EEI-AUT/1732/2020 and PCIF/MPG/0156/2019, which
enabled me to pursue my research goals.

Last but certainly not least, I want to convey my heartfelt gratitude to my family for their
unwavering support and encouragement. Their words of motivation and understanding helped
me persevere through challenges. To my parents: Thank you for everything. I dedicate this
thesis to you.

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Autonomous Drone Cinematography . 2

1.1.2 AUV range-based positioning . 4

1.2 Related work . 5

1.2.1 Artificial Potential Field Methods . 5

1.2.2 Grid-based Search . 6

1.2.3 Sampling-based Methods . 6

1.2.4 Numerical Optimal Control . 7

1.2.5 Polynomial-based Methods . 7

1.3 Contribution . 8

1.3.1 Bézier parameterization and efficient evaluation of Inequality constraints . 8

1.3.2 Trajectory generation for drones in confined spaces using an ellipsoid
model of the body . 9

1.3.3 Distributed trajectory generation framework 11

2 Trajectory Generation using Computationally Efficient Optimal Control Meth-
ods 13

2.1 Introduction . 14

2.2 Problem Description . 14

2.3 Numerical Methods for Optimal Control Problems 15

2.3.1 Single Shooting Method . 16

2.3.2 Direct Multiple Shooting Method . 18

2.3.3 Direct Collocation Method . 21

2.3.4 Available tools for solving OCPs and NLPs 22

2.4 Simulation Results . 25

2.4.1 Go-to-Formation Maneuver of 7 AUVs . 26

2.4.2 Minimum time maneuver with collision avoidance 29

2.4.3 Trajectory optimization for range-based AUV positioning 29

2.4.4 Autonomous Drone Cinematography . 31

2.4.4.1 Quadrotor model . 31

2.4.4.2 Gimbal angles . 34

2.4.4.3 Problem formulation . 36

2.4.4.4 Simulation results . 36

2.4.5 Cooperative planning for multiple drones 37

2.4.6 Trajectory re-planning in the receding horizon manner 40

3 Bézier Curve-based Trajectory Generation Method for Differentially Flat Sys-
tems 45

3.1 Introduction . 46

3.1.1 Differentially flat systems . 46

vii

Contents

3.1.2 Polynomial parameterization of the flat output 48

3.2 Bernstein polynomials and Bézier curves . 52

3.2.1 Bernstein Polynomial: definition and basic properties 53

3.2.2 Bézier curves . 57

3.2.2.1 Definition and shape features . 57

3.2.2.2 Algorithms . 60

3.2.3 Evaluating Inequality constraints using B-spline and Bézier curves properties 63

3.2.3.1 Literature Review . 64

3.2.3.2 Evaluating inequality constraints in Bernstein form 68

3.2.4 Quantitative bounds on the distance between a Bézier curve and its control
polygon . 70

3.2.4.1 Bézier control polygon . 70

3.2.4.2 Bounding functions . 72

3.2.4.3 Bound alternatives . 76

3.2.4.4 Sharpness of the bounds . 76

3.2.4.5 Bound improvement at the end points 77

3.2.4.6 Polygonal Envelopes . 78

3.2.4.7 Convergence under subdivision 78

3.2.4.8 Convergence under degree elevation 81

3.3 Case study . 82

3.3.1 Go-to-Formation maneuver . 82

3.3.1.1 Simulation Results . 85

3.3.2 Collision-avoidance constraints for an ellipsoid model of the drone body . 87

3.3.2.1 Quadrotor model . 87

3.3.2.2 Collision Avoidance Constraint 91

3.3.2.3 Simulation results . 94

4 Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning 103

4.1 Literature Review . 104

4.2 problem formulation . 106

4.2.1 Decoupling the inter-vehicle collision avoidance constraint 107

4.2.2 Finding the closest point to the goal position 111

4.2.2.1 Overview . 112

4.2.2.2 Configuration Space Obstacle . 112

4.2.2.3 Support Mapping Function . 113

4.2.2.4 Simplices . 114

4.2.2.5 Convergence and termination . 115

4.2.2.6 Johnson’s Distance Sub-algorithm 117

4.2.3 Continuity conditions . 123

4.3 Simulation Results . 124

5 Conclusion and Future Work 129

5.1 Conclusion . 130

5.1.1 Summary . 130

5.2 Future Work . 131

5.2.1 Rational Bézier curves . 131

5.2.2 Computation delay compensation for real-time implementation 132

A Structure exploiting NLP solver 133

viii

B FORCES Pro 137
B.1 FORCES Pro High-Level Interface . 137

B.1.1 Expressing the optimization problem in python 137

C B-spline Curves 141
C.1 B-spline basis functions: definition and properties 141
C.2 B-spline curves: definition and properties . 143

C.2.1 Convergence under knot insertion . 145

Contents

x

List of Figures

1.1 System architecture on board a drone. The Shot Executer module provides de-
sired shot types, whereas the Cinematography Planner generates optimal trajec-
tories and gimbal commands [Sab+19]. 3

1.2 Schematic of mutual visibility constraint. Other flying drones must be stayed out
of the camera’s field of view. 4

1.3 The trajectory in blue maximizes the information content of the set of range
measurements to the beacon (fixed at the origin) while the trajectory in green
minimizes the mechanical energy usage. 5

1.4 Existing motion planning approaches usually model the vehicle as a sphere or
prism (left). Therefore, the configuration space (C-space) can be obtained merely
by inflating the obstacles with the radius of the sphere. As a result, the vehicle
can be treated as a single point in C-space and the collision checking is simplified
(right). 10

1.5 The conventional method of modeling the drone body as a sphere is not suitable
for motion planning in tight spaces, as it fails to validate trajectories that might be
feasible upon considering the drone’s orientation. The less conservative ellipsoid
model allows consideration for the 3D orientation. 11

1.6 The 2D Voronoi diagram for 5 drones. The final position for the (red shaded)
drone is shown with , and the closet point in its Voronoi cell to the goal position
is shown with . The vehicle’s trajectory is generated towards such that it is
entirely within the vehicle’s Voronoi cell and avoids the obstacle (black circle)
inside the cell. 12

2.1 Numerical approaches to continuous time OCPs [DG11] 17

2.2 The state and input trajectories when solving an OCP with nx = 1 and nu = 1
via single shooting discretization. 18

2.3 The sparsity pattern of the Hessian of the Lagrange function (left) and the spar-
sity pattern of the Jacobian of the inequality constraints (right) in the NLP
resulting from single shooting discretization. 18

2.4 Illustration of the direct multiple shooting method at an early iteration before the
constraints are satisfied [DG11]. The continuity condition xk(tk+1, sk,qk)−sk+1 =
0 is enforced at s0, . . . , sN−1. The state trajectory becomes continuous once the
solution of the NLP is achieved. 20

2.5 The sparsity pattern of the Hessian of the Lagrange function (left) and the
sparsity pattern of the Jacobian of the equality constraints (right) in the NLP
resulting from multiple shooting disretization. The variables are ordered as
z = (s0,q0, s1,q1, . . . , sN−1,qN−1, sN)T . 20

2.6 Illustration of the direct collocation method with d = 3 at the time interval
[tk, tk+1] [DG11]. 23

xi

List of Figures

2.7 The sparsity pattern of the sparsity pattern of the Jacobian of the equality con-
straints in the NLP resulting from direct collocation with d = 3. The variables
are ordered as z = (vT

0,0,q
T
0 ,v

T
0,1,v

T
0,2,v

T
0,3,v

T
1,0,q

T
1 ,v

T
1,1, . . .)

T 23

2.8 Spatially de-conflicted trajectories for 7 vehicles moving from their initial posi-
tions (x) to their final positions (x) with a constant speed of 0.5m

s and ψ0 = ψf = 0. 27

2.9 The course angle, course rate and angular acceleration of the 7 vehicles are within
the given bounds in Table 2.1. 27

2.10 Spatially de-conflicted trajectories for 7 vehicles from their initial positions (x) to
their final positions (x), with the boundary conditions, v0 = 0.1m/s, vf = 0.5m/s
and ψ0 = ψf = 0. 28

2.11 The speed and course angle of the 7 vehicles are within the given bounds in Table
2.1. 28

2.12 Temporally de-conflicted trajectories for two vehicles moving from their initial
positions (x) to their final positions (x) in a cluttered environment. 29

2.13 The course angle and speed profile for the two vehicles in Figure 2.12 29

2.14 (a) and (b) show the AUV’s trajectory obtained by minimizing the overall energy
consumption and maximizing the log |FIM |, respectively; (c) and (d) are the
corresponding course rate and speed profiles for the trajectory in (a) and (b),
respectively [SCP18]. 32

2.15 Two AUVs and a single beacon. The temporally separated trajectories generated
in the absence and presence of log |FIM | in the objective fucntion are shown in
(a) and (b), respectively. The input profiles for the trajectories in (a) and (b) are
respectively shown in (c) and (d). 33

2.16 Illustration of reference frames. The origin of the camera and the vehicle reference
frames coincide. 35

2.17 Generated trajectories for the single drone-single target example with different
relative weights in the objective function (2.50). The trajectories guide the vehicle
from its initial position (x) to the final position (x) while the gimbal is pointing
towards the target (fixed at the origin). 37

2.18 The top view (left) and the gimbal pitch angle (right) of the generated trajec-
tories in Fig. 2.17. 38

2.19 The linear velocity and acceleration of the generated trajectories in Fig. 2.17. As
w2 increases the resulting trajectory reduces the gimbal pitch angle rate at the
cost of increased energy consumption. 38

2.20 Schematic of mutual visibility constraint. Other flying drones must be stayed out
of the camera’s field of view. 39

2.21 The generated trajectory for two drones (black and blue) at different time in-
stances. The trajectories are generated such that both cameras have unobstructed
views of the target moving on the red line. 39

2.22 The computed β angles for the two cameras show that the mutual visibility con-
straints are satisfied over the entire time interval. 40

2.23 The generated trajectory for two drones (black and blue) at different time in-
stances. The trajectory for the first drone is generated such that both cameras
have unobstructed views of the target moving on the red line. 41

2.24 The top view of the trajectories shown in Fig. 2.23. 42

2.25 The computed β angles show that both cameras have unobstructed views of the
moving target. 42

xii

List of Figures

2.26 (a) Replanning the trajectory in the presence of uncertainty in the target position
estimates. The drone trajectory is re-planned at each time step taking into ac-
count the most recent measurements of the target and the other drone positions.
(b) The initial and final trajectories of the drone. The final trajectory is obtained
by applying the first part of the re-planned trajectory at each time step. 43

3.1 Converting the original constraints (left) into equivalent ones in the space of flat
output (right). 48

3.2 Possible paths joining the initial and final points. 50

3.3 Three polytopes embedded within a non-convex set [VM98]. 51

3.4 Bernstein basis functions of degree 0, 1, 2, 3, 4, and 5. 54

3.5 A cubic Bézier curve with control polygon . 58

3.6 A quartic Bézier curve (left) and its first derivative (right). The derivative at the
endpoints depend only on the first two and last two control points. 58

3.7 A cubic Bézier curve contained within the convex hull defined by its 4 control
points. The control points are shown in red circles and control polyline in dashed
line segments. 59

3.8 A Bézier curve oscillates no more than the piece-wise linear interpolant to its
control points. 59

3.9 A cubic Bézier curve is evaluated τ = 0.4 (left). The pyramid scheme of the
de Casteljau’s algorithm (right) for 3 iterations. The right and left sides of the
pyramid show the control points for the new control polygons. 60

3.10 A cubic Bézier curve is divided into two Bézier curves of the same degree, n = 3,
at τ = 0.3, 0.5, 0.7, using the de Casteljau’s algorithm. 61

3.11 A cubic Bézier curve is expressed in terms of higher degree basis functions, n =
4, 6, 15, using the degree elevation algorithm. 62

3.12 A Bézier curve of degree 4 (red) and a Bézier curve of degree 5 (green). The solid
lines are the control polylines and the shaded areas are the convex hulls of the
curves. According to (3.82), the upper bound of the minimum distance between
the two curves is ∥r0 − s4∥ = 1, and the lower bound, i.e., the distance between
the convex hulls, is 0. 65

3.13 Comparing the minimum spatial (left) and temporal (right) distance between
a Bézier curve of degree 4 (red) and a Bézier curve of degree 5 (green). The
parameter value is indicated in the color bar to show the temporal evolution of
the curves. The results are computed using Algorithm 1 with ϵ = 10−8 in < 4 ms. 66

3.14 A B-spline curve of degree 3 (bottom left) and the corresponding B-splines defined
over the knot vector T = [0, 0, 0, 0, 1, 1, 2, 2, 2, 4, 5, 5, 5, 5] (top left). Figures on
the right show the effect of inserting a single knot at t = 3 on the B-splines
and the control polyline. The three new control points, generated with Boehm’s
algorithm and shown with red dots, replace the original control points r6 and r7. 68

3.15 A cubic Bézier curve (top left) is subdivided into two Bézier curves of the same
degree (top right) using the de Casteljau’s algorithm. Successive refinement
of the original control polygon after 2 (bottom left) and 3 (bottom right)
subdivisions. The composite control polygon generated by repeated subdivisions
converges to the Bézier curve. 70

3.16 αi(τ) for n = 5 and i = 0, . . . , 5. For any partcular value of τ , the sum of αi is 0,
i.e.,

∑n
i=0 αi(τ) = 0. 71

3.17 βi(τ) for n = 5 and i = 1, 2, 3, 4. βi(τ) is monotonically increasing on [0, τi] and
decreasing on [τi, 1], where τi = i

n . The dashed line shows their piece-wise sum,
i.e.,

∑
i βki(τ). 72

3.18 The first anti-differences of αki, γki(τ), for n = 5 and i = 0, . . . , 4. The dashed
line shows the piece-wise sum of the absolute of γi, i.e.,

∑
i |γki|. 73

xiii

List of Figures

3.19 One dimensional Bézier curve (solid black line), its control polyline (solid blue
line), and the envelope (dashed line) constructed with the bound implied by (from
left to right) (1) N∞, (2) N2, (3) N1. The control point sequence for the Bézier
curve is (from top to bottom) (1) [0, 1, 1, 0], (2) [0, 1, 3, 6, 10, 14], (3) [0, 1,−1, 0],
(4) [0, 1, 2, 3, 2, 1]. 79

3.20 The go-to-formation maneuver for 5 vehicles. Trajectories are generated with the
Béier curve-based method proposed in this chapter. 88

3.21 Collision-free trajectories for 5 drones generated with Bézier curves of degree 8. . 88

3.22 To deal with the uncertainties in the obstacles’ positions, trajectories for two
drones are re-planned at different time instances. The trajectories are generated
using Bézier curves of degree 8. Imposing continuity constraints at the joining
point of consecutive segments does guarantee smoothness of the overall trajectory. 89

3.23 The quadrotor reference frames. 90

3.24 The quadrotor body can be represented as a sphere with radius rD (right), or
an ellipsoid aligned with the axes of the body frame (left). Approximating the
drone body with an ellipsoid allows considering the quadrotor’s rotational motion. 92

3.25 2D sketch of an ellipsoid E1 and a hyperplane H in the original space (left)
and the corresponding sketch in the transformed space (right) in which E1 is
transformed into a unit ball at the origin. 93

3.26 Comparing the proposed method in the thesis to the method in [Fal+17] for
generating a trajectory that guides a drone through a gap inclined at 45◦. 95

3.27 The orthogonal plane Π to an inclined gap [Fal+17] (left). The drone’s trajectory
must pass through the center of the gap, pG, while lying in the plane Π. A view
of the traverse trajectory in the direction of the normal vector to the plane Πe3
(right). 96

3.28 The generated trajectory for flying a drone with hD = 30 mm and rD = 150 mm
through a gap with the frame size of 120mm × 550mm, centered at [3.4, 1.6,−2]
and inclined at 30◦. 97

3.29 The generated trajectory for flying a drone with hD = 30 mm and rD = 150 mm
through a gap with the frame size of 120mm × 550mm, centered at [3.3, 1.7,−2]
and inclined at 45◦. 98

3.30 The generated trajectory for flying a drone with hD = 30 mm and rD = 150 mm
through a gap with the frame size of 120mm × 550mm, centered at [3.5, 2,−2.5]
and inclined at 90◦. 99

3.31 Comparing the trajectory generated with the proposed method in the thesis (solid
line) to the one generated using (3.208) (dashed line) for flying a drone through
a 180mm× 550mm gap centered at [3, 1.4,−2] inclined at 60◦. 100

3.32 The experimental results for a single drone flying through a gap inclined at 60◦. . 101

3.33 Comparing collision-free trajectories, for two drones switching positions, gener-
ated with an ellipsoid model of the drone body (solid lines) and a sphere model
(dashed lines). 102

3.34 Generated trajectories for 4 drones flying through a gap and switching positions in
a given time. The initial (left) and final (right) positions of the drones are shown
in the XY-plane. Using a sphere model of the drone body yields an infeasible
problem. 102

3.35 Collision-free trajectories for steering two drones through a narrow gap in a wall
towards their desired position on the other side. The initial and final positions
are shown with squares and circles respectively. 102

xiv

List of Figures

4.1 (a) The Voronoi diagram for six drones in 2D space. The Voronoi boundary edges
are shown with solid black lines, and the buffered Voronoi cells are shaded in dark
blue. (b) The Voronoi diagram for 10 drones in a collision-free configuration in
3D space. The Voronoi boundary ∂V is shaded in light blue, and the buffered
Voronoi cells V̄ for two neighboring drones in the center are shown in dark blue. 110

4.2 The Minkowski difference of two convex polygons A and B. Since A and B
intersect, C contains the origin. 112

4.3 Finding the minimum distance between two convex bodies A and B is equivalent
to finding the minimum distance of their Minkowski difference, C, to the origin. . 113

4.4 The support point of the Minkowski difference can be determined by subtracting
the support points of the two shapes. 113

4.5 Simplices in R2. 114

4.6 Each feature of a simplex is linked to a Voronoi region. 115

4.7 Finding the closest point to the origin on a polygon using the GJK algorithm.
The set of vertices Y = Vk ∪ {wk} and Vk+1 ⊂ Yk are shown at each iteration.
The iterative search descends such that the generated simplex at each iteration
offers a better approximation of the ν(C) that the previous one. 118

4.8 Examples of the closest feature of a polyhedron to the origin are shown above. The
closest feature can be a vertex, an edge or a face with |V | = 1, 2, or 3, respectively.
If |V | = 4 the origin is contained in the interior of P . Once the closest feature
specified with V is obtained, the closest point, i.e., ν(P), can be determined as
shown above. 119

4.9 The bottom-up approach to searching all 2m+1 − 1 non-empty subsets of Y for a
2-simplex used in Johnson’s distance subalgorithm (left). The method presented
in Alg. 6 to 8 conducts a search only through 2m subsets whose Voronoi region
can possibly contain the origin (right). 120

4.10 A m-simplex is linked to 2m+1−1 Voronoi regions associated to its vertices, edges,
faces, and volume. The list of 2m Voronoi regions that can possibly contain the
origin is given in this table. It should be noted that v1 is the latest vertex added
to V . 124

4.11 Comparing collision-free trajectories generated with the centralized solution (left)
and the proposed decentralized approach (right) for five drones flying from their
initial positions to given final positions. While the central solution yields a shorter
flight time, its computation time is significantly longer than average time required
to solve the sub-problems in the distributed method. 126

4.12 (a) Initial (left) and final (right) position configurations for 18 drones. Each drone
is assigned a unique color and a number next to it. (b) Collision−free trajectories
for 18 drones switching their positions in a 3 m × 5 m × 2 m space. The total
flight time for the drones to reach their final positions is 5.1 s using the proposed
method, which is shorter than the 6.3 s flight time obtained with the BVC. . . . 127

4.13 Collision−free trajectories for 100 drones flying from their initial positions (dots)
to randomly specified final positions (squares) at different replanning steps. . . . 128

B.1 Supported problem in FORCES Pro high-level interface [DJ19] 137

C.1 B-spline basis functions of degree 0, T = {0, 0.25, 0.5, 0.75, 1}. 141

C.2 B-spline basis functions of degree 1, T = {0, 0.25, 0.5, 0.75, 1}. 142

C.3 B-spline basis functions of degree 2, T = {0, 0.25, 0.5, 0.75, 1} 142

C.4 B-spline basis functions of degree 1, T = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1}. 143

C.5 B-spline basis functions of degree 2, T = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1}. 143

xv

List of Figures

C.6 A cubic B-spline curve and its control polygon (left), the corresponding B-spline
basis functions(right) with T = {0, 0, 0, 0, 1, 1, 2, 2, 2, 4, 5, 5, 5, 5}. The control
polygon is obtained by connecting the points with coordinates (t̄i, ci), i = 0, . . . , n,
where t̄i =

ti+1+···+ti+k

k . 144
C.7 A cubic B-spline curve and its control polygon (left), the corresponding B-spline

basis functions(right) with unclamped T = {0, 1, 2, 3, 4, 5, 6, 7, 8}. The curve is not
clamped at the end points, and is only defined over the interval t ∈ [tk, tm−k] = [3, 5]144

xvi

List of Tables

2.1 Upper/lower bounds on states and inputs . 26
2.2 Upper/lower bounds used in the simulations. 37

3.1 The smallest possible constant that bounds the distance between a Bézier curve
and its control polygon, for 1, 2, and ∞-norm, and n = 2, . . . , 8. 78

3.2 Upper and lower bounds on the states and inputs of the vehicle’s model 87
3.3 Recorded computation times for generating trajectories using different approaches

to evaluating inequality constraints. 87

4.1 Comparing the number of successful trials and the average flight time achieved
with the BVC and the proposed method in the paper. 128

4.2 Recorded computation times for finding the closest point in a Voronoi cell to the
goal position and solving the optimization problem in simulation examples with
18, 34, and 100 drones. 128

C.1 B-spline basis functions of degree 0, T = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1}. 142

xvii

List of Tables

xviii

Chapter 1

Introduction

1

Chapter 1. Introduction

1.1 Motivation

Motion planning, also referred to as path planning, is an essential part of real-world applications
of autonomous vehicles. Motion planning can be defined as the computational problem of finding
a valid trajectory (or path) that guides the vehicle from an initial state to a (given) final state.
In most applications, the main concern with motion planning, rather than just finding a feasible
trajectory between the initial and final states, is the optimality of the trajectory with respect to a
certain objective function that measures the accomplishment of mission-specific goals. Therefore,
in optimal motion planning, the goal is to find the trajectory, out of all admissible ones, that
minimizes or maximizes an objective function. A straightforward approach to optimal motion
planning is to formulate it as a standard form optimization problem that can be solved using
existing methods and algorithms. In informal settings, such an optimization problem can be
written as

minimize
P(.)

J(.)

s.t. boundary conditions,

dynamic constraints,

collision avoidance constraints,

where P (.) is the trajectory and J(.) is the cost function defined based on mission goals and
objectives. The set of constraints define the feasible region for the optimization problem. The
boundary conditions contain the initial and final values of the vehicle’s state. The constraints
imposed by the vehicle dynamics must also be considered to ensure that the generated trajec-
tory is dynamically feasible, and finally the collision avoidance constraint need to be included
to secure safe distance between the vehicle and obstacles in the environment. The above op-
timization problem usually involves other constraints to account for mission-specific objectives
and requirements.

The above problem generally casts as a non-convex optimization problem, and thus, finding
the optimal trajectory, P ∗(.), can be computationally challenging. On the other hand, with rapid
advances in related technologies, autonomous vehicles continue to take part in more complex
missions, and even engage in teams of collaborating vehicles to take on increasingly demand-
ing tasks. This requires the above optimization problem to incorporate extra constraints to
guarantee that inter-vehicle collisions are avoided. The increased number of constraints and op-
timization variables in multi-vehicle missions would further aggravate the computational issues
of finding optimal trajectories. In the following, we describe the trajectory generation problem
in two particular applications–aerial cinematography and AUV range-based positioning–where
dealing with conflicting objectives and challenging constraints is inevitable for generating trajec-
tories that fulfill mission goals and requirements. Existing motion planning algorithms and tools
lack the versatility and efficacy required to accommodate the specific needs of such missions.
This calls for the development of optimal trajectory generation frameworks with significantly
enhanced computational efficiency that allow for seamless integration of complex constraints
and objectives into the problem.

1.1.1 Autonomous Drone Cinematography

For years now, drones have been used to capture aerial shots in professional photography, in real
estate, and even in high-end cinematography and filmmaking. Besides significant cost reductions,
drones have the technical capability to produce high-quality dynamic aerial shots a lot simpler
and faster than the traditional crane/jib or helicopter. With lower time spent for preparation,
drones can fly up to 400ft high in the air for a high-altitude footage or move just a few inches

2

1.1. Motivation

from the ground for a low-angle tracking shot; tasks that have never been possible before with
a crane. Yet, the majority of drone videography have to date been carried out by two trained
operators; a pilot to fly the drone and a cameraman to handle camera angles and movements.
Therefore, conceiving and exploring new ideas for enabling drones to accomplish these tasks
autonomously or with minimal human intervention will be at the core of future developments.

One such idea has been investigated in the MULTIDRONE project [20], where an intelligent
platform involving multiple drones is developed for outdoor sports event video production. In
such applications, whether it be filming paddling competitions on flatwater rivers and lakes, or
making footage of bikers and runners in mountain trails and city streets, the team of drones
should work harmoniously to take videos that meet the director’s needs and expectations in terms
of visual quality. The system architecture on board each of the drones used in MULTIDRONE
trials and experimental media productions is shown in Fig. 1.1. Given the target’s position and
a specific shot type, the planner must generate trajectories that not only comply with video
aesthetic quality objectives but also ensure flight safety and feasibility. Thus, the trajectory
planner plays a critical role in generating visually pleasing videos.

Figure 1.1: System architecture on board a drone. The Shot Executer module
provides desired shot types, whereas the Cinematography Planner generates
optimal trajectories and gimbal commands [Sab+19].

In a representative trial, admissible trajectories ought to satisfy several constraints imposed
by drone dynamics, gimbal movement limitations, surrounding environment, and video framing
and composition;

� The constraints enforced by dynamic capabilities of drones must be taken into account to
ensure that the generated trajectories are dynamically feasible and respect the bounds on
the flight attitude, speed and acceleration.

� The position and orientation of the drone can obviously alter the camera position and
angle, and therefore, in order to secure smooth camera movements, the gimbal mechanical
limits to rotate around each axis should also be explicitly considered while generating the
drones’ trajectories.

� Constraints on the camera’s field of view (FOV) need to be considered to guarantee that
unwanted objects, including landing gears and other drones, stay out of the FOV for an
unobstructed shot of the target of interest.

� Additional measures must be considered for the generated trajectories to be safe. This
includes keeping a minimum distance to obstacles or in between the drones, and steering
away from no-fly zones on the map to avoid potential collisions and hazards.

3

Chapter 1. Introduction

Figure 1.2: Schematic of mutual visibility constraint. Other flying drones
must be stayed out of the camera’s field of view.

In order to generate videos that both experts and novices can enjoy, trajectories must also
optimize an objective function derived from aesthetic perception of aerial videos. The objective
function may include different terms to maximize the smoothness of camera movement over the
entire trajectory and/or minimize the positional and angular jerk. Trajectories that reach such
objectives and satisfy the above mentioned requirements can only be obtained by solving an
optimization problem with properly defined cost function and constraints.

1.1.2 AUV range-based positioning

Thanks to technological advances needed for reliable deployment, control and recovery, AUVs
are now capable of exploring and sampling previously impenetrable environments such as deep
ocean and under glaciers. With the development of deep-diving long-endurance AUVs, the near
future will witness a significant increase in the number of AUVs’ long-term, long-range, and deep-
water missions. One of the main challenges for AUVs to be deployed in long-range surveys is
the limited amount of energy available on-board the vehicle. This poses severe restrictions upon
AUV’s maneuverability. In order to increase the mission duration and fulfill the mission goals as
great as possible, e.g. exploring larger areas of the seafloor, with a given energy (power) storage,
it is necessary to generate energy efficient trajectories by minimizing a cost function involving
the overall power consumption. The actual power consumption is dependent on different factors
and should not be oversimplified by merely computing the mechanical energy usage. In addition
to the power consumed for propulsion, other contributing factors such as computers and sensors
carried onboard the vehicle must be considered as well. Furthermore, the power required for
emergency recovery between recharge periods should be taken into consideration to ensure that,
in case of unforeseen situations like adverse weather conditions, the AUV can be safely recovered.

The GPS failure to provide location under water is another major challenge that should be
dealt with in AUV missions. In deep-sea and under-ice explorations, where occasional surfacing
for position update is not possible, positioning need to be performed without GPS support. The
AUV positioning system that relies on range-based and geophysical (terrain, geomagnetic, and
gravimetric) methods serves as an alternative. The range-based positioning system fuse the range
measurements, between the vehicle and one or more external references in the form of beacons
at known positions, to estimate the AUV position. Therefore, the performance of this system is
highly dependent on the AUV’s trajectory and the information provided by the measurements.
In order to obtain the set of measurements that yield the most relevant information for estimating
the position, trajectories must be generated such that a proper quantifier for the information
content of measurements is maximized.

4

1.2. Related work

Figure 1.3: The trajectory in blue maximizes the information content of
the set of range measurements to the beacon (fixed at the origin) while the
trajectory in green minimizes the mechanical energy usage.

Fig. 1.3 compares the trajectory that maximizes the determinant of the Fisher information
matrix (FIM), measuring the information content provided by range measurements, with one
that minimizes the overall mechanical energy usage. It is clear that in order to find a trajectory
that is energy efficient and also sufficiently exciting for estimation, a compromise must be struck
between the two competing objectives. Other limiting factors for conducting long-range deep-
water missions, such as under-water communication and harsh weather condition, induce more
conflicting objectives. Therefore, a multi-objective optimization problem must be solved to
generate trajectories that offer the best trade-off among all competing mission objectives.

1.2 Related work

In the following, we give a brief review of the most notable motion planning algorithms used in
autonomous vehicle applications [GKM10]. A more in-depth look into related work is given in
Chapter 2 and Chapter 3.

1.2.1 Artificial Potential Field Methods

The basic premise behind potential field methods is simple; they assign real-valued and differ-
entiable potential functions to the configuration space and consider the vehicle as a (positively-
charged) particle reacting to forces due to the potential field [Kha86]. The final point has the
lowest potential and therefore attracts the vehicle while obstacles emit positive charges and repel
the vehicle. Potential field methods are known for their low computational complexity but a
serious issue in these methods is that they are incomplete; the particle can get stuck in a local
minimum in the potential field that does not correspond to the final point in the configuration
space, and thus they fail to find a path. The extended artificial potential field method, proposed
in [MM08], uses dynamic internal agent states to avoid the local minimum problem. Another
way to address the completeness problem is to develop navigation function [RK88] or a prob-
abilistic navigation function [HSS19] that does not have minimum points except at the target
point. Another major drawback of potential field methods is that non-holonomic constraints and
vehicle kinematics are difficult to accommodate. The authors in [KNN12] apply the potential
function method to multiple non-holonomic vehicles that are described with a simple tricycle
model. In [SKI05] potential function method is used to the high-speed navigation of UGVs
such that dynamic constraints, including vehicle side slip and rollover, are satisfied. In general,
potential functions provide an efficient path planning method suitable for online applications,
but complicated and underactuated dynamics remain difficult to manage.

5

Chapter 1. Introduction

1.2.2 Grid-based Search

Grid-based approaches cover the configuration space with a grid. Each point on the grid denotes
a configuration (or state) of the vehicle ([Don+93], [DX95], [FLS05]). The vehicle at a grid point
can move to adjacent grid points as long as the line between them is completely contained within
the free space. Grid-based methods rely on a collision detection module to verify that edges are
in the free space. These approaches discretize the set of actions, and assign a (non-negative)
number or cost to each edge to quantitatively express characteristics of the corresponding path,
e.g. the length of a path. These numbers are later used by search algorithms, like Dijikstra
or A* [DP85], to find the shortest path from the start to the goal. The performance of the
grid-based search is highly dependent on the grid resolution. The search is faster over coarser
grids, but it might fail to find paths in Cfree for certain pairs of start and goal configurations.
Also, the optimality of the solution is only valid if the resolution of the grid is sufficiently high.
However, finer search can be very slow especially for high-dimension configuration spaces, since
the number of points on a grid grows exponentially with the dimension. Therefore, grid-based
search approaches for high-dimensional planning problems result in an adverse computational
burden. This motivates incorporating random sampling methods and probabilistic methods as
will be discussed shortly. Yet, the major drawback to grid-based search methods remains to
be their inability to take into account the vehicle dynamic model, including nonholonomic and
actuator constraints.

1.2.3 Sampling-based Methods

The main idea behind sampling-based motion planning is to avoid the obstacle space, Cobs, using
some collision detection algorithm, while conducting a search throughout the configuration space
(or the state space) with a (random) sampling scheme. The most commonly used methods in this
category are the Probabilistic Roadmap Method (PRM) ([Kav+96]) and the Rapidly-exploring
Random Tree (RRT) ([KL00]). Single-query methods such as RRT are generally faster than
multiple-query methods like PRM. However, single-query methods must repeat the search for
each pair of initial and final configurations, while multiple-query methods are able to use the
generated roadmap (graph) multiple times as long as the environment does not change.

All sampling-based methods perform a few common steps, such as generating new nodes and
adding collision-free edges, to grow a tree or roadmap rooted at the initial configuration. The
term node used in technical literature denotes the configuration of the vehicle in the configuration
space. New nodes are generated in a random, quasirandom, or deterministic manner. The
characteristics of the generated nodes are dependent on the sampling method. A new node is
usually chained to the nearest node to form an edge. Newly added nodes and edges are usually
tested immediately for compatibility with constraints and invalid nodes are discarded. This is
enabled by a collision detection module, considered as a black box by the algorithm, that checks
for inclusion in the free space, Cfree ([LaV06]). In order to speed up the computation time, the
so-called lazy methods avoid collision checks until a complete path, from the initial configuration
to the final configuration, is formed ([BK00], [Hau15]).

Compared to grid-based methods, sampling-based methods can efficiently search complex
high-dimensional configuration spaces by randomly building a space-filling tree or a graph, avoid-
ing the complexities of building Cobs representations. One major problem with sampling-based
methods is that the resulting path is usually not feasible due to lack of smoothness. This
requires these methods to be paired with post-processing techniques for generating smooth fea-
sible paths as proposed in [FDF05] and [KP06]. Also, RRT and PRM in their original versions,
cannot provide an optimal trajectory across the entire configuration space, and thus, they are
best suited for finding feasible solutions. Optimal extensions to standard RRT and PRM algo-
rtithms, PRM* and RRT* ([KF11]), have difficulty coping with complicated or underactuated
dynamics. Algorithms proposed in ([Per+12]) and ([GT10]) for growing a standard RRT or

6

1.2. Related work

RRT* in domains with constrained and underactuated dynamics use linear quadratic regulation
(LQR)-based heuristics via linearizing the system dynamics about newly sampled points.

1.2.4 Numerical Optimal Control

From a control perspective, the optimal motion planning problem is an instance of an optimal
control problem, and thus, optimal control techniques can be used to find the optimal trajectory.
In general, these methods solve for the (control) trajectory that minimizes a cost function and
satisfies constraints including those imposed by vehicle dynamics. These problems are often too
complex to be solved analytically and therefore one must resort to numerical approaches. High
sensitivity to initial guess (especially in non-convex problems), long computational times, and
poor convergence to the optimal solution were three main concerns with earlier use of numerical
optimal control methods for trajectory generation [Bet98]. Therefore, optimal control meth-
ods were frequently used in an off-line manner or in conjunction with other motion planning
methods, such as RRT, for a good initial guess. All the three mentioned issues have benefited
from the advances in numerical optimization algorithms and computational power. With an
efficient and robust solver, an optimal control problem mainly becomes one of a problem formu-
lation. Recent work has demonstrated the applicability of numerical optimal control methods
to trajectory generation in complex applications including real-time planning for automated
drone cinematography [Näg+17], for autonomous flight through narrow windows [GM16], and
autonomous racing [Váz+20].

Receding horizon control (RHC) or model predictive control (MPC) fall into the same cat-
egory in which a finite-horizon problem is solved numerically over an ever-receding horizon. In
order to converge to the global optimal solution, using an appropriate cost-to-go function that
captures the discarded portion of the trajectory is essential. The author in [Jad01] uses reced-
ing horizon control to solve trajectory planning problems for general nonlinear systems in an
obstacle-free environments, and provides necessary conditions for the stability of the RH scheme.
The results in[Kuw07], [Liu+17a], and [GGJ12] illustrate the efficacy of MPC for real-time tra-
jectory generation applications. Solving the optimization problem repeatedly for a reduced time
horizon can significantly reduce the computational effort, while allowing for model uncertainties
to be directly taken into account. However, except for trivial cases, optimality and completeness
are usually difficult to prove, and proper design of terminal cost function is necessary to ensure
that the on-line planner is complete.

In general, optimal control methods are complete and their computational complexity is
not aggravated by high-dimensional state spaces the same way as grid-based search methods
are, since more generic numerical algorithms discretize the problem with respect to time. Yet,
the major benefit of optimal control methods, over all the other motion planning algorithms
mentioned above, is their ability to explicitly account for constraints of different type. In Chapter
2 we compare pros and cons of different numerical optimal control approaches, and review state-
of-the-art algorithms and tools for solving optimal control problems.

1.2.5 Polynomial-based Methods

Polynomial-based motion planning methods are exclusively used for a class of dynamic systems
called differentially flat systems. The special structure of systems with flatness property allows
eliminating the state equations of the system, i.e., differential equations, by transforming the
original motion planning problem into a prroblem in the space of a set of independent variables
[VM98]. Polynomial-based methods parameterize each of these variables, known as differentially
flat outputs, with a polynomial function [MMR02]. This reduces the problem of finding functions
in an infinite dimensional space into an approximate one of finding a finite set of parameters, i.e.
polynomial coefficients. Some earlier work has hypothesized that the motion planning problem
for differentially flat systems can be solved in real-time [MRS95], [AF98], yet these studies

7

Chapter 1. Introduction

were all limited to planning in the absence of actuator and path constraints. In the presence of
inequality constraints, polynomial parameterization of flat outputs converts the motion planning
problem into a semi-infinite optimization problem involving a finite number of variables and an
infinite number of constraints.

Different methods have been proposed to convert the resulting semi-infinite optimization
problem into one that is computationally tractable. [VM98] is the first paper that addresses
inequality constraints in the problem, and proposes different techniques for constructing a finite
set of constraints that guarantees satisfaction of the original inequality constraints. More efficient
methods for handling inequality constraints have been proposed using special types of polynomial
basis functions. Parameterizing trajectories as B-spline ([MVP16], [VP17c]) and Bézier curves
([CCE08], [Cho+15], [Cic+17]), in particular, have gained popularity in motion planning as they
can add an intuitive and geometric interpretation to the design while providing computational
benefits to the problem. Overall, polynomial-based methods provide a reliable and efficient
motion planning scheme for differentially flat systems, that is capable of generating trajectories
consistent with vehicle dynamics while satisfying timing constraints of real-time application.

1.3 Contribution

1.3.1 Bézier parameterization and efficient evaluation of Inequality constraints

In this thesis, we leverage the unique properties of Bernstein polynomials and propose an efficient
trajectory generation method for differentially flat systems. As mentioned before, polynomial-
based methods reduce the dimensionality of the underlying optimization problem by expressing
the flat outputs as polynomial functions that are fully described with a limited number of
coefficients. In the presence of inequality constraints polynomial-based methods result in semi-
infinite optimization problems. Such problems involve constraints that bound functions of a
finite number of variables, i.e., the coefficients, over an entire time interval. Different approaches
have been proposed to tackle the resulting semi-infinite optimization problem by replacing the
constraints with an (approximate) finite set of constraints.

The work reported in [VM98] deals with linear inequality constraints, and proposes three
methods for replacing them with a finite set of constraints on the polynomial coefficients. The
resulting constraints can guarantee the satisfaction of the original inequality constraints at any
instant of time in a given interval. The paper also suggests polytopic approximation of nonlinear
inequalities so that they can be replaced by linear inequalities. The convex polytopic approxi-
mation can be done once (off-line) assuming that the constraints do not change in the course of
a mission, however, inner approximation of nonlinear inequalities with linear inequalities might
lead to overly conservative set of constraints.

Time gridding has been widely used in polynomial-based motion planning for converting the
semi-infinite problem to a standard optimization problem [MK11], [RBR16], [CLS16]. In this
method, inequality constraints are only evaluated on a finite set of time samples. The choice of
these sample points is an open question. One common way is to choose evenly spaced points
within the time interval. However, the satisfaction of constraints at some sampled points does
not generally guarantee the satisfaction of constraints on the entire time interval. Using finer
discretization can remedy this issue, but, a large number of grid points increases the number of
constraints and the total computation time needed to solve the problem.

The convex hull property of B-spline and Bézier curves has been extensively used in the
literature to circumvent the limitations of time gridding. Since a B-spline or Bézier curve is
entirely contained within the convex hull of its control points, the collision-free requirements
can be satisfied at all time instances (and not just at sampled points) by imposing separation
between the convex hulls. To avoid collisions with static obstacles, [Gao+18], [Zho+19], [TLH19],
[Pre+17], and [Tan+19] construct a convex decomposition of the free space and force the convex
hull representing a trajectory to be inside it. [TH21] addresses dynamic obstacles and moving

8

1.3. Contribution

agents by employing planes that separate the simplices enclosing the trajectories. Also, to reduce
the conservatism, it uses MINVO basis [TH20] to obtain minimum volume simplices enclosing
a polynomial curve.

The minimum distance between two Bézier curves can be computed to any desired accuracy
using the efficient and robust algorithms in [Che+09], and [Cha+11]. In order to deal with
inter-vehicle collision avoidance constraints, the work reported in [Cic+16] takes advantage of
the algorithm in [Cha+11] and finds the control points of trajectories such that their minimum
distance is greater than the safe distance that must be maintained between two vehicles. This
method can eliminate the inherent conservatism of the above mentioned approaches that separate
convex hulls. However, the major drawback is the substantial increase in computational cost
due to the resulting non-smooth functions. [MVP17] exploits the basic properties of B-spline
basis functions to convert a general inequality constraint on a B-spline curve to a finite set of
constraints on its coefficients. The so-called B-spline relaxation can bring about a significant
reduction of the computational effort in solving the optimization problem provided that all
constraints are expressed in the form of B-splines. However, the resulting set of constraints
might be conservative due to the gap between a curve and its B-spline coefficients. To reduce
the conservatism, [MVP17] suggests representing the curves in a higher dimensional basis which
also invoke an increase in the number of constraints. Therefore it’s necessary to make a trade-off
between the conservatism and the computational efficiency.

In Chapter 3, we use Bézier curves to parameterize trajectories, and we show that temporal
and spatial collision avoidance constraints can be expressed as Bernstein-Bézier curves and
surfaces accordingly. We then propose an efficient method for evaluating inequality constraints
in Bernstein form. We employ a similar approach to [MVP17] and replace each inequality
constraint on a Bernstein polynomial by a finite set of constraints on its control points. We
also present an efficient method for finding closer control points to the polynomial curve which
can be used to reduce the conservatism in the resulting set of constraints. We show that using
Bernstein basis, instead of B-spline basis, allows refining the control polygon locally between
any two points along the curve. We also present a criterion for deciding whether the refined
control polygon is close enough to the actual curve.

1.3.2 Trajectory generation for drones in confined spaces using an ellipsoid
model of the body

In this thesis we develop a trajectory generation method that would enable drones to fly through
unstructured environments with narrow gaps and small spaces between obstacles. Finding safe
and feasible trajectories for steering multiple drones towards some desired positions in tight
spaces or guiding them through gaps smaller in width than their diameters is impossible without
taking the drones’ orientations into account. Existing motion planning approaches usually ignore
the drone’s orientation and real shape, and model the drone body as a sphere (or a circle in
two-dimensional space), which allows constructing the collision-free space by merely inflating
the obstacles with the radius of the sphere (see Fig. 1.4). As a result, the drone can be treated
as a single point in the space. This approach simplifies the collision checking against obstacle,
however, it is very conservative and yields infeasible problems when dealing with confined spaces
(see Fig. 1.5).

9

Chapter 1. Introduction

Figure 1.4: Existing motion planning approaches usually model the vehicle
as a sphere or prism (left). Therefore, the configuration space (C-space) can
be obtained merely by inflating the obstacles with the radius of the sphere.
As a result, the vehicle can be treated as a single point in C-space and the
collision checking is simplified (right).

One of the most common ways put forward to fly a drone through an inclined narrow gap
while avoiding collisions with the gap frame is to directly constrain its attitude angles to specific
values at the gap’s position [HK14], [Loi+16]. In other words, the drone’s orientation is aligned
with that of the gap while traversing it. The proper attitude angles are determined using prior
knowledge of the gap’s pose and position, or estimates of them from detection algorithms with
onboard sensing. A similar approach is used in [Fal+17] to fly a quadrotor through inclined
gaps of arbitrary orientations with two-piece trajectories. The first segment of a trajectory
enables state estimation via gap detection, while the second steers the quadrotor on the plane
that is orthogonal to the gap and passes through its center. Forcing the quadrotor to fly on this
plane minimizes the risk of collision with the gap frame, however this might be too conservative
and lead to suboptimal trajectories with respect to a given objective function. Moreover, this
approach is completely impractical for applications involving multiple drones.

Another way of considering the drone orientation while inspecting for collisions against ob-
stacles is to approximate the drone body as an ellipsoid whose principal axes are aligned with
the drone’s body frame axes. The ellipsoid model can eliminate the inherent conservatism of
the sphere model and allow for consideration of trajectories whose feasibility rely on the consid-
eration of the body’s attitude. Yet, as opposed to the symmetrical sphere model, there are no
simple geometric constraints for identifying the collision-free space.

The ellipsoid model has been employed in a number of papers, however, in most of them the
collision avoidance constraint is roughly evaluated by checking collisions between the ellipsoid
and a sampled set of points from the obstacle. An example is the work reported in [Liu+18] that
employs an ellipsoid model of the drone body to compute the flight attitude along sequences
of motion primitives ([Liu+17b]). A primitive is then considered to be collision-free if the
intersection of a subset of the point cloud, representing the obstacles, with the ellipsoid at some
sampled states in time along the primitive is empty.

In this thesis, we use the separating hyperplane theorem of convex sets to derive constraints
for collision avoidance between an ellipsoid-shaped body and an ellipsoid, sphere or, polygon
shaped type of obstacle. More specifically, a moving hyperplane is designed such that the
ellipsoid, i.e. the drone, is on one side of the separating plane and the obstacle on the other
side. The resulting set of constraints can be seamlessly integrated into the Bézier curve-based
method proposed in Chapter 3, to ensure that feasible collision-free trajectories for flying drones
in confined spaces can be obtained under timing constraints of real-time applications. The
proposed approach in this thesis will guarantee collision avoidance between two ellipsoids at
every time instant, as against the approach in [Liu+18] whose performance is heavily dependent
on the sampling points distribution.

10

1.3. Contribution

Figure 1.5: The conventional method of modeling the drone body as a sphere
is not suitable for motion planning in tight spaces, as it fails to validate tra-
jectories that might be feasible upon considering the drone’s orientation. The
less conservative ellipsoid model allows consideration for the 3D orientation.

1.3.3 Distributed trajectory generation framework

In this thesis, we present a distributed algorithm to generate collision-free trajectories for a
group of quadrotors flying through a common workspace. Generating collision-free trajectories
for multiple vehicles would require incorporating inter-vehicle collision avoidance constraints in
the optimization problem. Thus, for a large group of vehicles, the optimization problem would
involve a large number of constraints and decision variables, and the computational cost of
solving it centrally can be prohibitively high. To reduce the computational complexity, a multi-
tude of distributed schemes have been proposed for decomposing the optimization problem into
smaller sub-problems that can be solved locally by each vehicle. The major challenge is to ensure
that local decisions do also satisfy the coupling collision avoidance constraints. This is mainly
addressed by exchanging information among the vehicles on their current states, future input
sequences, etc. Depending on the communication strategy, the sub-problems might be solved
sequentially or concurrently, with possibly several iterations of optimization and communication
to achieve the required performance.

In sequential methods the vehicles solve their sub-problems successively [Kuw+07], [CHL10],
[Ted+10]. In order to avoid inter-vehicle collisions, the generated trajectories of the preceding
vehicles is used as constraints in the succeeding vehicles’ sub-problems. These methods implicitly
assign a priority level to the vehicles’ objectives based on the sequence order. This issue has
been addressed by cooperative distributed trajectory generation frameworks [OG15], [KH11],
where vehicles solve their sub-problems in sequence while making modifications to neighboring
vehicles’ future plans. These methods require substantial communication between vehicles since
each vehicle needs a full representation of its neighbors’ decisions. Also, solving the vehicles’
optimization sub-problems sequentially does not allow for high rates of re-planning trajectories.

In synchronous methods, the vehicles solve their optimization sub-problems simultaneously.
The inclusion of inter-vehicle collision avoidance in these methods is not straightforward as
vehicles are unaware of the future plans of their neighboring vehicles while solving their indi-
vidual sub-problems. Different approaches have been proposed to ensure that locally generated
trajectories satisfy the coupling inter-vehicle collision avoidance constraints [VLM08], [WD14],
[Dai+17], [Zho+17], [VP17a]. These approaches require different types of information, such
as vehicles’ positions, velocities, or future input sequences, to be exchanged between vehicles.
Therefore, while synchronous methods allow solving the optimization sub-problems in parallel,
they are not all suitable for applications with limited communication.

In chapter 4, we develop a synchronous distributed trajectory generation framework with
low computation and communication demands. We use the Voronoi diagram of the group of
vehicles to decompose the space into non-overlapping regions. At each re-planning step, the

11

Chapter 1. Introduction

vehicles update their Voronoi cells according to the position information received from their
neighbors. Each vehicle then generates its trajectory such that it is entirely within its Voronoi
cell. Since the goal position may lie outside the vehicle’s Voronoi cell, the vehicle finds the
closest point of its Voronoi cell to the goal position which is used as the terminal condition
in the optimization sub-problem. The vehicles re-plan their trajectories, in a receding horizon
manner, until they reach the goal positions. In order to avoid long computational delays between
updating the Voronoi cell and re-planning the trajectory, we also present an efficient method for
finding the closest point of the Voronoi cell to the vehicle’s goal position.

Figure 1.6: The 2D Voronoi diagram for 5 drones. The final position for the
(red shaded) drone is shown with , and the closet point in its Voronoi cell
to the goal position is shown with . The vehicle’s trajectory is generated
towards such that it is entirely within the vehicle’s Voronoi cell and avoids
the obstacle (black circle) inside the cell.

12

Chapter 2

Trajectory Generation using
Computationally Efficient Optimal
Control Methods

13

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

2.1 Introduction

With the advances in computing power and optimization algorithms, optimal control methods
have become more popular in motion planning for autonomous vehicles. Using optimal control
methods allows for objective functions and constraints of different types to be directly encoded
in the problem. This together with their inherent multi-variable nature has made them a promis-
ing approach for solving multiple-vehicle trajectory generation problems. [LRG07], [Häu+12],
[LDM15] are just a few examples of using optimal control in real-time (or near real-time) motion
planning for single-vehicle or multi-vehicle applications.

Optimal control theory addresses the problem of finding the control input of a dynam-
ical system that optimizes a given performance measure. The different approaches to solving
continuous-time optimal control problems (OCPs) have been categorized into indirect and direct
methods in [DG11]. The indirect optimal control methods date back to the calculus of variations
and the classical work by Euler and Lagrange. However, substantial progress was only made
in 1950s when Pontryagin maximum principle was formulated for general OCPs with inequal-
ity path constraints. The maximum principle describes the necessary optimality conditions for
OCPs in continuous time. Indirect methods employ these conditions to derive a boundary value
problem in ordinary differential equations, which is then discretized, by collocation or shooting
techniques, for computing a numerical solution. Therefore, these methods are characterized
as ”first optimize-then discretize” [DG11]. Indirect methods have been very popular in space
applications since the Sputnik and Apollo space missions.

Direct methods, described as ”first discretize-then optimize”, convert the original infinite-
dimensional OCP to a finite-dimensional optimization problem. This is achieved by transforming
the continuous-time dynamic system into a discrete-time system usually via numerical methods.
The resulting optimization problem is then solved with standard optimization methods. All
direct methods are based on one form of finite-dimensional parameterization of the control tra-
jectory, however, they are different in the way they treat the state trajectory. Nowadays, direct
methods are the most frequently used techniques for solving OCPs in real world applications
mainly due to their capability to easily handle different types of constraints.

In this Chapter, after a brief description of the different numerical approaches for solving
continuous-time OCPs, we study three of the direct methods- single shooting, multiple shooting,
and collocation. We also look into the structure of the optimization problems resulting from
each of these methods, which is exploited in order to obtain an efficient solver for the problem.
Next, we consider three different case studies- go-to-formation maneuver, range-based AUV
positioning, and autonomous drone cinematography- and formulate their multi-vehicle trajectory
generation problems as OCPs. We then employ direct multiple shooting along with a structure-
exploiting solver to generate optimal trajectories in different scenarios. The work presented in
this Chapter does not develop a new optimal control technique; rather, it makes use of advances
in numerical optimization algorithms and tools to efficiently solve constrained optimal trajectory
generation problems in complex missions involving multiple vehicles.

2.2 Problem Description

The optimal trajectory generation problem that we address here consists of generating collision-
free trajectories from the initial positions of the vehicles to some goal positions while optimizing a
performance index. The generated trajectories should also satisfy different constraints including
those imposed by the vehicles’ dynamics and environmental conditions. This problem naturally
translates into an optimal control problem. For a single vehicle the OCP can be formulated as

14

2.3. Numerical Methods for Optimal Control Problems

min
x(.),u(.),tf

∫ tf

0
L(x(t),u(t))dt (2.1)

s.t. ẋ(t) = f(x(t),u(t)) (2.1a)

x(0) = x0 (2.1b)

x(tf) = xf (2.1c)

ccol(x(t),xobst,i(t)) ≤ 0 i ∈ {1, . . . , Nobst} (2.1d)

x ≤ x(t) ≤ x̄ (2.1e)

u ≤ u(t) ≤ ū (2.1f)

In the above problem, (2.1) is the cost function to be minimized. Some common choices are
the vehicle’s travel time and the overall energy consumption. The ODE (2.1a) describes the
vehicle’s model where x and u are the state and input vectors of the model, respectively. The
initial and the desired final positions of the vehicle are forced with the boundary constraints
(2.1b) and (2.1c). The inequality (2.1d) is the collision avoidance constraint and (2.1e) and
(2.1f) are the upper/lower bounds on the state and input. This problem may include other
equality and inequality constraints. All constraints must hold for all t ∈ [0, tf]. (See Chapter 4
for a multiple vehicle problem formulation.)

In the following, we adopt the notation and terminology of [DG11] to explain numerical
approaches to solving the above continuous-time optimal control problems.

2.3 Numerical Methods for Optimal Control Problems

Different methods exist for solving a general OCP. In [DG11] these methods are classified into
three main classes. The first class of methods utilizes the Bellman’s principle of optimality which
is the basis of dynamic programming in discrete time. In continuous time, however, it leads to a
nonlinear partial differential equation (PDE) in the state space, the so-called Hamilton-Jacobi-
Bellman (HJB) equation [Kir04]. For a simplified OCP with no inequality constraints, given
by

min
x(.),u(.)

∫ tf

0
L(x(t),u(t))dt+ E(x(tf)) (2.2)

s.t. x(0)− x0 = 0 (2.2a)

ẋ(t)− f(x(t),u(t)) = 0, t ∈ [0, tf] (2.2b)

the HJB equation is obtained as

−∂V
∂t

(x, t) = min
u
L(x, u) +∇xV (x, t)T f(x, u). (2.3)

The HJB equation (2.3) describes the time evolution of the value function V (x, t), expressed
as

V (x, t) = min
u[t,tf]

∫ tf

t
L(x(s),u(s))ds+ E(x(tf)). (2.4)

The PDE (2.3) contains partial derivatives of the value function with respect to t and x, and
should be solved backward for t ∈ [0, tf] with the boundary condition

V (x(tf), tf) = E(x(tf)). (2.5)

There are some special cases, such as linear quadratic problems, in which HJB equation
takes a simpler form [Kir04], however, in general solving the HJB equation analytically can be a

15

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

challenging task. Yet, it provides necessary conditions for optimality, and thus, gives insights into
the problem which can be exploited to find an approximate solution using numerical techniques.
Like dynamic programming, solving HJB equation (2.3) suffers from the curse-of-dimensionality,
and numerical solution of the PDE in large state dimensions gets computationally expensive.
In addition, the HJB equation admits a solution only for a sufficiently smooth value function,
while in many situations the value function is not differentiable with respect to state variables
[DG11].

The second class encompasses the calculus of variations and the Euler-Lagrange differential
equations, and also the so-called Pontryagin Maximum Principle which describes the necessary
optimality conditions for a continuous-time optimal control problem. Using these conditions and
solving the resulting boundary-value problem (BVP) numerically is called the indirect approach
to optimal control. The necessary optimality conditions for the OCP (2.2) can be derived as
[Kir04]

x∗(0) = x̄0 (initial value) (2.6)

ẋ∗(t) = f(x∗(t),u∗(t)) t ∈ [0, tf] (ODE model) (2.6a)

λ̇∗(t) = −∇xH(x∗(t),λ∗(t),u∗(t)) t ∈ [0, tf] (adjoint equations) (2.6b)

u∗(t) = arg min
u
h(x∗(t),λ∗(t),u(t)) t ∈ [0, tf] (minimum principle) (2.6c)

λ∗(tf) = ∇E(x∗(tf)) (adjoint final value) (2.6d)

where H is the Hamiltonian function defined as

H(x,λ,u) = L(x,u) + λT f(x,u). (2.7)

The above necessary optimality conditions form a two points boundary value problem. These
conditions can either be used to check if a given trajectory can be a possible solution or be solved
numerically to obtain candidate solutions to an optimal control problem. It can be observed
from (2.6) that the number and type of the conditions in (2.6) match the number and type of
the unknowns: u∗(t) can be determined by the minimum principle, while x∗(t) and λ∗(t) are
obtained from the ODE and the adjoint equations [DG11].

The indirect approach is an exact and elegant way to characterize and compute the optimal
solution, yet it suffers a few major drawbacks; (a) the controls must be eliminated from the
problem by algebraic manipulations, which is not always straightforward or might even be
impossible, (b) optimal controls might be a discontinuous function of x and λ, such that the
BVP is possibly involving a non-smooth differential equation, and (c) the differential equation
might become very nonlinear and unstable and not suitable for a forward simulation. All these
issues can be partially resolved [ZNS20], [BB20].

In the third class, the direct approaches to optimal control, the problem is first discretized by
parameterizing the infinite dimensional control trajectory and/or state trajectory, and then the
resulting finite dimensional NLP is solved using the available numerical optimization methods.
The main difference of the various direct methods is the way they parameterize the state trajec-
tory. In the following we briefly review different direct methods, namely direct single shooting,
direct multiple shooting and direct collocation methods.

2.3.1 Single Shooting Method

Direct single shooting method, first presented in [HR71] and [SS78], parameterizes the control
input and uses an embedded ODE solver to eliminate the continuous time dynamic model of
the system from the OCP. To tackle the general OCP with path constraints, expressed as

16

2.3. Numerical Methods for Optimal Control Problems

Figure 2.1: Numerical approaches to continuous time OCPs [DG11]

min
x(.),u(.)

∫ tf

0
L(x(t),u(t))dt+ E(x(tf)) (2.8)

s.t. x(0) = x0, (2.8a)

ẋ(t)− f(x(t),u(t)) = 0, t ∈ [0, tf], (2.8b)

h(x(t),u(t)) ≤ 0, t ∈ [0, tf], (2.8c)

r(x(tf)) ≤ 0, (2.8d)

the control function u(t) is parameterized as a polynomial, a piecewise polynomial or, more
commonly, a piecewise constant function, in which case u(t) is set as

u(t) = qk, t ∈ [tk, tk+1], k ∈ N+, (2.9)

over a fixed time grid 0 = t0 < t1 < · · · < tN = tf with N parameters qk ∈ Rnu , k = 0, . . . , N−1.
Using (2.9), the state trajectory x(t) over the interval [0, tf] is obtained by a forward integration
of the dynamic system (2.8b), starting from x0. Thus, with single shooting method, the OCP
is converted into the following NLP

min
q

∫ tf

0
L(x(t,q),u(t,q))dt+ E(x(tf ,q)), (2.10)

h(x(tk,q),u(tk,q)) ≤ 0, k = 0, . . . , N, (2.10a)

r(x(tf ,q)) ≤ 0, (2.10b)

where q = [q0, . . . ,qN−1]
T ∈ RNnu is the optimization variable. In (2.10), the path constraints

are discretized over the same time grid as used for the control input discretization. The above
problem can usually be solved by a dense NLP solver. Fig. 2.2 shows an example of the state
and input trajectories in single shooting method for a system with nx = 1 and nu = 1. Also,
the sparsity pattern of the Hessian of the Lagrange function and the structure of the Jacobian
of the inequality constraints are shown in Fig. 2.3.

A major problem with the single shooting method is that for a large simulation time the
function x(t,q) obtained from the simulation of the nonlinear dynamics can be highly nonlinear

17

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

with respect to the control input q [DG11]. Hence, the constraints and cost function resulting
from discretization via single shooting are highly nonlinear functions of q. Since most NLP
solvers employ successive linearizaion of the problem to find a candidate solution, having highly
nonlinear functions in the NLP may invalidate the linear approximations outside a very small
neighborhood around the linearization point. This issue is addressed in direct multiple shooting
method by using short integration intervals.

Before explaining the direct multiple shooting method, it should be noted that while tf in
(2.8) is fixed, free final time problems can be treated similarly by rescaling the time interval to
[0, 1] and introducing the new decision variable tf to the problem with the augmented system
given by

x̃ =

[
x
tf

]
, ˙̃x =

d

dτ
x̃ = f̃(x̃,u), (2.11)

where τ = t
tf
∈ [0, 1], and

f̃(x̃,u) =

[
tf .f(x,u)

0

]
. (2.12)

Figure 2.2: The state and input trajectories when solving an OCP with nx = 1 and nu = 1 via
single shooting discretization.

Figure 2.3: The sparsity pattern of the Hessian of the Lagrange function (left) and the sparsity
pattern of the Jacobian of the inequality constraints (right) in the NLP resulting from single
shooting discretization.

2.3.2 Direct Multiple Shooting Method

Direct multiple shooting method, developed originally by Bock and Plitt [Die+06], tackles the
problem arising from long integration of dynamics in single shooting by limiting the integration
over arbitrarily short time intervals. In order to convert the continuous OCP (2.8) into a NLP,
direct multiple shooting discretizes the control input u(t) as well as the state x(t). Direct

18

2.3. Numerical Methods for Optimal Control Problems

multiple shooting first performs a finite-dimensional discretization of the continuous control
input u(t), as in (2.9), and then solves the ODE (2.8.b), numerically, on each interval [tk, tk+1]
such that

ẋk(t, sk,qk) = f(xk(t, sk,qk),qk) t ∈ [tk, tk+1], (2.13)

xk(tk, sk,qk) = sk,

where sk is the state parameter at tk, and xk(t, sk,qk) is the state trajectory segment over the
time interval [tk, tk+1]. Fig. 2.4 illustrates the discretization of the state and input via multiple
shooting. The continuity of the state trajectory is ensured by the equality constraint

sk+1 = xk(tk+1, sk,qk), k = 0, . . . , N. (2.14)

Similarly to the single shooting method, the inequality path constraints are checked on the
time grid used for the discretization of the control trajectory, i.e.,

h(sk,qk) ≤ 0, k = 0, . . . , N. (2.15)

A finer sampling can also be used, provided that the embedded ODE solver returns some in-
termediate values within each time interval [tk, tk+1]. Using (2.14) and (2.15), the NLP resulting
from discretization of the OCP (2.8) with multiple shooting method can be written as

min
s,q

N−1∑
k=0

lk(sk,qk) + E(sN), (2.16)

x0 − s0 = 0, (2.16a)

xk(tk+1, sk,qk)− sk+1 = 0 k = 0, . . . , N − 1, (2.16b)

h(sk,qk) ≤ 0 k = 0, . . . , N, (2.16c)

r(sN) ≤ 0 (2.16d)

with each lk(sk,qk) being computed numerically on the time interval [tk, tk+1] as

lk(sk,qk) =

∫ tk+1

tk

Li(xk(t, sk,qk),qk)dt. (2.17)

The NLP (2.16) can be solved with any standard nonlinear programming algorithm. The key
to efficiently solving this problem is to use the structured sparsity patterns of its Jacobian and the
Hessian matrices. Figure 2.5 shows the sparsity pattern of Hessian and Jacobian matrices of the
NLP (2.16). If the optimization variables are ordered as z = (sT0 ,q

T
0 , s

T
1 ,q

T
1 , . . . , s

T
N−1,q

T
N−1, s

T
N)T

then he Jacobian of the equality constraints in NLP (2.16) is a block banded matrix obtained
as

Jeq,k =
[
∂xk(sk,qk)

∂sk

∂xk(sk,qk)
∂qk

−I
]
, k = 0, . . . , N − 1. (2.18)

Also, due to the separability of the Lagrange function, the Hessian of the NLP (2.16) is a
block diagonal matrix computed as

Hk =

∂2Lk(sk,qk)
∂s2k

∂2Lk(sk,qk)
∂sk∂qk

∂2Lk(sk,qk)
∂qk∂sk

∂2Lk(sk,qk)
∂q2

k

 k = 0, . . . , N − 1 (2.19)

where L(s,q) is the Lagrange function. For a brief explanation of how this special structure
can be exploited to reduce the computational complexity of solving the NLP (2.16) the reader
is referred to Appendix A.

19

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

Figure 2.4: Illustration of the direct multiple shooting method at an early iteration before
the constraints are satisfied [DG11]. The continuity condition xk(tk+1, sk,qk) − sk+1 = 0 is
enforced at s0, . . . , sN−1. The state trajectory becomes continuous once the solution of the NLP
is achieved.

Figure 2.5: The sparsity pattern of the Hessian of the Lagrange function (left) and the sparsity
pattern of the Jacobian of the equality constraints (right) in the NLP resulting from multiple
shooting disretization. The variables are ordered as z = (s0,q0, s1,q1, . . . , sN−1,qN−1, sN)T .

20

2.3. Numerical Methods for Optimal Control Problems

2.3.3 Direct Collocation Method

In the direct collocation method, the control and the state trajectories are both discretized on a
fixed time grid, and the state trajectory between two consecutive grid points is approximated by
a polynomial, e.g. a Lagrange polynomial. Using a set of collocation times tk,i ∈ [tk, tk+1], i =
0, . . . , d, tk,0 = tk, the polynomial for the time interval [tk, tk+1] is expressed as

pk(t,vk) =
d∑

i=0

vk,iℓk,i(t) (2.20)

where vk = [vk,0, . . . ,vk,d] ∈ Rnx×(d+1) is the matrix of coefficients and ℓk is the basis polyno-
mial. The basis polynomials are typically chosen such that

ℓk,i(tk,j) =
{ 1, if i = j,

0, if i ̸= j,
(2.21)

and thus, the polynomial passes through the interpolation points vk,i, i.e.,

pk(tk,i,vk) = vk,i, i = 0, . . . , d. (2.22)

Since the polynomial must coincide with the state at the beginning of the interval, vk,0 must
satisfy

vk,0 = pk(tk,0,vk) = pk(tk,vk) = sk. (2.23)

where sk is the discrete state at the grid point tk. Also, the polynomial must satisfy the dynamics
on the collocation points, i.e.

ṗk(tk,i,vk) = f(pk(tk,i,vk),qk) = f(vk,i,qk) (2.24)

In (2.24) the control input is assumed to be piece-wise constant, i.e., u(t) = qk for [tk, tk+1].
From (2.23) and (2.24), the integration of the system dynamics over the time interval [tk, tk+1]
is performed by solving the collocation equations, expressed as

ck(vk, sk,qk) =

vk,0 − sk

ṗk(tk,1,vk)− f(vk,1,qk)
...

ṗk(tk,d,vk)− f(vk,d,qk)

 = 0. (2.25)

Fig. 2.6 illustrates the interpolation polynomial and points over one time interval for d = 3.
The continuity on the interval boundary is enforced by

pk(tk+1,vk)− sk+1 = 0, (2.26)

The path constraints (2.8d) can be imposed on the grid points tk or on the fine grid provide
by the collocation times tk,i as

h(vk,i,qk) ≤ 0 k = 0, . . . , N i = 0, . . . , d (2.27)

The state variables sk can be eliminated form the decision variables using the linear equality
constraint in (2.23). Thus, the NLP obtained from discretizing (2.8) with direct collocation
method can be written as

21

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

min
v,q

N−1∑
k=0

lk(vk,qk) + E(vN,0), (2.28)

v0,0 − x0 = 0, (2.28a)

ṗ(tk,i,vk)− f(vk,i,qk) = 0, k = 0, . . . , N − 1, i = 1, . . . , d, (2.28b)

pk(tk+1,vk)− vk+1,0 = 0, k = 0, . . . , N − 1, (2.28c)

h(vk,0,qk) ≤ 0, k = 0, . . . , N, (2.28d)

r(vN,0) ≤ 0. (2.28e)

Direct collocation method provides a natural way for improving the numerical accuracy of
the integration by increasing d. However, in practice choosing d > 4 can be counterproductive
for solving complex OCPs, mainly because increasing d can worsen the conditioning of linear
algebra underlying the NLP (2.28) [DG11]. Also, direct collocation method allows refining the
parameterization of the continuous control input u(t). The collocation equations (2.25) is based
on the standard piece-wise constant input parameterization which enforces a unique discrete
input value qk over the entire interval [tk, tk+1]. However, more degrees of freedom in the
discrete input can be added by using a different input for each collocation time tk,i, . . . , tk,d, in
which case the collocation equations can be re-written as

ck(vk, sk,qk) =

vk,0 − sk

ṗk(tk,1,vk)− f(vk,1,qk,1)
...

ṗk(tk,d,vk)− f(vk,d,qk,d)

 = 0. (2.29)

Accordingly, the optimization variables of the NLP are modified as

z = (v0,0,v0,1,q0,1, . . .v0,d,q0,d,v1,0,v1,1,q1,1, . . . ,v1,d,q1,d, . . .) (2.30)

Using either (2.25) or (2.29), direct collocation method yields a large-scale but sparse NLP.
Fig. 2.7 shows the sparsity pattern in the equality constraints Jacobian matrix of the resulting
NLP for d = 3. One of the most important variants of orthogonal collocation methods is
the pseudo-spectral optimal control method [Gar+17]. Pseudo-spectral methods use only one
collocation interval but a set of high order basis polynomials for approximation over the entire
interval. The Legendre Pseudo-spectral method in [EKR95], as an example, uses Lagrange
polynomials and Gauss-Lobatto quadrature rule to discretize the problem, and incorporates the
path constraints in the NLP by enforcing them at the LGL nodes. It has been shown that the
solution obtained by pseudo-spectral methods, contrary to most other direct methods, satisfies
the necessary optimality conditions. However, the Jacobian and Hessian matrices in the resulting
NLP are dense and usually more expensive to factorize than those in direct collocation [DG11].

2.3.4 Available tools for solving OCPs and NLPs

As explained in the previous section, direct optimal control approaches parameterize the control
and/or state trajectories and approximate the original infinite-dimensional problem by a finite-
dimensional NLP. Using a reliable and efficient NLP solver is therefore necessary for a successful
implementation of these approaches. Here, we briefly review a number of tools available for
solving OCPs and NLPs.

DIDO, powered by the pseudo-spectral optimal control theory [RF03], was first became
known for its demonstration in the globally optimal maneuver of the International Space Sta-
tion in 2006 [Bed+07], and has been since used to solve optimal control problems in aerospace,

22

2.3. Numerical Methods for Optimal Control Problems

Figure 2.6: Illustration of the direct collocation method with d = 3 at the time interval [tk, tk+1]
[DG11].

Figure 2.7: The sparsity pattern of the sparsity pattern of the Jacobian of the equality constraints
in the NLP resulting from direct collocation with d = 3. The variables are ordered as z =
(vT

0,0,q
T
0 ,v

T
0,1,v

T
0,2,v

T
0,3,v

T
1,0,q

T
1 ,v

T
1,1, . . .)

T

23

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

robotics, biotech and more [Ros20]. Since its emergence, DIDO has evolved from its simple use
of NLP solvers such as SNOPT [GMS05] to a multifaceted MATLAB package that outputs,
other than the optimal state and control, the Hamiltonian, costates, and path covectors. These
information can help verify numerical results when used alongside classical tools such as Pon-
tryagin’s principle. One advantage of DIDO over other solvers is that it does not require an
initial guess of the solution.

GPOPS-II [PR14] is a software based on a class of variable-order Gaussian quadrature col-
location methods for solving general OCPs. It supports the NLP solver SNOPT and IPOPT
[WB06] to solve the resulting large but sparse NLP. The enhancements to GPOPS-II, including
varying polynomial degree and adaptive placement of collocation points, has made it capable of
solving a wider range of OCPs as compared to its previous version GPOPS [Rao+10]. ICLOCS2,
the new version of ICLOCS, [NFK18] is an optimal control software that is equipped with both
direct multiple shooting and direct collocation to transcribe OCPs into NLPs. ICLOCS supports
a number of optimization software packages, such as IPOPT, MATLAB fmincon, and WORHP
[BW12], to solve the resulting (large-scale) NLPs. While previous versions of ICLOCS often led
to long computation times, ICLOCS2 is designed to enable flexible trade-offs between accuracy
level and computational effort.

ACADO is a software environment and algorithm collection for automatic control and dy-
namic optimization [HFD11]. It provides a framework for using RTI scheme [DBS05], which is
based on the direct multiple shooting method, to solve nonlinear optimal control problems. The
RTI scheme yields a large but sparse quadratic programming (QP) which can be condensed and
solved using dense linear algebra QP solver qpOASES [Fer+14] (ACADO’s default QP solver)
or can be alternatively solved with structure exploiting QP solvers. A comparison of the com-
putational complexity of these two approaches is given in [Vuk+13]. The RTI-based solver in
ACADO is designed to provide approximate solutions within short computation times. Also,
ACADO has automoatic code generation functionalities which allows exporting optimized and
efficient C-code for solving nonlinear OCPs. These features have made ACADO suitable for
real-time optimal control implementations.

FORCESPro [Zan+17] is a software package that is specifically designed for the purpose
of fast embedded optimization. It consists of a code generation engine capable of providing
efficient, statically-allocated, standalone C code with a small memory footprint. FORCESPro
can generate codes that are deployable on any embedded platform with a C compiler. However,
with the free academic license, a generated code can only be run on a specific desktop platform.
FORCESPro has several methods available for solving different types of optmization problems.
Its NLP solver is an extension of the previously existing primal-dual interior-point solver for
convex QCQPs [Dom+12] and is developed specifically for the mathematical structure of optimal
control problems. By exploiting the structure of the problem, the customized solver generated
by FORCESPro can perform orders of magnitude faster than a generic NLP solver.

Among several approaches available for solving the OCP (2.1), here we use direct multiple
shooting method. Also, based on a detailed comparison between the computation times of differ-
ent OCP solvers and NLP interfaces for solving several trajectory generation problems, FORCES
Pro is our solver of choice for NLPs arising in direct multiple shooting method. FORCESPro
allows generating tailored solvers, for a variety of optimization problems such as LPs, QPs and
NLPs, from a high-level mathematical description of the problem. Besides optimization vari-
ables and constraints, the problem description in FORCESPro client software may include some
parameters that can change dynamically during runtime. After the problem is described in the
supported form, the client software communicates with the server for code generation and com-
pilation. Once the solver is generated, it can be used as many times as needed to solve different
instances of the same optimization problem. This is particularly useful when a problem has to
be solved with varying data in real-time (or near real-time).

FORCESPro supports designing solvers via Python and MATLAB scripts. The default

24

2.4. Simulation Results

automatic differntiation tool for both Python and MATLAB client is CasADi [AÅD12], which
must be added to the PYTHONPATH (or MATLAB path). More details can be found in
Appendix , where a simple trajectory generation problem is described in the FORCESPro high-
level python interface.

2.4 Simulation Results

In this section we employ direct multiple shooting method to solve different trajectory generation
problems. The examples we consider here include go-to-formation maneuver and range-based
positioning for multiple AUVs, and autonomous cinematography with multiple drones. We first
formulate each problem as an optimal control problem, and then we use FORCES Pro to solve
the NLPs resulting from direct multiple shooting. FORCES Pro exploits the special structure
of the NLP (See Fig. 2.5) to deliver a customized solver for the problem. We use the generated
solver in different instances of the problem, and record the average computation time. The
computation times presented below are all obtained on a desktop computer with a 2.60 GHz
i7-4510U CPU and 6.00 GB RAM.

In the simulation results presented below, all AUVs are described by the simplified model

ẋ =

ẋ
ẏ
v̇

ψ̇
ω̇

 =

v cos(ψ)
v sin(ψ)

a
ω
r

 , (2.31)

where p = [x, y]T ∈ R2 is the inertial position, v is the body-speed, ψ is the course angle and
ω is the course angle rate. The system input vector u = [a, r]T ∈ R2 consists of the linear and
angular accelerations of the vehicle.

To guarantee that generated trajectories are dynamically feasible, the state and the input of
the system must be within given bounds. These constraints are expressed as inequalities of the
form

vmin ≤ v(t) ≤ vmax (2.32)

amin ≤ a(t) ≤ amax

ψmin ≤ ψ(t) ≤ ψmax

ωmin ≤ ω(t) ≤ ωmax

rmin ≤ r(t) ≤ rmax

which must hold for all t ∈ [0, tf]. The lower and upper bounds are given in Table 2.1.
To make sure vehicles maintain a safe distance to obstacles and other vehicles during the

mission, collision-avoidance constraints must also be incorporated in the problem. As per the
requirements, the constraints may impose temporal or spatial separation between trajectories.
The temporal collision avoidance constraint between the i-th and the j-th vehicles can be ex-
pressed as

ccol
(
pi(t),pj(t)

)
=

(
xi(t)− xj(t)

)2
r2ij

+

(
yi(t)− yj(t)

)2
r2ij

− 1 ≥ 0. t ∈ [0, tf] (2.33)

where rij is the safe distance to be kept between the i-th and the j-th vehicles. Similar con-
straints can be added to enforce vehicle-obstacle collision avoidance. As explained before, in

25

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

Table 2.1: Upper/lower bounds on states and inputs

minimum value maximum value

v(
m

s
) 0.1 0.7

ψ(rad) −π
2

π

2

a(
m

s2
) -0.1 0.1

ω(
rad

s
) -0.349 0.349

r(
rad

s2
) -0.1 0.1

direct multiple shooting method the constraints are evaluated on the grid points used for con-
trol discretization. For N shooting intervals, (2.33) translates into N inequality constraints
in the problem per each two vehicles. For spatial separation this number would be N2. For
longer distance problems where more shooting intervals is necessary the number of optimization
variables and constraints in the problem will grow substantially. Therefore, using efficient and
reliable optimization methods and tools is the key to successful implementation of the method.

2.4.1 Go-to-Formation Maneuver of 7 AUVs

In the first example we consider a group of AUVs performing a cooperative mission in a particular
formation. In real-world conditions the AUVs are launched from two or more support vessels
at different time instances and different positions. Therefore, the initial formation might be
completely different from the desired one. In order to start the mission it is necessary to have a set
of trajectories that guide the fleet to the desired positions. These trajectories should guarantee
simultaneous arrival of the AUVs to the goal positions with desired speeds and orientations.
Also, they should minimize a cost function (travel time, energy consumption, ...) while ensuring
that the inter-vehicle collisions are avoided.

Due to the environmental conditions at sea and the vehicles’ lack of hovering capability, the
vehicles may turn or shift position while the optimization problem is being solved. Therefore,
the vehicles’ positions at the time of executing the trajectory might be different from the position
information provided to the solver. The long computational delay between obtaining the initial
state information and generating the trajectories can lead to a drastic decrease in performance or
even infeasibility of the generated trajectories. Hence, it is imperative to generate the trajectories
in a short time following receipt of the position information before the waves and currents scatter
the AUVs around.

Fig. 2.8 shows a 7-vehicle problem where the AUVs should reach the mission starting
positions, shown with x, with minimum energy usage. Here we pass over the ”actual” power
consumption from the AUV’s batteries and simply define the cost function in the underlying
OCP by the integral of a weighted quadratic function of the system control inputs as

J =

∫ tf

0
uTQu dt (2.34)

where Q is the weighting matrix. Given the vehicles’ initial positions, shown with x, the goal is
to find spatially de-conflicted trajectories such that the AUVs reach their corresponding target
positions at the same time, with given speeds and course angles. Figure 2.8 shows the results

26

2.4. Simulation Results

for the case where the AUVs should keep a constant speed of 0.5m
s along the trajectories. The

course angle, course rate, and the input profile for the 7 AUVs are shown in Fig. 2.9.

In this example, the OCP is solved using 90 shooting intervals. The generated solver is used
to solve multiple instances of the problem with different initial states. The average computation
time using the FORCES Pro interior-point NLP solver is around 16 seconds.

Fig. 2.10 shows the case where the AUVs are allowed to move with varying speed bounded
with the minimum and maximum values given in Table 2.1. The AUVs start with a speed of
0.1m

s and should reach the target positions with a speed of 0.5m
s . Fig. 2.11 shows that the speed

and course angle of the 7 vehicles are within the required bounds. The average computation
time for solving this problem with different initial and final conditions is 23 seconds.

Figure 2.8: Spatially de-conflicted trajectories for 7 vehicles moving from their initial positions
(x) to their final positions (x) with a constant speed of 0.5m

s and ψ0 = ψf = 0.

Figure 2.9: The course angle, course rate and angular acceleration of the 7 vehicles are within
the given bounds in Table 2.1.

27

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

Figure 2.10: Spatially de-conflicted trajectories for 7 vehicles from their initial positions (x)
to their final positions (x), with the boundary conditions, v0 = 0.1m/s, vf = 0.5m/s and
ψ0 = ψf = 0.

Figure 2.11: The speed and course angle of the 7 vehicles are within the given bounds in Table
2.1.

28

2.4. Simulation Results

2.4.2 Minimum time maneuver with collision avoidance

In the second example we consider two vehicles in a cluttered environment (Fig. 2.12). The
goal is to generate temporally separated trajectories that minimize the vehicles’ travel time,
i.e., J = tf . The trajectories should guide the vehicles from the initial positions to the final
positions while avoiding static obstacles with known positions. Figure 2.12 shows the trajectories
generated with 80 shooting intervals, i.e., N = 80. These trajectories ensure that the inter-
vehicle and vehicle-obstacle collision avoidance constraints are satisfied for the entire travel
time. The speed and the course angle profiles for the two vehicles are shown in Fig. 2.13. The
average computation time for solving the same problem with different initial state conditions is
1.59 seconds.

Figure 2.12: Temporally de-conflicted trajectories for two vehicles moving from their initial
positions (x) to their final positions (x) in a cluttered environment.

Figure 2.13: The course angle and speed profile for the two vehicles in Figure 2.12

2.4.3 Trajectory optimization for range-based AUV positioning

In the third example, we consider the trajectory generation problem for range-based AUV po-
sitioning. In this problem, the AUV’s position is estimated using a set of range measurements

29

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

from the vehicle to one or more beacons with known positions. In the case of a single beacon,
the measurements are obtained as

zk = dk + wk (2.35)

where dk = ∥pk − pb∥ is the true distance between the AUV and the beacon at time tk, with
pk = [xk, yk]T and pb = [pb,x, pb,y]T respectively denoting the position of the AUV and the
beacon at time tk and wk ∼ N (0, σ2) is additive white Gaussian noise. The goal is to obtain
the sequence of measurements that in a well defined sense maximize the information available
for AUV positioning by resorting to properly designed position estimation algorithms. This can
be done by including directly in the objective function of the NLP a performance measure that
quantifies the amount of information available for positioning.

One way to quantify the best possible estimator performance obtained with a given set of
data is to use the Cramer-Rao (CR) lower bound in the context of estimation theory. The
Cramer-Rao Lower Bound (CRLB) provides a lower bound on the covariance of the estimates
that can be achieved with any unbiased estimator. For the unknown deterministic parameter
θ ∈ R2, denoting the initial position of the AUV and being estimated from the measurements
Z = (z0, z1, . . . , zm−1)

T , the variance of the unbiased estimator θ̂ is bounded from below by

Var(θ̂) ≥ 1

mI(θ)
(2.36)

where I(θ) is the Fisher Information Matrix (FIM) defined as

I(θ)
def
= E([∇θ(logLθ(Z))][∇θ(logLθ(Z))]T) (2.37)

with Lθ(Z) being the likelihood function of the measurements with respect to θ. The FIM gives
a measure of the information content provided by the set of measurements Z. Therefore, it can
be used to define a suitable scalar function for the OCP (2.8). For the range-based localization
problem described above, the determinant of the FIM can serve as the objective function of
choice. Considering the AUV dynamics and the measurement model (2.35), |FIM| for a ”single
vehicle-single beacon” problem is obtained as [Bis+10]

|FIM| = 1

σ4

∑
k,l
k>l

(
(
xk − pb,x

dk
)(
yl − pb,y

dl
)− (

yk − pb,y
dk

)(
xl − pb,x

dl
)
)2

(2.38)

which can be used as a term in the objective function to guarantee that the measurements taken
along the generated trajectory yield a good estimate of p0. The main problem with using |FIM|
objective function is its dependence on the true position of the AUV. In practice, the optimization
and estimation algorithms are run in sequence at each time step. The optimization algorithm will
use the most recent position estimate to generate the AUV’s trajectory accordingly. This would
require the optimization problem to be solved within the (usually short) allotted time. However,
solving this optimization problem is a difficult task due to the several local extrema of the
objective function |FIM|. This will make the solution of the optimization problem very sensitive
to the initial guess provided to the solver. Here, we will use the solution of the unconstrained
problem as the initial guess for the constrained problem.

In the first example, we consider one AUV moving from its initial position p0 = [−10, 2]T

to the desired final position pf = [10,−2]T . Figure 2.14 shows the results obtained with two
different objective functions. The trajectory in 6(a) minimizes the overall energy consumption
(2.34), with tf = 40s. We then consider a weighted combination of the energy consumption and
− log |FIM|. As Fig. 2.14(b) shows, the trajectory deviates from the straight line in order to
increase the determinant of the FIM. This maneuver, however, demands a higher energy usage
as shown in 2.14(d).

30

2.4. Simulation Results

We next compare the two objective functions explained above in a problem with two AUVs.
In Fig. 2.15(a) the trajectories minimize the overall energy consumption while keeping a safe
distance of 3m between the AUVs. In Fig. 2.15(b) the determinant of the FIM associated
with the AUVs’ initial positions p0,i, i = 1, 2 is also included in the objective function. The
determinant of the FIM for multiple vehicles and multiple beacons problem can be found in
[Mor+16]. In this example, the AUVs measure their distances to the beacon fixed at the origin
separately. The generated trajectories guide the AUVs in a circular motion around the beacon
in order to increase the information content of the measurements. The results in Fig. 2.14 and
Fig 2.15 were generated using a sampling time of 1s. The optimization problem was solved in
6.973 seconds.

2.4.4 Autonomous Drone Cinematography

Before we formulate the OCP associated with trajectory generation for autonomous drone cin-
ematography, we give a brief overview of the system onboard the drone cinematographer. The
system architecture on board the drone is depicted in Fig. 1.1. The Target Tracker module pro-
vides the 3D target position pT and velocity vT . We are assuming that targets carry onboard
a GPS receiver to communicate their positions to the drone. However, visual-based or other
alternative methods could also be used to estimate the target position and velocity. Besides,
each drone receives the shot type to be executed from its Shot Executer module. Depending
on the shot parameters and the target position/velocity, the Shot Executer module computes
(and continuously updates) the desired 3D position pD and velocity vD for the drone. For
instance, being asked to perform a lateral shot, the drone should track the target from a specific
lateral distance which would be provided as a shot parameter. These objectives are sent to
the Cinematography Planner, which computes the drone and gimbal movements concurrently.
Here, we are not concerned with the definition of the available shot types and their parameters.
Nonetheless, our approach to trajectory generation is generic regardless of the geometry of the
shot, i.e., orbital, lateral, flyover, etc.

The Cinematography Planner consists of three modules: the Trajectory Planner, the Trajec-
tory Follower and the Gimbal Controller. The Trajectory Planner generates optimal trajectories
for the drone considering the constraints and objectives explained below. The cinematography
planner aims at generating trajectories that guide the drone to the desired position and velocity
given by the Shot Executer while conforming to the video aesthetic quality criteria. Moreover,
it must ensure that generated trajectories are collision-free considering the pre-defined no-fly
zones and collision avoidance constraints with other drones or obstacles detected during flight.
Optimal trajectories are computed periodically in a receding horizon manner and sent to the
Trajectory Follower module, which is able to compute 3D velocity commands for the drone to
follow those trajectories. The software abstraction layer called UAL is the interface with the
autopilot, that has velocity controllers for the drone (more details can be found in [Sab+19]).
In parallel, the Gimbal Controller generates commands for the gimbal motors in the form of
angular rates in order to keep the camera pointing towards the target.

2.4.4.1 Quadrotor model

Let {W} denote the world reference frame with origin fixed in the environment and East-North-
Up (ENU) orientation. Consider also three additional reference frames: the quadrotor reference
frame {Q} attached to the vehicle with origin at the center of mass, the camera reference frame
{C} with z-axis aligned with the optical axis but with opposite sign, and the target reference
frame {T} attached to the moving target of interest. For simplicity, it is assumed that the
origins of {Q} and {C} coincide. Figure 2.16 depicts the defined reference frames.

The configuration of {Q} with respect to {W} is denoted by (pQ, RQ) ∈ SE(3), where
pQ ∈ R3 is the position of the origin of {Q} expressed in {W} and RQ ∈ SO(3) is the rotation

31

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

(a) (b)

(c)

(d)

Figure 2.14: (a) and (b) show the AUV’s trajectory obtained by minimizing the overall energy
consumption and maximizing the log |FIM |, respectively; (c) and (d) are the corresponding
course rate and speed profiles for the trajectory in (a) and (b), respectively [SCP18].

32

2.4. Simulation Results

(a) (b)

(c)

(d)

Figure 2.15: Two AUVs and a single beacon. The temporally separated trajectories generated
in the absence and presence of log |FIM | in the objective fucntion are shown in (a) and (b),
respectively. The input profiles for the trajectories in (a) and (b) are respectively shown in (c)
and (d).

33

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

matrix from {Q} to {W}. Similarly, the configurations of {T} and {C} with respect to {W}
are denoted by (pT , RT) ∈ SE(3) and (pC , RC) ∈ SE(3), respectively.

In this paper, the quadrotor linear dynamics are described by the following simple double
integrator model

ṗQ = vQ

v̇Q = aQ, (2.39)

where vQ = [vx vy vz]T ∈ R3 is the linear velocity and aQ = [ax ay az]T ∈ R3 is the linear
acceleration. We assume that the linear acceleration aQ takes the following form

aQ = −ge3 +RQ
T

m
e3, (2.40)

where m is the quadrotor mass, g is the gravitational acceleration, T ∈ R is the scalar thrust,
and e3 = [0 0 1]T .

For simplicity, we assume as control input the 3D acceleration aQ. Nonetheless, the thrust
T and rotation matrix RQ could also be recovered from 3D velocities and accelerations. If we
restrict the yaw angle ψQ to keep the quadrotor’s front pointing forward in the direction of
motion such that

ψQ = atan2(vy, vx), (2.41)

then the thrust T and the Z-Y -X Euler angles λQ = [ϕQ, θQ, ψQ]T can be obtained from vQ

and aQ according to
T = m∥aQ + ge3∥
ψQ = atan2(vy, vx)

ϕQ = − arcsin((ay cos(ψQ)− ax sin(ψQ))/∥aQ + ge3∥)
θQ = atan2(ax cos(ψQ) + ay sin(ψQ), az + g)

(2.42)

2.4.4.2 Gimbal angles

Let λC = [ϕC , θC , ψC]T denote the Z-Y -X Euler angles that parametrize the rotation matrix
RC , such that

RC = Rz(ψC)Ry(θC)Rx(ϕC). (2.43)

The Gimbal Controller provides reference angles such that the camera points towards the
target. For simplicity, we consider that the time-scale separation between the ”faster” gimbal
dynamics and ”slower” quadrotor dynamics is sufficiently large to neglect the gimbal dynamics
and assume an exact match between the desired and actual orientations of the gimbal. To define
RC , we introduce the relative position

q =
[
qx qy qz

]T
= pC − pT (2.44)

and assume that the quadrotor/camera is always above the target, i.e. qz > 0, and not directly
above the target, i.e. [qx qy]T ̸= 0. Then, the gimbal orientation RC that guarantees the camera
is aligned with the horizontal plane and pointing towards the target is given by

RC =

[
− q× q× e3
∥q× q× e3∥

q× e3
∥q× e3∥

q

∥q∥

]

=

∗ qy√

q2x+q2y
∗

∗ −qx√
q2x+q2y

∗
√

q2x+q2y√
q2x+q2y+q2z

0 qz√
q2x+q2y+q2z

 . (2.45)

34

2.4. Simulation Results

Since the camera is assumed to be aligned with the horizontal plane, the roll angle ϕC = 0.
In this case, RC takes the form

RC =

cos(ψC) cos(θC) − sin(ψC) cos(ψC) sin(θC)
cos(θC) sin(ψC) cos(ψC) sin(ψC) sin(θC)
− sin(θC) 0 cos(θC)

 , (2.46)

and we obtain
ϕC = 0

θC = atan2(−
√
q2x + q2y , qz)

ψC = atan2(−qy,−qx)

(2.47)

For non-aggressive maneuvers, we can assume that accelerations ax and ay are small, and
hence, we can assume by direct application of (2.42), that the quadrotor roll and pitch angles
are also small and Rx(ϕQ) ≈ Ry(θQ) ≈ I3. In the following, it will become clear that this is a
reasonable assumption, since one of the terms included in the cost function to be minimized is
exactly the squared norm of the quadrotor acceleration.

Under this assumption, the orientation matrix of the gimbal with respect to the quadrotor
Q
CR can be approximated by

Q
CR = (RQ)TRC

≈ Rz(ψC − ψQ)Ry(θC)Rx(ϕC), (2.48)

and the relative Euler angles (roll, pitch and yaw) of the gimbal with respect to the quadrotor
are obtained as

QϕC = ϕC = 0

QθC = θC = atan2(−
√
q2x + q2y , qz)

QψC = ψC − ψQ = atan2(−qy,−qx)− atan2(vy, vx)

(2.49)

According to (2.42), (2.47) and (2.49), λQ, λC and QλC are completely defined by the
trajectories of the quadrotor and the target, and thus can be expresses as explicit functions of
q, vQ, and aQ.

{T}

{C}

{W}
<latexit sha1_base64="KsJro3bRA+Q8W1ZlwXJMn03UtXE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cKpi00oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelElh0HW/ncrG5tb2TnW3trd/cHhUPz7pmDTXjPsslanuRdRwKRT3UaDkvUxzmkSSd6PJ3dzvPnFtRKoecZrxMKEjJWLBKFrJD4puMBvUG27TXYCsE68kDSjRHtS/gmHK8oQrZJIa0/fcDMOCahRM8lktyA3PKJvQEe9bqmjCTVgsjp2RC6sMSZxqWwrJQv09UdDEmGkS2c6E4tisenPxP6+fY3wbFkJlOXLFloviXBJMyfxzMhSaM5RTSyjTwt5K2JhqytDmU7MheKsvr5POVdNzm97DdaPllnFU4QzO4RI8uIEW3EMbfGAg4Ble4c1Rzovz7nwsWytOOXMKf+B8/gDVP46h</latexit><latexit sha1_base64="KsJro3bRA+Q8W1ZlwXJMn03UtXE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cKpi00oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelElh0HW/ncrG5tb2TnW3trd/cHhUPz7pmDTXjPsslanuRdRwKRT3UaDkvUxzmkSSd6PJ3dzvPnFtRKoecZrxMKEjJWLBKFrJD4puMBvUG27TXYCsE68kDSjRHtS/gmHK8oQrZJIa0/fcDMOCahRM8lktyA3PKJvQEe9bqmjCTVgsjp2RC6sMSZxqWwrJQv09UdDEmGkS2c6E4tisenPxP6+fY3wbFkJlOXLFloviXBJMyfxzMhSaM5RTSyjTwt5K2JhqytDmU7MheKsvr5POVdNzm97DdaPllnFU4QzO4RI8uIEW3EMbfGAg4Ble4c1Rzovz7nwsWytOOXMKf+B8/gDVP46h</latexit><latexit sha1_base64="KsJro3bRA+Q8W1ZlwXJMn03UtXE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cKpi00oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelElh0HW/ncrG5tb2TnW3trd/cHhUPz7pmDTXjPsslanuRdRwKRT3UaDkvUxzmkSSd6PJ3dzvPnFtRKoecZrxMKEjJWLBKFrJD4puMBvUG27TXYCsE68kDSjRHtS/gmHK8oQrZJIa0/fcDMOCahRM8lktyA3PKJvQEe9bqmjCTVgsjp2RC6sMSZxqWwrJQv09UdDEmGkS2c6E4tisenPxP6+fY3wbFkJlOXLFloviXBJMyfxzMhSaM5RTSyjTwt5K2JhqytDmU7MheKsvr5POVdNzm97DdaPllnFU4QzO4RI8uIEW3EMbfGAg4Ble4c1Rzovz7nwsWytOOXMKf+B8/gDVP46h</latexit><latexit sha1_base64="KsJro3bRA+Q8W1ZlwXJMn03UtXE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cKpi00oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelElh0HW/ncrG5tb2TnW3trd/cHhUPz7pmDTXjPsslanuRdRwKRT3UaDkvUxzmkSSd6PJ3dzvPnFtRKoecZrxMKEjJWLBKFrJD4puMBvUG27TXYCsE68kDSjRHtS/gmHK8oQrZJIa0/fcDMOCahRM8lktyA3PKJvQEe9bqmjCTVgsjp2RC6sMSZxqWwrJQv09UdDEmGkS2c6E4tisenPxP6+fY3wbFkJlOXLFloviXBJMyfxzMhSaM5RTSyjTwt5K2JhqytDmU7MheKsvr5POVdNzm97DdaPllnFU4QzO4RI8uIEW3EMbfGAg4Ble4c1Rzovz7nwsWytOOXMKf+B8/gDVP46h</latexit>

pC
<latexit sha1_base64="iOLpKW594aLvnA4X/WR7nqkmo3g=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFnoxmUF+4DOUDJppg3NZEIeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpxYcqaN7397G5tb2zu7lb3q/sHh0XHt5LSrM6sI7ZCMZ6ofY005E7RjmOG0LxXFacxpL562Cr/3RJVmmXg0M0mjFI8FSxjBxklhmGIziZNczoetYa3uN/wF0DoJSlKHEu1h7SscZcSmVBjCsdaDwJcmyrEyjHA6r4ZWU4nJFI/pwFGBU6qjfJF5ji6dMkJJptwTBi3U3xs5TrWepbGbLDLqVa8Q//MG1iR3Uc6EtIYKsjyUWI5MhooC0IgpSgyfOYKJYi4rIhOsMDGupqorIVj98jrpXjcCvxE83NSbfllHBc7hAq4ggFtowj20oQMEJDzDK7x51nvx3r2P5eiGV+6cwR94nz80BpG4</latexit><latexit sha1_base64="iOLpKW594aLvnA4X/WR7nqkmo3g=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFnoxmUF+4DOUDJppg3NZEIeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpxYcqaN7397G5tb2zu7lb3q/sHh0XHt5LSrM6sI7ZCMZ6ofY005E7RjmOG0LxXFacxpL562Cr/3RJVmmXg0M0mjFI8FSxjBxklhmGIziZNczoetYa3uN/wF0DoJSlKHEu1h7SscZcSmVBjCsdaDwJcmyrEyjHA6r4ZWU4nJFI/pwFGBU6qjfJF5ji6dMkJJptwTBi3U3xs5TrWepbGbLDLqVa8Q//MG1iR3Uc6EtIYKsjyUWI5MhooC0IgpSgyfOYKJYi4rIhOsMDGupqorIVj98jrpXjcCvxE83NSbfllHBc7hAq4ggFtowj20oQMEJDzDK7x51nvx3r2P5eiGV+6cwR94nz80BpG4</latexit><latexit sha1_base64="iOLpKW594aLvnA4X/WR7nqkmo3g=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFnoxmUF+4DOUDJppg3NZEIeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpxYcqaN7397G5tb2zu7lb3q/sHh0XHt5LSrM6sI7ZCMZ6ofY005E7RjmOG0LxXFacxpL562Cr/3RJVmmXg0M0mjFI8FSxjBxklhmGIziZNczoetYa3uN/wF0DoJSlKHEu1h7SscZcSmVBjCsdaDwJcmyrEyjHA6r4ZWU4nJFI/pwFGBU6qjfJF5ji6dMkJJptwTBi3U3xs5TrWepbGbLDLqVa8Q//MG1iR3Uc6EtIYKsjyUWI5MhooC0IgpSgyfOYKJYi4rIhOsMDGupqorIVj98jrpXjcCvxE83NSbfllHBc7hAq4ggFtowj20oQMEJDzDK7x51nvx3r2P5eiGV+6cwR94nz80BpG4</latexit><latexit sha1_base64="iOLpKW594aLvnA4X/WR7nqkmo3g=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFnoxmUF+4DOUDJppg3NZEIeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpxYcqaN7397G5tb2zu7lb3q/sHh0XHt5LSrM6sI7ZCMZ6ofY005E7RjmOG0LxXFacxpL562Cr/3RJVmmXg0M0mjFI8FSxjBxklhmGIziZNczoetYa3uN/wF0DoJSlKHEu1h7SscZcSmVBjCsdaDwJcmyrEyjHA6r4ZWU4nJFI/pwFGBU6qjfJF5ji6dMkJJptwTBi3U3xs5TrWepbGbLDLqVa8Q//MG1iR3Uc6EtIYKsjyUWI5MhooC0IgpSgyfOYKJYi4rIhOsMDGupqorIVj98jrpXjcCvxE83NSbfllHBc7hAq4ggFtowj20oQMEJDzDK7x51nvx3r2P5eiGV+6cwR94nz80BpG4</latexit>

pT
<latexit sha1_base64="hpw7pU5Zzz20sfLoxfMyAqRU9l8=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlw47JCX9AZSibNtKGZTMhDKEN/w40LRdz6M+78GzPtLLT1QOBwzr3ckxNLzrTx/W9vY3Nre2e3slfdPzg8Oq6dnHZ1ZhWhHZLxTPVjrClngnYMM5z2paI4jTntxdP7wu89UaVZJtpmJmmU4rFgCSPYOCkMU2wmcZLL+bA9rNX9hr8AWidBSepQojWsfYWjjNiUCkM41noQ+NJEOVaGEU7n1dBqKjGZ4jEdOCpwSnWULzLP0aVTRijJlHvCoIX6eyPHqdazNHaTRUa96hXif97AmuQuypmQ1lBBlocSy5HJUFEAGjFFieEzRzBRzGVFZIIVJsbVVHUlBKtfXifd60bgN4LHm3rTL+uowDlcwBUEcAtNeIAWdICAhGd4hTfPei/eu/exHN3wyp0z+APv8wdNypHJ</latexit><latexit sha1_base64="hpw7pU5Zzz20sfLoxfMyAqRU9l8=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlw47JCX9AZSibNtKGZTMhDKEN/w40LRdz6M+78GzPtLLT1QOBwzr3ckxNLzrTx/W9vY3Nre2e3slfdPzg8Oq6dnHZ1ZhWhHZLxTPVjrClngnYMM5z2paI4jTntxdP7wu89UaVZJtpmJmmU4rFgCSPYOCkMU2wmcZLL+bA9rNX9hr8AWidBSepQojWsfYWjjNiUCkM41noQ+NJEOVaGEU7n1dBqKjGZ4jEdOCpwSnWULzLP0aVTRijJlHvCoIX6eyPHqdazNHaTRUa96hXif97AmuQuypmQ1lBBlocSy5HJUFEAGjFFieEzRzBRzGVFZIIVJsbVVHUlBKtfXifd60bgN4LHm3rTL+uowDlcwBUEcAtNeIAWdICAhGd4hTfPei/eu/exHN3wyp0z+APv8wdNypHJ</latexit><latexit sha1_base64="hpw7pU5Zzz20sfLoxfMyAqRU9l8=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlw47JCX9AZSibNtKGZTMhDKEN/w40LRdz6M+78GzPtLLT1QOBwzr3ckxNLzrTx/W9vY3Nre2e3slfdPzg8Oq6dnHZ1ZhWhHZLxTPVjrClngnYMM5z2paI4jTntxdP7wu89UaVZJtpmJmmU4rFgCSPYOCkMU2wmcZLL+bA9rNX9hr8AWidBSepQojWsfYWjjNiUCkM41noQ+NJEOVaGEU7n1dBqKjGZ4jEdOCpwSnWULzLP0aVTRijJlHvCoIX6eyPHqdazNHaTRUa96hXif97AmuQuypmQ1lBBlocSy5HJUFEAGjFFieEzRzBRzGVFZIIVJsbVVHUlBKtfXifd60bgN4LHm3rTL+uowDlcwBUEcAtNeIAWdICAhGd4hTfPei/eu/exHN3wyp0z+APv8wdNypHJ</latexit><latexit sha1_base64="hpw7pU5Zzz20sfLoxfMyAqRU9l8=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlw47JCX9AZSibNtKGZTMhDKEN/w40LRdz6M+78GzPtLLT1QOBwzr3ckxNLzrTx/W9vY3Nre2e3slfdPzg8Oq6dnHZ1ZhWhHZLxTPVjrClngnYMM5z2paI4jTntxdP7wu89UaVZJtpmJmmU4rFgCSPYOCkMU2wmcZLL+bA9rNX9hr8AWidBSepQojWsfYWjjNiUCkM41noQ+NJEOVaGEU7n1dBqKjGZ4jEdOCpwSnWULzLP0aVTRijJlHvCoIX6eyPHqdazNHaTRUa96hXif97AmuQuypmQ1lBBlocSy5HJUFEAGjFFieEzRzBRzGVFZIIVJsbVVHUlBKtfXifd60bgN4LHm3rTL+uowDlcwBUEcAtNeIAWdICAhGd4hTfPei/eu/exHN3wyp0z+APv8wdNypHJ</latexit>

q
<latexit sha1_base64="jhCLmgozHprzFfkOnpNWRwBXJ9o=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMn0ph06mcSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByk/udJ1Sax/LeTBP0IzqSPOSMGis99CNqxkGYPc4G1Zpbd+cgq8QrSA0KNAfVr/4wZmmE0jBBte55bmL8jCrDmcBZpZ9qTCib0BH2LJU0Qu1n88QzcmaVIQljZZ80ZK7+3shopPU0CuxknlAve7n4n9dLTXjtZ1wmqUHJFh+FqSAmJvn5ZMgVMiOmllCmuM1K2JgqyowtqWJL8JZPXiXti7rn1r27y1rDLeoowwmcwjl4cAUNuIUmtICBhGd4hTdHOy/Ou/OxGC05xc4x/IHz+QPtLJED</latexit><latexit sha1_base64="jhCLmgozHprzFfkOnpNWRwBXJ9o=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMn0ph06mcSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByk/udJ1Sax/LeTBP0IzqSPOSMGis99CNqxkGYPc4G1Zpbd+cgq8QrSA0KNAfVr/4wZmmE0jBBte55bmL8jCrDmcBZpZ9qTCib0BH2LJU0Qu1n88QzcmaVIQljZZ80ZK7+3shopPU0CuxknlAve7n4n9dLTXjtZ1wmqUHJFh+FqSAmJvn5ZMgVMiOmllCmuM1K2JgqyowtqWJL8JZPXiXti7rn1r27y1rDLeoowwmcwjl4cAUNuIUmtICBhGd4hTdHOy/Ou/OxGC05xc4x/IHz+QPtLJED</latexit><latexit sha1_base64="jhCLmgozHprzFfkOnpNWRwBXJ9o=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMn0ph06mcSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByk/udJ1Sax/LeTBP0IzqSPOSMGis99CNqxkGYPc4G1Zpbd+cgq8QrSA0KNAfVr/4wZmmE0jBBte55bmL8jCrDmcBZpZ9qTCib0BH2LJU0Qu1n88QzcmaVIQljZZ80ZK7+3shopPU0CuxknlAve7n4n9dLTXjtZ1wmqUHJFh+FqSAmJvn5ZMgVMiOmllCmuM1K2JgqyowtqWJL8JZPXiXti7rn1r27y1rDLeoowwmcwjl4cAUNuIUmtICBhGd4hTdHOy/Ou/OxGC05xc4x/IHz+QPtLJED</latexit><latexit sha1_base64="jhCLmgozHprzFfkOnpNWRwBXJ9o=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMn0ph06mcSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByk/udJ1Sax/LeTBP0IzqSPOSMGis99CNqxkGYPc4G1Zpbd+cgq8QrSA0KNAfVr/4wZmmE0jBBte55bmL8jCrDmcBZpZ9qTCib0BH2LJU0Qu1n88QzcmaVIQljZZ80ZK7+3shopPU0CuxknlAve7n4n9dLTXjtZ1wmqUHJFh+FqSAmJvn5ZMgVMiOmllCmuM1K2JgqyowtqWJL8JZPXiXti7rn1r27y1rDLeoowwmcwjl4cAUNuIUmtICBhGd4hTdHOy/Ou/OxGC05xc4x/IHz+QPtLJED</latexit>

yC
<latexit sha1_base64="F0JpsiZPbfczXID5DSQXN0QKxFE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIR9FjoxWNF+wFtKJvtpF262YTdjRBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WDanPvdJ1Sax/LRZAn6ER1LHnJGjZUesmFzWKm6dXcBsk68glShQGtY+RqMYpZGKA0TVOu+5ybGz6kynAmclQepxoSyKR1j31JJI9R+vjh1Ri6tMiJhrGxJQxbq74mcRlpnUWA7I2ometWbi/95/dSEt37OZZIalGy5KEwFMTGZ/01GXCEzIrOEMsXtrYRNqKLM2HTKNgRv9eV10rmqe27du7+uNmpFHCU4hwuogQc30IA7aEEbGIzhGV7hzRHOi/PufCxbN5xi5gz+wPn8ASCsjZk=</latexit><latexit sha1_base64="F0JpsiZPbfczXID5DSQXN0QKxFE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIR9FjoxWNF+wFtKJvtpF262YTdjRBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WDanPvdJ1Sax/LRZAn6ER1LHnJGjZUesmFzWKm6dXcBsk68glShQGtY+RqMYpZGKA0TVOu+5ybGz6kynAmclQepxoSyKR1j31JJI9R+vjh1Ri6tMiJhrGxJQxbq74mcRlpnUWA7I2ometWbi/95/dSEt37OZZIalGy5KEwFMTGZ/01GXCEzIrOEMsXtrYRNqKLM2HTKNgRv9eV10rmqe27du7+uNmpFHCU4hwuogQc30IA7aEEbGIzhGV7hzRHOi/PufCxbN5xi5gz+wPn8ASCsjZk=</latexit><latexit sha1_base64="F0JpsiZPbfczXID5DSQXN0QKxFE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIR9FjoxWNF+wFtKJvtpF262YTdjRBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WDanPvdJ1Sax/LRZAn6ER1LHnJGjZUesmFzWKm6dXcBsk68glShQGtY+RqMYpZGKA0TVOu+5ybGz6kynAmclQepxoSyKR1j31JJI9R+vjh1Ri6tMiJhrGxJQxbq74mcRlpnUWA7I2ometWbi/95/dSEt37OZZIalGy5KEwFMTGZ/01GXCEzIrOEMsXtrYRNqKLM2HTKNgRv9eV10rmqe27du7+uNmpFHCU4hwuogQc30IA7aEEbGIzhGV7hzRHOi/PufCxbN5xi5gz+wPn8ASCsjZk=</latexit><latexit sha1_base64="F0JpsiZPbfczXID5DSQXN0QKxFE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBIR9FjoxWNF+wFtKJvtpF262YTdjRBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsbm1vbObmmvvH9weHRcOTnt6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WDanPvdJ1Sax/LRZAn6ER1LHnJGjZUesmFzWKm6dXcBsk68glShQGtY+RqMYpZGKA0TVOu+5ybGz6kynAmclQepxoSyKR1j31JJI9R+vjh1Ri6tMiJhrGxJQxbq74mcRlpnUWA7I2ometWbi/95/dSEt37OZZIalGy5KEwFMTGZ/01GXCEzIrOEMsXtrYRNqKLM2HTKNgRv9eV10rmqe27du7+uNmpFHCU4hwuogQc30IA7aEEbGIzhGV7hzRHOi/PufCxbN5xi5gz+wPn8ASCsjZk=</latexit>

xC
<latexit sha1_base64="SdK7REemDw0XWPSC80LmaYWTWf4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAfJo2Y</latexit><latexit sha1_base64="SdK7REemDw0XWPSC80LmaYWTWf4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAfJo2Y</latexit><latexit sha1_base64="SdK7REemDw0XWPSC80LmaYWTWf4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAfJo2Y</latexit><latexit sha1_base64="SdK7REemDw0XWPSC80LmaYWTWf4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAfJo2Y</latexit>

zC
<latexit sha1_base64="qfDsqL45XQqPuDroqU14WtGJzVc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAiMo2a</latexit><latexit sha1_base64="qfDsqL45XQqPuDroqU14WtGJzVc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAiMo2a</latexit><latexit sha1_base64="qfDsqL45XQqPuDroqU14WtGJzVc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAiMo2a</latexit><latexit sha1_base64="qfDsqL45XQqPuDroqU14WtGJzVc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMdCLx4r2g9oQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53HlFpHssHM03Qj+hI8pAzaqx0/zRoDMoVt+YuQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814Y2fcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmlf1jy35t1dVerVPI4inME5VMGDa6jDLTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAiMo2a</latexit>

✓C
<latexit sha1_base64="pODnXJcrqKR6nNb/e7k72iXQmEA=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGQi8cI5gHJEmYnnWTI7MOZXiEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4gUdKQ6347G5tb2zu7hb3i/sHh0XHp5LRl4lQLbIpYxboTcINKRtgkSQo7iUYeBgrbwaQ+99tPqI2MoweaJuiHfBTJoRScrNTp0RiJ9+v9UtmtuguwdeLlpAw5Gv3SV28QizTEiITixnQ9NyE/45qkUDgr9lKDCRcTPsKupREP0fjZ4t4Zu7TKgA1jbSsitlB/T2Q8NGYaBrYz5DQ2q95c/M/rpjS89TMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlS0IXirL6+T1lXVc6ve/XW5VsnjKMA5XEAFPLiBGtxBA5ogQMEzvMKb8+i8OO/Ox7J1w8lnzuAPnM8f4N2PxA==</latexit><latexit sha1_base64="pODnXJcrqKR6nNb/e7k72iXQmEA=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGQi8cI5gHJEmYnnWTI7MOZXiEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4gUdKQ6347G5tb2zu7hb3i/sHh0XHp5LRl4lQLbIpYxboTcINKRtgkSQo7iUYeBgrbwaQ+99tPqI2MoweaJuiHfBTJoRScrNTp0RiJ9+v9UtmtuguwdeLlpAw5Gv3SV28QizTEiITixnQ9NyE/45qkUDgr9lKDCRcTPsKupREP0fjZ4t4Zu7TKgA1jbSsitlB/T2Q8NGYaBrYz5DQ2q95c/M/rpjS89TMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlS0IXirL6+T1lXVc6ve/XW5VsnjKMA5XEAFPLiBGtxBA5ogQMEzvMKb8+i8OO/Ox7J1w8lnzuAPnM8f4N2PxA==</latexit><latexit sha1_base64="pODnXJcrqKR6nNb/e7k72iXQmEA=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGQi8cI5gHJEmYnnWTI7MOZXiEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4gUdKQ6347G5tb2zu7hb3i/sHh0XHp5LRl4lQLbIpYxboTcINKRtgkSQo7iUYeBgrbwaQ+99tPqI2MoweaJuiHfBTJoRScrNTp0RiJ9+v9UtmtuguwdeLlpAw5Gv3SV28QizTEiITixnQ9NyE/45qkUDgr9lKDCRcTPsKupREP0fjZ4t4Zu7TKgA1jbSsitlB/T2Q8NGYaBrYz5DQ2q95c/M/rpjS89TMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlS0IXirL6+T1lXVc6ve/XW5VsnjKMA5XEAFPLiBGtxBA5ogQMEzvMKb8+i8OO/Ox7J1w8lnzuAPnM8f4N2PxA==</latexit><latexit sha1_base64="pODnXJcrqKR6nNb/e7k72iXQmEA=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGQi8cI5gHJEmYnnWTI7MOZXiEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4gUdKQ6347G5tb2zu7hb3i/sHh0XHp5LRl4lQLbIpYxboTcINKRtgkSQo7iUYeBgrbwaQ+99tPqI2MoweaJuiHfBTJoRScrNTp0RiJ9+v9UtmtuguwdeLlpAw5Gv3SV28QizTEiITixnQ9NyE/45qkUDgr9lKDCRcTPsKupREP0fjZ4t4Zu7TKgA1jbSsitlB/T2Q8NGYaBrYz5DQ2q95c/M/rpjS89TMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlS0IXirL6+T1lXVc6ve/XW5VsnjKMA5XEAFPLiBGtxBA5ogQMEzvMKb8+i8OO/Ox7J1w8lnzuAPnM8f4N2PxA==</latexit>

Figure 2.16: Illustration of reference frames. The origin of the camera and
the vehicle reference frames coincide.

35

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

2.4.4.3 Problem formulation

Here, we address the trajectory generation problem for autonomous cinematography by decou-
pling gimbal and drone control, that is, we run a gimbal controller in charge of pointing the
camera to the target; and in parallel, we solve an optimization problem to generate trajectories
for the drone taking into account the gimbal rotation limits. This approach yields a much sim-
pler optimization problem in comparison to using an integrated model of the camera and the
vehicle dynamics [Näg+17], while ensuring safe and smooth trajectories for both the drone and
the camera on the gimbal.

We formulate the problem such that the generated trajectory guides the drone to a given
desired position while filming a moving target. The desired 3D position (pD) and velocity (vD)
depend on the shot type and are provided by the Shot Executer. We incorporate constraints
imposed by the environment and vehicle dynamics as well as those imposed by rotation limits
of the gimbal using the equations derived in (2.49). In order to meet requirements on aesthetic
quality of the output video, we employ a properly defined objective function that includes camera
angle driven terms to limit its rotation speed in favor of smooth shots.

The problem described above is formulated as

minimize
x(t),u(t)

∫ tf

0
(w1||u(t)||2 + w2θ̇C(t)

2
+ w3ψ̇C(t)

2
)dt+ w4JN (2.50)

subject to x(0) = x0 (2.50.a)

ẋ(t) = f(x(t),u(t)) (2.50.b)

umin ≤ u(t) ≤ umax (2.50.c)

vmin ≤ vQ(t) ≤ vmax (2.50.d)

pQ(t) ∈ F (2.50.e)

θmin ≤Q θC(t) ≤ θmax (2.50.g)

ψmin ≤Q ψC(t) ≤ ψmax (2.50.h)

where x = [pQ vQ]T and u = aQ. The first term in the objective function penalizes excessive
use of the control inputs while the second and third terms respectively penalize the changes
in the gimbal pitch and yaw angles. Having the target position predicted for the future time
horizon, these terms can be expressed in terms of x and u using (2.49). Finally, the terminal
cost is added to drive the drone to the desired position and velocity, and is defined as

JN = ||xN − [pD vD]T ||2 (2.51)

Appropriate tuning of the weights w1, . . . , w4 will make sure that the generated trajectory
creates smooth camera movement during the shot.

In (2.50.a), x0 denotes the initial state of the vehicle. The system kinematics (2.50.b) along
with the bounds on the velocity (2.50.d) and acceleration (2.50.c) ensure the feasibility of the
resulting trajectory. The constraint (2.50.e) keeps the drone away from the no-fly zone and
obstacles in the surrounding environment. The free space F is constructed considering the
obstacles’ positions and the regulatory restricted zones established before the flight to avoid
dangerous areas with people, buildings, etc.. Lastly, the constraints on QθC and QψC , guarantee
that the gimbal angles are within the required bounds. The lower/upper bounds are specified
by gimbal mechanical limits to rotate around each axis.

2.4.4.4 Simulation results

In the first example, we study the effect of adding the camera angle driven terms to the objective
function. We consider a single drone filming a non-moving target. The goal is to find a smooth

36

2.4. Simulation Results

T 140s
amin,amax ±[1 1 1]T m/s
vmin,vmax ±[1 1 1]T m/s2

θmin, θmax −π/2,−3π/8 rad
ψmin, ψmax, −3π/4, 3π/4 rad

Table 2.2: Upper/lower bounds used in the simulations.

Figure 2.17: Generated trajectories for the single drone-single target example with different
relative weights in the objective function (2.50). The trajectories guide the vehicle from its
initial position (x) to the final position (x) while the gimbal is pointing towards the target (fixed
at the origin).

trajectory that guide the drone from its initial position to a given final position (provided by
the shot executor) in a limited amount of time. The OCP (2.50) is solved using the parameter
values provided in Table 2.2.

Figure 2.17 shows the trajectories obtained with different relative weights in the above objec-
tive function. For w2, w3 = 0 the solver minimizes the overall energy consumption which results
in a straight line from the initial position, shown with x, to the final position (x). The resulting
path is obtained without considering any constraint on the gimbal angles. With the increase
of w2

w1
, the generated trajectory deviates from the straight line and converge to a circular path

to reduce the pitch angle changes. Fig. 2.18 show the corresponding top view (left) and pitch
angle (right) of the generated trajectories. As it can be seen the constraint on the pitch angle
is satisfied for all trajectories, however, the instantaneous rate of change is decreasing with the
increase of w2. Fig. 2.19 shows the linear velocity and acceleration. It can be observed from
Fig. 2.19 that, as w2 increases, the gimbal pitch angle rate is reduced at the cost of increased
acceleration.

2.4.5 Cooperative planning for multiple drones

In the next example, we consider two drones filming a single moving target. In order to obtain
collision-free trajectories, the inter-vehicle collision avoidance constraint (2.33) is included in the
problem. We also incorporate mutual visibility constraints to make sure that the recorded shot
by a camera is unobstructed and does not contain the other flying camera. This is addressed by
enforcing the angle between the relative position vector of the cameras, d = pi − pj , and the
view direction of the camera, q = pi − pT , to be greater than some desired angle determined

37

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

Figure 2.18: The top view (left) and the gimbal pitch angle (right) of the generated trajectories
in Fig. 2.17.

Figure 2.19: The linear velocity and acceleration of the generated trajectories in Fig. 2.17. As
w2 increases the resulting trajectory reduces the gimbal pitch angle rate at the cost of increased
energy consumption.

from the camera’s field of view. Therefore, the mutual visibility constraint can be expressed as

cos(β) ≤ cos(α) (2.52)

where

cos(β) =
d.q

∥d∥ ∥q∥ (2.53)

Imposing (2.52) can ensure that the j-th camera is out of the i-th camera’s field of view
approximated with a cone. Fig. 2.20 is a schematic illustration of the mutual visibility constraint.

38

2.4. Simulation Results

Figure 2.20: Schematic of mutual visibility constraint. Other flying drones
must be stayed out of the camera’s field of view.

(a) t = 40 s (b) t = 55 s

(c) t = 86 s (d) t = 160 s

Figure 2.21: The generated trajectory for two drones (black and blue) at different time instances.
The trajectories are generated such that both cameras have unobstructed views of the target
moving on the red line.

Fig. 2.21 shows an example where two drones are filming a target moving on a straight line
(red line). The first drone, whose trajectory is shown with solid black line, should follow the
target while keeping a relative position to the target. This is enforced by adding a term in the
objective function that penalizes the deviation of the drone’s trajectory from the desired straight
line. The second drone should fly from its initial position to the given final position shown with

39

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

Figure 2.22: The computed β angles for the two cameras show that the mutual visibility con-
straints are satisfied over the entire time interval.

•. The resulting trajectories are shown in Fig. 2.21 with timestamps. The black and blue shaded
cones show the field of view of the first and second cameras, respectively. Fig. 2.22 shows β for
the two cameras. It can be observed that the mutual visibility constraints are satisfied for the
entire flight time.

Fig. 2.23 is another example where two drones should fly from their initial positions to given
final positions while filming the moving target. In this example, the drones’ final positions are
given in terms of relative positions with respect to target’s position. Thus, the trajectories
must be generated such that in a given period of time, 160s, the drones are located in a certain
distance from the target. Fig. 2.23 shows the resulting trajectories and the cameras’ fields of
view at different time stamps. Fig. 2.24 displays the generated trajectories for the two drones
from the top view. Also, the computed β angles are displayed in Fig 2.25 to confirm that both
cameras have unobstructed views of the target.

2.4.6 Trajectory re-planning in the receding horizon manner

So far, in the presented simulation results, the trajectories over the entire time interval [0, tf]
were computed in one step by solving a single optimization problem. However, because of
disturbances and uncertainties in real-world experiments, it might be necessary to re-plan the
trajectories during the flight using the real-time measurements and estimates of the problem
parameters. Thus, the problem must be solved in a receding horizon manner. This will convert
the trajectory generation problem into solving a reduced-scale optimization problem repeatedly
over a moving time horizon. At each time step, a trajectory is computed for a (short) time
horizon and the first part of the plan u0 (or x1) is provided to the controller. This will be
repeated at the next time step with the horizon shifted one step forward. This approach allows
using updated information, such as the target and obstacles’ positions, while generating the new
trajectory.

Here, we consider an example in which two drones are filming a moving target. The first
drone is fixed at p = [0−162]T which is initially estimated by p̂ = [−2,−17.5, 2]T . and the other
is flying from its initial position (x) to the final position (x). Both cameras are pointing towards
the target whose future path is predicted with a linear model. We assume that the position of
the first drone and the target are available with some measurement noise. The goal is to find
a trajectory that guide the drone to the given final position in a given time (tf = 150s) while
ensuring that both cameras have unobstructed views of the target during the entire flight time.
In order to compensate for the errors, the trajectory of the drone is re-planned at each time step
using the new measurements of the position of the target and the other drone. Fig. 2.26(a) shows
the re-planned trajectories in 40 time steps with a sample interval of. In order to implement
the receding horizon scheme, one should make sure that the optimization problem is solved
in the limited time between the two steps. The average computation time in this example is

40

2.4. Simulation Results

(a) t = 42 s (b) t = 69 s

(c) t = 114 s (d) t = 160 s

Figure 2.23: The generated trajectory for two drones (black and blue) at different time instances.
The trajectory for the first drone is generated such that both cameras have unobstructed views
of the target moving on the red line.

41

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

Figure 2.24: The top view of the trajectories shown in Fig. 2.23.

Figure 2.25: The computed β angles show that both cameras have unobstructed views of the
moving target.

96 milliseconds. Fig. 2.26(b) compare the initial trajectory to the final trajectory obtained by
joining the re-planned segments. It must be noted that incorporating continuity conditions at
is necessary for generating smooth trajectories in a receding horizon approach.

42

2.4. Simulation Results

Figure 2.26: (a) Replanning the trajectory in the presence of uncertainty in the target position
estimates. The drone trajectory is re-planned at each time step taking into account the most
recent measurements of the target and the other drone positions. (b) The initial and final
trajectories of the drone. The final trajectory is obtained by applying the first part of the re-
planned trajectory at each time step.

43

Chapter 2. Trajectory Generation using Computationally Efficient Optimal Control Methods

44

Chapter 3

Bézier Curve-based Trajectory
Generation Method for Differentially
Flat Systems

45

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

3.1 Introduction

This chapter is dedicated to motion planning for a particular class of dynamic systems, labeled
as differentially flat systems, whose special structure can be exploited to develop a real-time
efficient trajectory generation framework.

A general statement of the trajectory generation problem that we consider in this thesis is to
find the (control) trajectory for a dynamic system of the form ẋ = f(x,u) over the time interval
[0, tf], such that it minimizes a cost function, given by

J =

∫ tf

0
L(x(t),u(t))dt+ E(x(tf)), (3.1)

and satisfies a set of equality and inequality constraints expressed as

h(x(t),u(t)) ≤ 0 t ∈ [0, tf]

g(x(t),u(t)) = 0 t ∈ {0, tf}. (3.2)

The above inequality contains path and actuator constraints and the equality includes initial
and final conditions on the state and the input of the system, given by

x(0) = x0 x(tf) = xf (3.3)

u(0) = u0 u(tf) = uf . (3.4)

Therefore, the trajectory generation problem includes a combination of differential, equality
and inequality constraints. As we will see later in this chapter, the differential flatness property
of a dynamic system allows canonical transformation to a higher-order form that trivially satisfies
the state equations. Therefore, the state equations of the dynamic system, i.e. the differential
equations, can be eliminated by transforming the problem into the space of some differentially
independent variables called flat outputs. This is clearly advantageous over its alternatives,
e.g. using collocation or shooting techniques, to find a trajectory consistent with the system
dynamics.

Polynomial-based motion planning methods for differentially flat systems exploit the dif-
ferential flatness property of a system and parameterize each flat output with a polynomial
function. This converts the problem of finding functions in an infinite dimensional space into an
approximate one of finding a finite set of coefficients describing the polynomials. The resulting
problem, as will be explained in the following, is a semi-infinite optimization problem involv-
ing a finite number of variables and an infinite number of constraints. In this chapter, we use
Bézier curve for path parameterization and leverage its properties and algorithms to convert the
semi-infinite optimization problem into one that is computationally tractable.

3.1.1 Differentially flat systems

Flat systems were first introduced in [Fli+92]. Since then, applications of flatness in engineering
problems have grown steadily. In differential algebra, a system is viewed as a differential field
generated by the set of states and inputs. A system is said to be differentially flat if there
exists a set of variables such that the system is (non-differentially) algebraic over the differential
field generated by the set of variables. It is important to mention that many of the systems for
which strong nonlinear control techniques are available are in fact flat systems [MMR02]. All
controllable linear systems can be shown to be flat. Indeed, any system that can be transformed
into a linear system by changes of coordinates, static feedback transformations, or dynamic
feedback transformations is also flat [QR10], [MMR03].

46

3.1. Introduction

Consider the nonlinear system of the form

ẋ = f(x,u), (3.5)

with x ∈ Rn, u ∈ Rm, f(0, 0) = 0, and rank ∂f
∂u(0, 0) = m. The nonlinear system (3.5) is dynamic

feedback linearizable if there exist

� A regular1 dynamic compensator:

ż = a(x, z,υ)

u = b(x, z,υ) (3.6)

where z ∈ Rq, υ ∈ Rm, a(0, 0, 0) = 0, and b(0, 0, 0) = 0;

� A diffeomorphism 2:

ξ = Ξ(x, z), (ξ ∈ Rn+q) (3.7)

such that (3.5) and (3.6) become a constant linear controllable system [Fli+95], that is, using
the extended coordinate transformation (3.7), the (n+ q)-dimensional dynamics given by

ẋ = f(x, b(x, z,υ))

ż = a(x, z,υ) (3.8)

can be expressed as a linear system of the form

ξ̇ = Fξ +Gυ (3.9)

Using a static state feedback and a linear invertible change of coordinates, the above system
can be written in Brunovsky canonical form, as expressed by

y
(νj)
j = υj j = 1, . . . ,m (3.10)

where νj , (j = 1, . . . ,m) are the controllability indices with ν1 + · · · + νm = n + q, and thus,

Y = (y1, . . . , y
(ν1−1)
1 , . . . , ym, . . . , y

(νm−1)
m) is another basis for the vector space spanned by the

components of ξ, and can be stated as

Y = Tξ = TΞ(x, z) (3.11)

where T ∈ R(n+q)×(n+q) is an invertible matrix. The invertibility of Ξ results in(
x
z

)
= Ξ−1(T−1Y) (3.12)

and thus

u = b(Ξ−1(T−1Y),υ) (3.13)

Since υj = y
(νj)
j , j = 1, . . . ,m, u and x can be written as analytic functions of the components

of y = (y1, . . . , ym) and a finite number of their derivatives.

1The regularity assumption implies the invertibility of (3.6) with input υ and output u.
2A diffeomorphism is an invertible function that maps on differentiable manifold such that the function and

its inverse are both smooth.

47

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

x = A(y, ẏ, . . . ,y(α))

u = B(y, ẏ, . . . ,y(β)) (3.14)

The dynamic feedback (3.6) is said to be endogenous if and only if the components of y can
be expressed as analytic functions of x, u and a finite number of its derivatives, i.e.,

y = C(x,u, u̇, . . . ,u(γ)) (3.15)

The dynamic system (3.5) which is linearizable via such an endogenous feedback is said to
be differentially flat, and y is called a flat output [Fli+95]. It is important to point out that
flatness is a geometric property of a system, and hence it is independent of coordinate choice.

3.1.2 Polynomial parameterization of the flat output

One major property of differentially flat systems, as stated above, is that the state and the input
variables can be directly expressed, without integrating any differential equation, in terms of the
flat output and a finite number of its derivatives. For any system admitting the alternate form
of (3.14), trajectories consistent with the dynamics (3.5) can be planned using the flat output
y(t). The state and input trajectories, x(t) and u(t), can be immediately deduced from y(t)
trajectories.

The trajectory generation problem in the space of flat output, where the dynamic con-
straint is trivially satisfied, can be stated as finding y(t) such that it minimizes a cost function,
J(y, ẏ, . . . ,y(p)), derived from the cost function of the original trajectory generation problem,
and satisfies a set of equality and inequality constraints expressed as,

h̄(y, ẏ, . . . ,y(q1)) ≤ 0 t ∈ [0, tf]

ḡ(y, ẏ, . . . ,y(q2)) = 0 t ∈ {0, tf} (3.16)

The above set of constraints is obtained by simply inserting (3.14) in the original constraints
(3.2) (See Fig. 3.1).

Figure 3.1: Converting the original constraints (left) into equivalent ones in
the space of flat output (right).

As indicated above, the components of the flat output y(t) are differentially independent, i.e.,
there is no differential relation of the form R(y, ẏ, ...,y(r)) = 0 [Rig15], and therefore, each can
be described by an individual function. In polynomial-based motion planning for flat systems,
each yj(t) is parameterized with a polynomial function as

yj(t) =

nj∑
k=0

ajkΦjk(t), j = 1, . . . ,m, (3.17)

48

3.1. Introduction

where ajk ∈ R are the coefficients and Φjk(t) are the polynomial basis functions. Polynomial
parameterization of the flat output converts the problem of finding functions in an infinite
dimensional space into an approximate one of finding a finite set of coefficients. (Remark 3.1
provides an example where the optimal trajectory is a polynomial). Consequently, the trajectory
generation problem is transformed into a semi-infinite optimization problem involving a finite
number of variables ajk, k = 1, . . . , nj ; j = 1, . . . ,m and an infinite number of constraints (3.16).

In order to obtain a computationally tractable optimization problem, different methods have
been proposed for dealing with the inequality constraint in (3.16). Earlier work on feasible or
optimal motion planning for differentially flat systems does not consider path and actuator
constraints [VM98], [AV96], [FA98]. [FAM01] is the first paper investigating trajectory gener-
ation for such systems with inequality constraints. It proposes three different techniques for
constructing a finite set of constraints that guarantee satisfaction of linear inequalities over the
entire time interval [0, T]. The proposed techniques are also applied to nonlinear inequality
constraints using a convex polytopic approximation (see Fig. 3.3).

The feasible region defined by (3.16) is in general non-convex in the space of y and its
derivatives. However, it can be shown that for linear systems, if the constraint set in the original
space is convex, under a linear transformation to the flat space, the set defined by (3.16) is also
convex. Moreover, on invoking a transformation to the flat space, linear inequalities will remain
linear. Since a convex set can be represented by a system of linear inequalities, the feasible set
defined by (3.16) can be expressed as a set of linear inequalities, i.e., a polytope, in the flat space
for linear systems with linear inequalities or convex nonlinear inequalities in the original space.

This is not the case for linear systems with general nonlinear inequalities or nonlinear systems.
One way to tackle this issue is to approximate the feasible set by a polytope entirely contained
within the set, expressed as

h̄(t) ≈M0y(t) +M1ẏ(t) + · · ·+Mpy
(p)(t) + e ≤ 0 (3.18)

where Mi are l×m matrices for a polytope with l faces, and e is a constant l×1 vector [FAM01].
Given a non-convex set S, the main challenge would be to find the best convex approximation
by determining Mi, i = 0, . . . , p such that the resulting polytope encloses the maximum volume
within S. This problem is cast as an optimization problem which has to be solved once (off-
line) if the constraints do not change in the course of a mission. Using the obtained Mi and
substituting (3.17) into (3.18), the constraints can be re-written as linear inequalities on ajk,
according to

h̄(t) ≈
p∑

i=0

m∑
j=1

nj∑
k=0

Mijajkϕ
(i)
jk (t) + ē ≤ 0 (3.19)

where Mij is the j-th row of matrix Mi. This inequality must hold for all the time instances in
the interval [0, T], therefore, (3.19) represents an infinite number of constraints on the coefficients
ajk. The three different schemes, proposed in [VM98], to satisfy (3.19) on the entire interval
using only a finite number of constraints are listed below.

� Collocation scheme

In this scheme a finite number of collocation points is selected within the interval [0, T],
and the constraint functions and a finite number of their derivatives are bounded at each of
the selected points to ensure that (3.19) is satisfied. Consider a single inequality constraint
(l = 1) of the form h̄(t) ≤ 0. Given h̄(t), h̄(t+ ∆t) can be approximated by

h̄(t+ ∆t) = h̄(t) + h̄(1)(t)∆t+ · · ·+ h̄(r)(t)
∆tr

r!
, (3.20)

49

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Remark 3.1: Solving the minimum snap trajectory
problem

The function x(t) ∈ C1[0, T] is an extremum of the functional
J defined by an integral of the form

J =

∫ T

0
L(x(n), . . . , ẍ, ẋ, x)dt

if it satisfies the Euler-Lagrange differential equation:

∂L
∂x
− d

dt

(∂L
∂ẋ

)
+
d2

dt2
(∂L
∂ẍ

)
+ · · ·+ (−1)n

dn

dtn
(∂L
∂x(n)

)
= 0

Figure 3.2: Possible paths joining the initial and final points.

Applying the above necessary conditions to the minimum
snap trajectory problem, expressed as

p∗(t) = arg min
p(t)

∫ T

0
(p(4))2dt

yields

p(8) = 0

The optimal trajectory will be obtained as a polynomial of
degree 7, given by

p(t) = c7t
7 + · · ·+ c1t+ c0

The coefficients c7 to c0 can be determined from the boundary
conditions.

50

3.1. Introduction

Figure 3.3: Three polytopes embedded within a non-convex set [VM98].

where 0 ≤ ∆t ≤ 1. Higher order terms are considered negligible. If the derivatives
satisfy appropriate bounds, i.e., h̄(i)(t) ≤ h̄i, i = 1, . . . , r, then h̄(t+ ∆t) is bounded in the
neighborhood of t according to

|h̄(t+ ∆t)| ≤ h̄0 + h̄1∆t+ · · ·+ h̄r
∆tr

r!
(3.21)

As a result, given a choice for derivative bounds h̄i, i = 1, . . . , r, the bound h̄0 can be
determined as

h̄0 = −(h̄1∆t+ · · ·+ h̄r
∆tr

r!
). (3.22)

Therefore, if h̄(t) ≤ h̄0 and its derivatives are bounded according to h̄(i)(t) ≤ h̄i, i =
0, . . . , r, then h̄(t + ∆t) ≤ 0 in the neighborhood of t under the assumption that terms
of order ∆tr+1 and higher are negligible. Following the described scheme, each inequality
constraint is evaluated on N equally spaced collocation points t1, . . . , tN , chosen such that
t0 ≤ t1 ≤ · · · ≤ tN ≤ T , with 0 ≤ ∆t ≤ 1 being the spacing between two consecutive
points. At each point ti, appropriate bounds on the derivatives of the constraint must be
specified and a modified bound on the constraint is then obtained according to (3.22). If
a polytopic approximation of the form (3.19) is available, this approach results in a total
of (N + 1)(r + 1)l linear inequalities on the (k + 1)m coefficients.

� Conservative scheme

Let h̄(t) be parameterized as linear combination of some basis functions γi(t) so that the
inequality constraint h̄(t) ≤ 0 is written in the form of

α1γ1(t) + α2γ2(t) + · · ·+ αkγk(t) ≤ 0 (3.23)

If the basis functions γi(t) are chosen such that they are non-negative over the interval
[0, T], a sufficient condition for the inequality (3.23) to hold is that the coefficients αi

satisfy

αi ≤ 0, i = 1, . . . , k (3.24)

It should be noted that γi(t) need not to be the same as the basis functions used in (3.19).
For example, one can use the monomial basis, 1, t, t2, . . . , tk, as γi(t) over a domain [0, T]
regardless of the basis functions of choice for parameterizing the flat output. According
to (3.19), the inequalities in (3.24) can be transformed into linear inequalities on ajk.

51

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

� Min-max scheme

To illustrate the idea behind the min-max scheme, consider one such inequality after the
solution form has been imposed

c0(t) + c1(t)a1 + c2(t)a2 + · · ·+ ck(t)ak ≤ 0, t ∈ [0, T]. (3.25)

where cj(t) are time-varying coefficients with a minimum and maximum over [0, T]. Using
these extrema and considering the set of possible coefficient sign distribution, the above
inequality can be replaced by a single sufficient condition on ak. This process should be
repeated for every constraint until a set of sufficient conditions for the entire problem is
obtained.

With the three schemes described above, the infinite set of inequality constraints in (3.16)
is replaced by a finite set characterized by I linear inequalities on the coefficients ajk ∈ Rmk,
provided that a convex approximation of h̄(.), as expressed in (3.18), is available. In general,
the inequalities arising from these schemes are different; the conservative and min-max schemes
might result in sets of inconsistent inequalities, which makes the collocation scheme the most
commonly used among the three. The reader is referred to [VM98] for a comparison between
these schemes. The major drawback of the above explained approach is that the inner approx-
imation of the original feasible region with a polytope, though speeding up the computations,
can lead to overly conservative and suboptimal solutions.

In Sec. 3.2.3 we study other methods for evaluating inequality constraints of the general
form (3.16). But before that, we need to review some basic properties of the Bernstein basis
polynomials, which are the building blocks for defining these alternative methods.

3.2 Bernstein polynomials and Bézier curves

A polynomial curve p is fully described with its coefficients in the polynomial basis of choice.
The set of coefficients together with a value t of the independent variable are the input to algo-
rithms that evaluate p(t). Different polynomial bases, such as the power, Bernstein, Chebyshev,
Legendre, etc. , with different properties, can exert influence over the quality and accuracy
of the output of algorithms. [FG96] shows that Bernstein basis is optimally stable, and yields
systematically smaller condition numbers for roots of arbitrary polynomials on a given interval.
Hence, it can increase reliability of computations when used properly in floating-point arith-
metic [Far08a]. [DS07] demonstrates that Bernstein basis is the best-behaved basis with respect
to rounding errors in intersection algorithms. These attractive properties have given Bernstein
basis a central role for representing polynomial curves and surfaces in computer-aided design
(CAD)-systems.

Using polynomials in Bernstein form, such as Spline and Bézier curves, to parameterize a tra-
jectory in motion planning problems, has also been explored in the literature [VP17c], [Cho+15].
It is proven in [Cic+17] that, for differntially flat systems, the solution to the approximate prob-
lem that is obtained by discretizing the OCP (2.8) using Bernstein polynomials converges to
the optimal solution of the original problem. These special types of polynomial curves possess
properties that, besides allowing for a geometrical interpretation of the design, can significantly
reduce the computational complexity of solving the optimization problem. In the following, we
give an overview of the most important properties and algorithms related to Bézier curves, that
will be later employed in our trajectory-generation framework. A more comprehensive list of
properties can be found in ([Far12]).

52

3.2. Bernstein polynomials and Bézier curves

3.2.1 Bernstein Polynomial: definition and basic properties

Bernstein polynomials form the basis functions for Bézier curves. The Bernstein basis function
of degree n is defined over the interval [0, 1] as

Bi,n(t) =

(
n

i

)
(1− t)n−i(t)i t ∈ [0, 1], (3.26)

where
(
n
i

)
= n!

i!(n−i)! . Bernstein basis polynomials of degree n = 0, . . . , 5 are visualized in Figure

(3.4). Polynomials in Bernstein form were first introduced by Sergei Natanovich Bernstein
in an elegant constructive proof for Weierstrass approximation theorem, which guarantees the
existence of a polynomial pn(t) of a certain degree n that uniformly approximates a given
function, continuous over its domain [a, b], as closely as desired. The Bernstein polynomial
approximation to any continuous function f(t) defined over the interval [0, 1] is specified as

pn(t) =
n∑

i=0

f(
i

n
)Bi,n(t). (3.27)

By choosing a sufficiently high degree, pn(t) can satisfy any prescribed accuracy, i.e., for each
δ > 0 there exist an integer nδ such that

|pn(t)− f(t)| ≤ δ, t ∈ [0, 1], n ≥ nδ. (3.28)

The convergence behavior of the approximant (3.27) stems from the intrinsic properties of
the Bernstein basis functions [Far08b]. In the following, we list some of these properties and the
consequent relations between the behavior of the Bernstein polynomial of the form

p(t) =

n∑
i=0

ciBi,n(t) (3.29)

over the interval [0, 1] and its coefficients c0, . . . , cn ∈ R.

� Non-negativity: All Bernstein basis functions are non-negative on the interval [0, 1].

Bi,n(t) ≥ 0 0 ≤ t ≤ 1 i = 0, . . . , n (3.30)

� Partition of unity: The Bernstein polynomials form a Partition of Unity, i.e. the sum of
Bi,n(t) for all i is equal to 1 at any t ∈ [0, 1].

n∑
i=0

Bi,n(t) = (1− t+ t)n = 1 (3.31)

� Symmetry: The basis functions Bk,n(t) and Bn−k,n(t) are symmetric about the interval
mid-point 1

2 .

Bn−i,n(1− t) = Bi,n(t). (3.32)

� Recursion: The basis polynomial of degree n can be generated using two Bernstein poly-
nomials of degree n− 1, according to

Bi,n(t) = (1− t)Bi,n−1(t) + tBi−1,n−1(t), i = 0, . . . , n (3.33)

with B0,0(t) = 1 and Bi,n(t) = 0 for i < 0 and i > n.

53

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.4: Bernstein basis functions of degree 0, 1, 2, 3, 4, and 5.

� Unimodality: The basis function Bi,n(t) has an extremum at t = i
n . Also, for any param-

eter value t∗ there is a corresponding index i such that

B0,n(t∗) ≤ · · · ≤ Bi−1,n(t∗) ≤ Bi,n(t∗) ≥ Bi+1,n(t∗) ≥ . . . Bn,n(t∗) (3.34)

i.e. Bi,n(t∗) are unimodal with respect to the index i. At t = t∗, the coefficient ci
has the greatest influence on (3.29), while the influence of other control points declines
monotonically as their indices deviates further from i.

� Upper and lower bounds: The non-negativity and partition of unity properties imply that
for any parameter value t ∈ [0, 1], (3.29) satisfies the inequality

min
i=0,...,n

ci ≤ p(t) ≤ max
i=0,...,n

ci (3.35)

� End point values: The Bernstein polynomial (3.29) satisfies

p(0) = c0, p(1) = cn. (3.36)

� Degree elevation: Bi,n(t) can be expressed in terms of the Bernstein polynomials of degree
n+ 1, according to

Bi,n(t) = (1− i

n+ 1
)Bi,n+1(t) +

i+ 1

n+ 1
Bi+1,n+1(t). i = 0, . . . , n (3.37)

More generally, Bi,n(t) can be written in terms of the basis functions of degree n+ r as

54

3.2. Bernstein polynomials and Bézier curves

Bi,n(t) =

i+r∑
j=i

(
n
i

)(
r

j−i

)(
n+r
j

) Bj,n+r(t). i = 0, . . . , n (3.38)

� Variation diminishing property: The number N of real roots of the Bernstein polyno-
mial p(t) on the open interval t ∈ (0, 1) is less than the number of sign variations in its
coefficients by an even amount,

N = S(r̄0, . . . , r̄n)− 2K, (3.39)

with K being a non-negative integer, K ≥ 0.

� Relation to monomial basis: The Bernstein and monomial (power) bases of degree n are
related by the expressions

ti =
n∑

j=i

(
j
i

)(
n
i

)Bj,n(t), (3.40)

Bi,n(t) =
n∑

j=i

(−1)j−i

(
n

j

)(
j

i

)
tj . i = 0, . . . , n (3.41)

For i = 0, (3.40) induces the partition of unity property, and for i = 1 it yields the linear
precision property expressed as

t =
n∑

i=0

i

n
Bi,n(t). (3.42)

The above expression implies that the monomial t can be generated as the weighted sum
of Bernstein polynomials of degree n with coefficients equally spaced in the interval [0, 1].

� Mapping to an arbitrary domain: The interval [0, 1] can be mapped to an arbitrary interval
[t1, t2] through proper scaling of the independent variable. The change of variable, t→ rt,
maps the interval to [0, r]. Performing a binomial expansion, Bj,n(rt) can be written as

Bj,n(rt) =
n∑

k=j

Bj,k(r)Bk,n(t), j = 0, . . . , n (3.43)

which allows the coefficients of p(t) on [0, r], as generated by subdivision at t = r with the
de Casteljau’s algorithm (See Sec. 3.2.2.2), to be expressed in terms of the coefficients on
[0, 1]. (3.43) can be generalized to obtain the corresponding basis defined on an arbitrary
interval [t1, t2] ⊂ [0, 1]:

B̄j,n(t) =

(
n

j

)
(t2 − t)n−j(t− t1)j

(t2 − t1)n
, j = 0, . . . , n (3.44)

If c0, c1, . . . , cn are the coefficients of the Bernstein polynomial p(t) in the basis function
on [0, 1], its c̄0, c̄1, . . . , c̄n coefficients in the analogous basis, B̄j,n(t) defined on the interval
t1, t2], can be obtained by a matrix multiplication, given by

c̄j =
n∑

i=0

ciMij (3.45)

55

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

The elements of the matrix, Mij , can be expressed as sums of products of the basis functions
Bi,n(t) evaluated at t1 and t2:

Mij =

min(i,j)∑
k=max(0,i+j−n)

Bi−k,n−j(t1)Bk,j(t2), 0 ≤ i, j ≤ n (3.46)

Since Bi−k,n−j(0) ̸= 0 only when k = i and Bk,j(1) ̸= 0 only when k = j, for [t1, t2] = [0, t0]
the elements of matrix M reduce to

Mij =

{
Bi,j(t0) if i ≤ j

0 if i > j
(3.47)

and for [t1, t2] = [t0, 1], they become

Mij =

{
0 if j < i

Bi−j,n−j(t0) if j ≥ i (3.48)

Therefore, for these subintervals, the coefficients are immediately obtained from the orig-
inal coefficients, as against the matrix multiplication in (3.45).

� Derivatives and integrals: The Bernstein basis functions satisfy

d

dt
Bi,n(t) = n

(
Bi−1,n−1(t)−Bi,n−1(t)

)
i = 0, . . . , n (3.49)

where B−1,n−1 ≡ 0 and Bn,n−1 ≡ 0. Thus, the first derivative of the Bernstein polynomial
p(t) is also a Bernstein polynomial, of degree n− 1, given by

p′(t) =
n−1∑
i=0

c′iBi,n−1 (3.50)

where c′i = n(ci+1 − ci). The coefficients for higher-order derivatives are obtained as

c
(q)
i = (n− q + 1)(cq−1

i+1 − c
q−1
i) i = 0, . . . , n− q (3.51)

The indefinite integral of the Bernstein basis function is obtained as

∫
Bi,n(t)dt =

1

n+ 1

n+1∑
j=i+1

Bj,n+1(t). (3.52)

Accordingly, the indefinite integral of the Bernstein polynomial p(t) may be expressed as∫
p(t)dt =

n+1∑
i=1

(1

n+ 1

i−1∑
j=0

cj

)
Bi,n+1(t) + const. (3.53)

Noting that
∫
Bi,n(t)dt = 1

n , the definite integral of p(t) over [0, 1] is given by

∫ 1

0
p(t)dt =

1

n+ 1

n∑
j=0

cj (3.54)

56

3.2. Bernstein polynomials and Bézier curves

� Arithmetic operations: The set of Bernstein polynomials is closed under the arithmetic
operations of addition, subtraction, multiplication, and composition. To add or subtract
two Bernstein polynomials of the same degree, one can simply add or subtract their re-
spective coefficients. Otherwise the degrees of the two polynomials must be matched using
the degree elevation before adding or subtracting the coefficients. The coefficients corre-
sponding to adding/subtracting two Bernstein polynomials r(t) and s(t) of degree m and
n, m > n, with coefficients r0, . . . , rm and s0, . . . , sn, are given by

ci = ri ±
min(n,i)∑

j=max(0,i−m+n)

(
m−n
i−j

)(
n
j

)(
m
i

) sj , i = 0, . . . ,m (3.55)

and the coefficients of their product are obtained according to

ci =

min(m,i)∑
j=max(0,i−n)

(
m
j

)(
n

i−j

)(
m+n

i

) rjsi−j , i = 0, . . . ,m+ n (3.56)

The composition of the two polynomials r(t) and s(t), p(u) = r(s(u)), is a Bernstein
polynomial of degree mn and its coefficients are obtained through a recursive algorithm
that populates a three-dimensional array with rki,j using the following expression for k =
1, . . . ,m, i = 0, . . . ,m− k, and j = 0, . . . , kn

rki,j =
1(
kn
j

) min(j,kn−n)∑
l=max(0,j−n)

(
kn− n

l

)(
n

j − l

)(
(1− sj−l)r

k−1
i,l + sj−lr

k−1
i+1,l

)
(3.57)

where r0i,0 = ri, i = 0, . . . ,m. Then, the coefficients are specified by

cj = rm0,j , j = 0, . . . ,mn (3.58)

3.2.2 Bézier curves

With the advent of computer graphics, Bernstein polynomials gained popularity in computer
aided design in the form of Bézier curves. The coincidental work of two French automotive
engineers, Pierre Étienne Bézier of Renault and Paul de Faget de Casteljau of Citroën, who
were concerned with developing new mathematical tools for intuitive design and interrogation of
complex shapes, such as automobile bodies, led to the adoption of Bernstein form, characterized
by what is now called a Bézier curve [Far12]. Besides inheriting simplicity of polynomials,
Bézier curves have several other properties that allow designers to analyze and manipulate the
curve shape in a simple and intuitive way. In the following, we explore geometric properties and
algorithms associated with Bézier curves that make them appealing for describing the trajectories
in motion planning problems.

3.2.2.1 Definition and shape features

Given a set of n + 1 control points ri, i = 0, . . . , n, the corresponding Bézier curve of degree n
is defined as

r(τ) =

n∑
i=0

riBi,n(τ). (3.59)

where ri ∈ R2 for planar curves and ri ∈ R3 for spatial curves. Figure (3.5) shows a cubic Bézier
curve with its control polygon obtained by drawing lines between consecutive control points.

57

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Bézier curves have several geometric and analytical properties that can be particularly useful in
trajectory generation applications. We provide a list of the most important ones below.

Figure 3.5: A cubic Bézier curve with control polygon

Geometry invariance property: The shape of a Bézier curve does not change under
translation and rotation of its control points. This property is directly derived from the partition
of unity of the Bernstein basis functions.

Endpoints Geometric property: The first and last control points, r̄0 and r̄n, are the
endpoints of the curve, i.e.,

r(0) = r0, r(1) = rn. (3.60)

which can be simply verified by inserting τ = 0, 1 in (3.59). Also, a Bézier curves is tangent to
its control polygon at the endpoints.

r′(0) = n(r1 − r0), r′(1) = n(rn − rn−1) (3.61)

which is easily observed by taking the first derivative of r(τ) using (3.49). Figure 3.6 shows a
quartic Bézier curve and its control polygon, and its first derivative called hodograph.

Figure 3.6: A quartic Bézier curve (left) and its first derivative (right). The
derivative at the endpoints depend only on the first two and last two control
points.

Convex hull property: A Bézier curve is contained within the convex hull of its control
polygon, that is expressed as

58

3.2. Bernstein polynomials and Bézier curves

r(τ) ∈ CH(R̄), τ ∈ [0, 1], (3.62)

where the convex hull CH(R̄) defined by the set of control points R̄ is the boundary of the
smallest convex set that contains all the points, that is,

CH(R̄) = {a0r0 + · · ·+ anrn|a0 + · · ·+ an = 1, ai ≥ 0}. (3.63)

The convex hull property states that the entire Bézier curve is inside a computable region.
The convex hull property for a quartic Bézier curve is visualized in Figure (3.7).

Figure 3.7: A cubic Bézier curve contained within the convex hull defined by
its 4 control points. The control points are shown in red circles and control
polyline in dashed line segments.

Variation diminishing property: A straight line may not intersect a planar Bézier curve
more times than it intersects the control polygon. The same property holds true for a plane and
a spatial Bézier curve. This implies that a Bézier curve cannot be more complex than its control
polygon, i.e., the control polygon turns and twists more frequently than the Bézier curve itself.
This property is illustrated in Figure (3.8).

Figure 3.8: A Bézier curve oscillates no more than the piece-wise linear in-
terpolant to its control points.

Symmetry: Relabeling the control points as r̄i = rn−i and using the symmetry property of
the Bernstein basis polynomials yield

59

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.9: A cubic Bézier curve is evaluated τ = 0.4 (left). The pyramid scheme of the de
Casteljau’s algorithm (right) for 3 iterations. The right and left sides of the pyramid show the
control points for the new control polygons.

n∑
i=0

riBi,n(t) =
n∑

i=0

r̄iBi,n(1− t) (3.64)

3.2.2.2 Algorithms

De Casteljau’s Algorithm:
Using the definition in (3.59) to evaluate a point on a Bézier curve can cause numerical

instability for high degree curves. The de Casteljau’s algorithm has established an alternative
method to find r(τ) using only the control points ri. Given a specific value of τ ∈ [0, 1], the
algorithm starts by dividing each polyline between two consecutive control points ri and ri+1,

i = 0, . . . , n− 1, in a ratio of τ : 1− τ to obtain n new points, indicated by r
(1)
i . This process is

repeated using the new set of points to obtain r
(2)
i , i = 0, . . . , n−2. Repeating the subdivision n

times yields a single point r
(n)
0 which can be proved to be the point on the curve corresponding

to τ . Figure (3.9) provides a geometrical interpretation of the algorithm for a cubic curve with
4 control points and τ = 0.4.

The above procedure can be expressed as a recursive formula. Initialized with r
(0)
i = ri, at

each iteration j a set of n − j points is calculated by linear interpolations of the points in the
previous iteration, according to

r
(j)
i = (1− τ0)r(j−1)

i + τ0r
(j−1)
i+1 i = 0, . . . , n− j

j = 1, . . . , n (3.65)

The single point obtained at j = n is the point on the curve corresponding to τ0, that is,

r
(n)
0 = r(τ0). (3.66)

The de Casteljau’s algorithm also provides a subdivision scheme for Bézier curves. The two

sets of {r(k)0 | k = 0, . . . , n} and {r(k)n−k| k = 0, . . . , n}, corresponding to the two sides of the
de Casteljau’s pyramid (Fig. 3.9), form the control points for two Bézier curves of degree n,
defined over [0, τ0] and [τ0, 1], that divide the original curve r(τ) at τ0. Figure (3.10) illustrates
the application of the de Casteljau’s algorithm for splitting a cubic Bézier curve into two pieces
at different points on the curve.

60

3.2. Bernstein polynomials and Bézier curves

Figure 3.10: A cubic Bézier curve is divided into two Bézier curves of the
same degree, n = 3, at τ = 0.3, 0.5, 0.7, using the de Casteljau’s algorithm.

Degree Elevation:

The Degree Elevation algorithm is incredibly useful for applications involving two or more
Bézier curves with different degrees. It allows expressing the Bézier curve r(τ), of true degree
n, in the Bernstein basis of degree n+ r, for all r > 0, without changing its shape. In order to
obtain the higher degree Bézier curve, one should find the set of control points rn+r

0 , . . . , rn+r
n+r

such that (3.59) can be written as,

r(τ) =

n+1∑
i=0

rn+1
i Bi,n+1(τ). (3.67)

The first and last control points must obviously be in the new set since the higher degree
representation is supposed to retain the shape. The rest of the control points can be achieved
by substituting (3.37) into (3.59). The following formula gives the new n+ 2 control points for
the unit degree elevation:

rn+1
i =

i

n+ 1
rni−1 + (1− i

n+ 1
)rni i = 1, . . . , n (3.68)

where rn+1
0 = rn0 and rn+1

n+1 = rnn. It can be implied from (3.68) that each polyline will ex-
actly contain one new control point. The control points for an m-fold degree elevation can be
determined by using (3.69) as

rn+m
i =

min{n,i}∑
j=max{0,i−m}

(
n
j

)(
m
i−j

)(
n+m

i

) rnj . i = 0, . . . , n+m (3.69)

Fig. 3.11 shows a cubic Bézier curve expressed in terms of basis functions of degree 4, 6, and
15 with the new set of control points obtained using (3.68).

61

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.11: A cubic Bézier curve is expressed in terms of higher degree basis
functions, n = 4, 6, 15, using the degree elevation algorithm.

Degree reduction:

The true degree of a Bézier curve can not be immediately determined from its control points.
If r(τ) is of the true degree n −m then the power coefficients in monomial basis must satisfy
the following conditions

an−1 ̸= 0

an = · · · = an−m+1 = 0 (3.70)

Using (3.40), the coefficients ak can be expressed in terms of the control points as,

ak =
k∑

j=0

(−1)k−j

(
n

k

)(
k

j

)
rj , k = 0, . . . , n. (3.71)

Assuming that the above conditions on ak hold, the control points in the Bernstein basis of
degree n−m can be obtained from

rn−m
k =

k∑
j=0

(−1)k−j

(
k−j+m−1

m−1

)(
n
j

)(
n−m
k

) rnk , k = 0, . . . , n−m (3.72)

Continuity Algorithm:

Complex curves can be represented with piece-wise Bézier curves, formed by joining sev-
eral Bézier curves end-to-end, as an alternative to using higher degree curves. The continuity
algorithm addresses geometric and parameter continuity between consecutive curves. Position
continuity, i.e. G0 continuity, requires the endpoints of two consecutive curves, ri(τ) and ri+1(τ),
to coincide, that is

ri(1) = ri+1(0), (3.73)

which is equivalent to rni,i = r0,i+1. Tangent continuity or G1 can be enforced through the
equality constraints given by

62

3.2. Bernstein polynomials and Bézier curves

ṙi(1) = ni(∥rni,i − rni−1,i∥)t (3.74)

ṙi+1(0) = ni+1(∥r1,i+1 − r0,i+1∥)t

where t is a common unit vector ensuring rni−1,i, rni,i = r0,i+1, and r1,i+1 are on the same line.
The more stringent parametric continuity conditions, Ck, requires the k-th derivative and all
lower derivatives of the consecutive segments to be equal at the joining point. In other words,

dkri(1)

dtk
=
dkri+1(0)

dtk
k ∈ {0, . . . , k} (3.75)

If we assume that the global parameter t runs over the interval [ti, ti+1] for the i-th segment
of the composite curve, then ri(t) is defined as

ri(t) =

ni∑
k=0

r̄k,iBk,ni
(τi(t)) (3.76)

where the local parameter τi(t) is related to the global parameter by

0 ≤ τi = ζi(t) =
t− ti
ti+1 − ti

≤ 1 (3.77)

For the i-th and i+1-th segments, the first order parametric continuity or C1 continuity can
be stated as

∆ti+1ni(rni,i − rni−1,i) = ∆tini+1(r1,i+1 − r0,i+1) (3.78)

where ∆ti = ti+1 − ti. Likewise, the C2 continuity condition can be expressed as

∆ti+1

∆ti
(rni−1,i − rni−2,i) + ni(ni+1 − 1)rni−1,i + nirni,i =

∆ti
∆ti+1

(r1,i+1 − r2,i+1) + ni+1(ni − 1)r1,i+1 + ni+1r0,i+1 (3.79)

Higher-order parametric continuity conditions can be obtained likewise.

3.2.3 Evaluating Inequality constraints using B-spline and Bézier curves prop-
erties

The main reason for adopting Bernstein polynomials, i.e. B-spline and Bézier curves, for de-
scribing trajectories is that their properties and algorithms can be exploited to develop reliable
algorithms for finding intersections between trajectories. The convex hull property and subdi-
vision algorithms, in particular, have been extensively used in collision detection and trajectory
generation problems. In the following, we first review existing algorithms and then we pro-
pose an efficient method for evaluating the inequality constraints, including collision-avoidance
constraints, whose functions can be expressed in Bézier form. As we will explain in detail the
proposed method converts the semi-infinite optimization problem associated with polynomial
path parameterization into a standard finite dimensional optimization problem.

63

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

3.2.3.1 Literature Review

Finding the minimum distance between two parametric curves c1(u) and c2(v) can be turned
into finding the roots of a system of nonlinear equations, expressed as

fu(u, v) = 0,

fv(u, v) = 0, (3.80)

where f(u, v) is the squared distance between c1(u) and c2(v), i.e.,

f(u, v) =
(
c1(u)− c2(v)

)2
. (3.81)

There exist different methods for solving the system of nonlinear equations (3.80) (See
[EK01], [PM02], [EG08], and [LS02]); however, as stated in [JC98], root finding methods have low
robustness and efficiency. Alternative methods for computing the minimum distance between
parametric curves and surfaces of general form can be found in [LT95], [LM95], and [LS02].
For NURBS, B-spline and Bézier curves, more efficient and robust algorithms are respectively
proposed in [Che+10], [Che+09], and [Cha+11]. These methods are not only geometrically
intuitive, but can also find the minimum distance to an arbitrary tolerance by using the unique
properties of Bernstein basis polynomials.

The recursive algorithm proposed in [Cha+11] uses a pruning scheme to find the minimum
distance between two Bézier curves (or surfaces) by repeatedly testing an exclusion criteria and
subdividing the two curves. At each iteration, the algorithm computes a global upper bound
of the minimum distance which converges to the actual minimum distance dmin. The algorithm
then subdivides the two curves, using the de Casteljau’s algorithm, and finds lower bounds of
the minimum distance between each pair of the curve segments. If the computed lower bound
is greater than the global upper bound, then the pair will be excluded. Otherwise, subdivision
of the curve segments will be repeated until the two bounds are arbitrarily close. For two given
Bézier curves r(τ) of degree n and s(τ) of degree m, and a given tolerance ϵ, the algorithm is
summarized below.

Algorithm 1 Computing the minimum distance between two Bézier curves r(τ) and s(τ)
[Cha+11]

Input: {r0, . . . , rn},{s0, . . . , sm}
Input: d=’Initial estimate of the upper bound’

1: if upperBound(r, s) ≤ d then
2: d← upperBound(r, s)
3: end if
4: if lowerBound(r, s) ≥ d(1− ϵ) then
5: else
6: Subdivide r into r(1) and r(2)

7: Subdivide s into s(1) and s(2)

8: d← min(d,Algorithm 1(r(1), s(1), d))
9: d← min(d,Algorithm 1(r(1), s(2), d)) ▷ Only for the spatial minimum distance

10: d← min(d,Algorithm 1(r(2), s(1), d)) ▷ Only for the spatial minimum distance
11: d← min(d,Algorithm 1(r(2), s(2), d))
12: end if
13: return d

The upper bound, d, can be obtained by sampling any two points on the curves; however,
making use of the end point interpolation property, the distance between the closest pair of
endpoints can be selected as d, i.e.,

64

3.2. Bernstein polynomials and Bézier curves

Figure 3.12: A Bézier curve of degree 4 (red) and a Bézier curve of degree
5 (green). The solid lines are the control polylines and the shaded areas are
the convex hulls of the curves. According to (3.82), the upper bound of the
minimum distance between the two curves is ∥r0 − s4∥ = 1, and the lower
bound, i.e., the distance between the convex hulls, is 0.

d = min{∥r0 − s0∥, ∥r0 − sm∥, ∥rn − s0∥, ∥rn − sm∥} (3.82)

where r0, rn, s0, and sm are the first and last control points of r(t) and s(t), respectively. The
lower bound of the minimum distance, d, is estimated by the minimum distance between the
convex hulls of the given Bézier curves, which can be computed using the Gilbert-Johnson-
Keerthi (GJK) distance algorithm of convex shapes. Since the GJK algorithm only requires a
supporting vertex of the convex hull in a given directional vector, there is no need to explicitly
construct the convex hulls (The GJK algorithm is explained in the next Chapter). An example
for the upper bound and lower bound of the minimum distance between two Bézier curves is
shown in Fig. 3.12.

Fig. 3.13 shows three examples of the obtained minimum spatial and temporal distance
computation between two planar Bézier curves of different degrees using Algorithm 1 with
ϵ = 10−8. In order to find the temporal minimum distance with Algorithm 1, the upperBound
subroutine must only compare the two values ∥r0 − s0∥ and ∥rn − sm∥, and the two curves
must be subdivided at the same parameter value (Line 6 and Line 7). Algorithm 1 can also be
modified to find the extrema of a Bézier curve.

This Algorithm is used in [Kie+22] to ensure spatial or temporal separation of flight tra-
jectories. The proposed framework in [Kie+22] enforces the minimum distance between two
trajectories, expressed as Bézier curves, to be greater than the minimum safe distance. This
approach can circumvent the problem associated with time gridding, and does ensure the sat-
isfaction of collision-avoidance constraints at all time instances [Cho17], yet it suffers from a
major drawback; incorporating the non-smooth function for computing dmin, i.e. Algorithm
1, in the trajectory generation problem calls for non-smooth optimization techniques such as
sub-gradient and bundle methods, which in turn cause a significant increase in computational
costs of generating trajectories.

A more efficient method for treating the collision-avoidance constraint in trajectory gen-
eration problems is proposed in [MVP16] for B-spline curves. This method can be used for
evaluating any inequality constraint in the problem, provided that it is expressed as a B-spline.
For the spline function, given by

r(t) =
n∑

i=0

riNi,k(t), (3.83)

65

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.13: Comparing the minimum spatial (left) and temporal (right)
distance between a Bézier curve of degree 4 (red) and a Bézier curve of degree
5 (green). The parameter value is indicated in the color bar to show the
temporal evolution of the curves. The results are computed using Algorithm
1 with ϵ = 10−8 in < 4 ms.

66

3.2. Bernstein polynomials and Bézier curves

where Ni,k is the B-spline basis function of degree k, any inequality constraint of the form
r(t) ≤ 0 is replaced with the finite set of sufficient conditions on its control points, i.e.,

ri ≤ 0, i = 0, . . . , n (3.84)

The above set of constraints is directly derived from the fact that a B-spline curve is contained
in the convex hull of its control points (or de Boor points). (The reader is referred to Appendix
C for a brief review of the propoerties of the B-spline basis functions). This method, known as
B-spline relaxation, transforms the semi-infinite optimization problem, involving (3.16), into an
efficiently solvable finite dimensional problem. However, the distance between the control poly-
gon and the B-spline curve itself introduces conservatism, which can be reduced by representing
the curve in a higher dimensional B-spline bases that includes the original one [VP17c]. Such
bases can be obtained by inserting extra knots. Introducing a new knot is followed by removing
k − 1 of the original control points and replacing them with k new control points. Considering
that a single knot t̄ ∈ [tl, tl+1) is inserted into the knot vector T = [t0, t1, . . . , tl, tl+1, . . .], the
B-spline curve (3.83) can be expressed in the new basis functions as

r(t) =

n+1∑
i=0

r̄iN̄i,k(t), (3.85)

where

N̄i,k(t) = Ni,k(t), i = 0, . . . , l − k − 1, (3.86)

N̄i,k(t) = Ni−1,k(t), i = l + 2, . . . , n+ 1.

The new control points can be obtained from the Boehm’s algorithm [PBP02] as

r̄i = (1− αi)ri−1 + αiri, (3.87)

where αi is the ratio of dividing the affected knot span and is obtained as

αi =

1 i ≤ l − k
0 i ≥ l + 1

t̄−ti
ti+k−ti

l − k + 1 ≤ i ≤ l
(3.88)

More general algorithms, such as Oslo algorithm, for inserting several knots into the knot
vector exist. These algorithms can be used to represent a B-spline curve in a higher dimensional
basis for reducing the conservatism in the constraint set (3.84). However, it also increases the
number of control points, and thus the number of constraints. Therefore, it is necessary to
make a trade-off between conservatism and computational burden. Overall, B-spline relaxaion
is an efficient method for evaluating inequality constraints whose functions can be expressed in
B-spline basis. Yet, a few important questions have remained unanswered in [VP17c] including
where the new knots should be inserted or how many knot insertions are necessary so that the
new control points are sufficiently close to the B-spline curve.

67

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.14: A B-spline curve of degree 3 (bottom left) and the corresponding B-splines
defined over the knot vector T = [0, 0, 0, 0, 1, 1, 2, 2, 2, 4, 5, 5, 5, 5] (top left). Figures
on the right show the effect of inserting a single knot at t = 3 on the B-splines and
the control polyline. The three new control points, generated with Boehm’s algorithm
and shown with red dots, replace the original control points r6 and r7.

3.2.3.2 Evaluating inequality constraints in Bernstein form

Here, we leverage Bézier curve properties and algorithms to efficiently evaluate inequality con-
straints, and convert the semi-infinite optimization problem involving (3.16) into a computa-
tionally tractable one containing a countable number of constraints. Without loss of generality,
we assume that h̄(.) in (3.16) is a scalar-valued function. If this function can be represented as
a Bernstein polynomial of the form

h̄(τ) =

nh∑
i=0

h̄iBi,nh
(τ), (3.89)

with control points, h̄i ∈ R, i = 0, . . . , nh, then the inequality constraint h̄(τ) ≤ 0, τ ∈ [0, 1] can
be replaced by a finite set of constraints on the control points,

h̄i ≤ 0 for i = 0, . . . , nh. (3.90)

Therefore, owing to non-negativity and partition of unity of Bernstein basis functions, the
original (infinitely many) inequality constraint is converted into a finite set of constraints. The
resulting set of constraints will guarantee that h̄(τ) ≤ 0 is satisfied over the entire domain [0, 1].
It should be noted that h̄i are functions of the optimization variables, i.e. the coefficients ajk in
(3.17).

The main problem with the above approach is that it can lead to an overly conservative
set of constraints due to the existing gap between the control points and the actual curve.
The conservatism can be reduced by refining the representation of h̄(τ) with closer control

68

3.2. Bernstein polynomials and Bézier curves

points to the curve obtained from degree elevation or subdivision (using the de Casteljau’s
algorithm). The new control points, obtained with either method, are convex combinations of
the original ones resulting in numerically stable algorithms. Reducing the conservatism using a
refined control polygon of h̄(τ) increases the number of constraints, and thus, making a trade-
off between conservatism and computational cost is essential. Nonetheless, the optimization
variables remain the same with repeated degree elevation or subdivision [SCP20].

As we will show below, the sequence of control polygons generated with repeated degree
elevation or subdivision converges to the underlying Bézier curve, h̄(τ), yet, while the former
converges linearly, the latter can converge quadratically with respect to the subdivision level.
Furthermore, doubling the degree of h̄(τ) by repeated degree elevation from 2knh to 2k+1nh

requires
(

2k+1

2nh+1

)
−
(

2k

2nh+1

)
≈ 3

(
2k

2nh+1

)
additions and multiplications, while generating the same

number of control points with subdivision at midpoints only costs 2k
(
nh
2

)
operations [NPL98].

More importantly, subdivision with the de Casteljau’s algorithm allows refining the control
polygon locally, whereas degree elevation affects the entire control polygon (cf. Fig. 3.10 and Fig.
3.11). Therefore, throughout the thesis, we use subdivision using the de Casteljau’s algorithm
to obtain refined control polygons of a Bézier curve.

Using (3.65), the Bézier control polygon of h̄(τ) can be obtained over any number of adjacent
intervals, [0, τ0], [τ0, τ1], . . . , [τk−1, 1], by repeated subdivision. The control polygons together
construct the composite control polygon of h̄(τ) over [0, 1] with knh + 1 distinct vertices. For
the Bézier representation of the curve segment over the sub-interval [τ̄ , τ̄ + nh∆τ] with control
points h̄i,[τ̄ ,τ̄+nh∆τ], i = 0, . . . , nh, there is a constant c independent of τ̄ such that [PBP02]

max
i

∣∣h̄(τ̄ + i∆τ)− h̄i,[τ̄ ,τ̄+nh∆τ]

∣∣ ≤ c∆τ2 (3.91)

As we will study in the next section, the lowest possible constant c for which the above
estimate holds can be obtained for infinity norm. It can be observed from (3.91) that the Bézier
control polygon of a small segment of the curve is a fairly good approximation of the segment.
It can also be shown that the distance between the Bézier segment and its linear interpolant,
given by

l(τ) = h̄0,[τ̄ ,τ̄+nh∆τ](1− τ) + h̄nh,[τ̄ ,τ̄+nh∆τ]τ, (3.92)

is bounded by 1
8nh(nh − 1) max

{∣∣∆2h̄i,[τ̄ ,τ̄+nh∆τ]

∣∣ | i = 0, . . . , nh − 2
}

. Therefore, if

max
i=0,...,nh−2

∣∣∆2h̄i,[τ̄ ,τ̄+nh∆τ]

∣∣ ≤ ϵ (3.93)

the Bézier control polygon over the sub-interval [τ̄ , τ̄ + nh∆τ] is close to a line segment. The
above bound offers a simple measure of the straightness of the Bézier control polygon using the
second forward differences of the control points, and can be used as a stopping criteria for an
algorithm that computes an approximant Bézier polygon of a curve with repeated subdivision.

69

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.15: A cubic Bézier curve (top left) is subdivided into two Bézier
curves of the same degree (top right) using the de Casteljau’s algorithm.
Successive refinement of the original control polygon after 2 (bottom left)
and 3 (bottom right) subdivisions. The composite control polygon gener-
ated by repeated subdivisions converges to the Bézier curve.

3.2.4 Quantitative bounds on the distance between a Bézier curve and its
control polygon

In this section, we employ the techniques and results in [NPL99] to compute the distance between
a scalar-valued polynomial in Bézier form and its control polygon. As we will see, quantitative
bounds on the maximum distance can be obtained from the sequence of the control points
and some constant that depend on the degree of the polynomial [MZ06]. We will show that
these bounds can be used in combination to obtain a polygonal approximation of Bézier curves
with improved error bound compared to the original control polygon. We will also study the
convergence behavior of repeated subdivision and degree elevation. Finally, we will show that
the composite control polygon generated with subdivision (or degree elevation) can be locally
and adaptively refined to meet a given tolerance.

3.2.4.1 Bézier control polygon

Consider the one dimensional Bézier curve of degree n, given by

r(τ) =

n∑
i=0

riBi,n(τ) (3.94)

where ri ∈ R, i = 0, . . . , n. The control polygon l(τ) of r(τ) is obtained by connecting the points
(τk, rk) where the first coordinates are the Greville abscissae, i.e., τk := k

n . The k-th piece of the
control polygon, l[τk,τk+1], is a line segment over the interval [τk, τk+1], and is defined as

l[τk,τk+1] = rk
τk+1 − τ
τk+1 − τk

+rk+1
τ − τk

τk+1 − τk
= rk(k + 1− nτ) + rk+1(nτ − k). (3.95)

70

3.2. Bernstein polynomials and Bézier curves

Therefore, on the interval [τk, τk+1], we have

r(τ)− l(τ) =

n∑
i=0

riαki(τ), (3.96)

where

αki(τ) := Bi,n(τ)−

k + 1− nτ if i = k
nτ − k if i = k + 1

0 else
(3.97)

Figure 3.16: αi(τ) for n = 5 and i = 0, . . . , 5. For any partcular value of τ ,
the sum of αi is 0, i.e.,

∑n
i=0 αi(τ) = 0.

The partition of unity property of Bernstein bases implies that

n∑
i=0

αki = 0, (3.98)

and from Eq. (3.40), we obtain

n∑
i=0

iαki = 0. (3.99)

As a result, αki satisfies

i∑
j=0

(i− j)αkj =

n∑
j=i

(j − i)αk,j , (3.100)

Accordingly, αki(τ) can be expressed as the centered second differences of the non-negative
functions

βki(τ) :=
i∑

j=0

(i− j)αkj(τ) =

{ ∑i
j=0(i− j)Bj,n(τ) for 0 ≤ i ≤ k∑n
j=i(j − i)Bj,n(τ) for k + 1 ≤ i ≤ n (3.101)

that is

71

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

αki = ∆2βki = βk,i+1 − 2βki + βk,i−1 for 1 ≤ i ≤ n (3.102)

assuming that βk,−1(τ) = βk,n+1(τ) = 0.

It can be observed from (3.101) that βk0(τ) = βkn(τ) = 0. Fig. 3.17 shows βi(τ) for d = 5
and i = 1, 2, 3, 4. βi(τ) = βki(τ) on [tk, tk+1], and have a maximum at τi = i

n .

Figure 3.17: βi(τ) for n = 5 and i = 1, 2, 3, 4. βi(τ) is monotonically increas-
ing on [0, τi] and decreasing on [τi, 1], where τi = i

n . The dashed line shows
their piece-wise sum, i.e.,

∑
i βki(τ).

As we will see below, using the second anti-differences functions, βki(τ), leads to bounds
that include second differences of the control points. Choosing m-th differences, m > 2, of the
control point sequence does not result in better bounds than those of second difference [NPL98].
Here, we also study the result for the first difference, i.e., m = 1.

The functions αki(τ) can be expressed as the first differences of the functions γki(τ), given
by

γki(τ) :=

i∑
j=0

αkj(τ) :=

i∑
j=0

Bj,n(τ)−

0, if i < k

k + 1− nτ, if i = k
1, if i > k

(3.103)

that is

αki = ∆γki := γki − γk,i−1 (3.104)

It can be readily noted from (3.103) that, over the interval [τk, τk+1], γki is positive for i < k
and negative for i > k while γkk changes sign over the interval. For d = 5 and i = 0, . . . , 4,
γi(τ) = γki(τ) on [τk, τk+1] are displayed in Fig. 3.18.

3.2.4.2 Bounding functions

The distance between the Bézier curve r(τ) and its control polygon over the interval [tk, tk+1] is
measured by

∥r− l∥p,[τk,τk+1] = max
τ∈[τk,τk+1]

∥r(τ)− l(τ)∥p, (3.105)

72

3.2. Bernstein polynomials and Bézier curves

Figure 3.18: The first anti-differences of αki, γki(τ), for n = 5 and i =
0, . . . , 4. The dashed line shows the piece-wise sum of the absolute of γi, i.e.,∑

i |γki|.

where ∥.∥p, p ≥ 1 is the p-norm. Sharp and easily computable upper bounds of the distance
for τ ∈ [0, 1] can be expressed in terms of the p-norm second differences of the control points
sequence and constants depending on the degree [NPL99], i.e.,

∥r(τ)− l(τ)∥p,[0,1] = max
0≤k≤n−1

max
τ∈[τk,τk+1]

∥r(τ)− l(τ)∥p ≤ Np(d)∥∆2r∥p. (3.106)

In the following, we first consider p = ∞, and compare the two cases of first and second
differences.

� Upper bound including ∥∆2r∥∞

For p = ∞, the distance between the scalar Bézier curve r and its control polygon l on a
given interval [τk, τk+1] is defined by

∥r(τ)− l(τ)∥∞,[τk,τk+1]
:= max

τ∈[τk,τk+1]
|r(τ)− l(τ)| (3.107)

Over the interval [0, 1], a bound on the distance can be computed using the Hölder’s inequal-
ity (3.125) as

∥r− l∥∞,[0,1] = max
0≤k≤n−1

∥
n∑

i=0

riαki∥k (3.108)

= max
0≤k≤n−1

∥
n∑

i=0

∆2βkiri∥k

= max
0≤k≤n−1

∥
n∑

i=0

βki∆2ri∥k

≤ max
0≤k≤n−1

∥∥βki(.)∥1∥k∥∆2r∥∞

where ∥.∥k = ∥.∥∞,[τk,τk+1], and ∥∆2r∥∞ is the maximum absolute value of the centered second
differences of the sequence of control points, given by

73

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

∥∆2r∥∞ := max
0≤i≤n

|∆2ri| and ∆2ri := ri−1 − 2ri + ri+1. (3.109)

Using the conversion to monomial bases formula (3.40), ∥βki(.)∥1 can be computed as

∥βki(.)∥1 =
n∑

i=0

|βki(τ)| =
n−1∑
i=1

βk,i(τ) =
n−1∑
i=0

i∑
j=0

(i− j)αk,j(τ) =
n∑

j=0

n−1∑
i=j

(i− j)αk,j(τ) (3.110)

=
n∑

j=0

(n−1−j∑
i=0

i
)
αk,j(τ) =

n∑
j=0

(
n− j

2

)
αk,j(τ)

=

n∑
j=0

(
j

2

)
αk,j(τ) =

n∑
j=2

(
j

2

)
αk,j(τ)

=

n∑
j=2

(
j

2

)
Bj,n(τ) +

k

2
(k + 1− 2nτ)

=

(
n

2

)
τ2 +

k

2
(k + 1− 2nτ)

Therefore,
∑n

i=0 βki is a positive quadratic polynomial over the interval [τk, τk+1], and it
attains a maximum at τk or τk+1, that is

max
τk≤τ≤τk+1

n∑
i=0

βk,i(τ) = max
{ n∑

i=0

βki(τk),

n∑
i=0

βki(τk+1)
}

(3.111)

=

(
n

2

)
k2

n2
−
(
k

2

)
=

k

2n
(n− k)

Hence,

max
0≤k≤n−1

max
τk≤τ≤τk+1

n∑
i=0

βk,i(τ) = max
0≤k≤n

(
n

2

)
k2

n2
−
(
k

2

)
=

k

2n
(n− k) =

⌊n2 ⌋⌈n2 ⌉
2n

(3.112)

Accordingly, the bound on ∥r− l∥∞,[0,1] can be expressed as [NPL98]

∥r− l∥∞,[0,1] ≤ N∞(n)∥∆2r∥∞, (3.113)

where

N∞(n) =
⌊n2 ⌋⌈n2 ⌉

2n
. (3.114)

� Upper bound including ∥∆r∥∞
A bound on the distance between r(τ) and its control polygon can be similarly obtained

using the first differences as

∥r− l∥∞,[0,1] = max
k
∥

n∑
i=0

αk,iri∥k (3.115)

= max
k
∥

n∑
i=0

∆γk,iri∥k = max
k
∥

n∑
i=0

−γk,i∆ri∥k

≤ max
k
∥

n∑
i=0

|γk,i|∥k∥∆r∥∞

74

3.2. Bernstein polynomials and Bézier curves

where
∥∆r∥∞ := max

0≤i≤n
|∆ri| and ∆ri := ri+1 − ri. (3.116)

Considering that γki > 0 for i < k, the sum
∑k−1

i=0 |γki| can be obtained as

k−1∑
i=0

|γki| =
k−1∑
i=0

γki =

k−1∑
i=0

i∑
j=0

Bj,n =

k−1∑
j=0

k−1∑
i=j

Bj,n =

k−1∑
j=0

(k − j)Bj,n = βkk (3.117)

and for i > k, using the partition of unity property, we get

n∑
i=k+1

|γki| = −
n∑

i=k+1

γki = −
n∑

i=k+1

(i∑
j=0

Bj,n − 1
)

=

n∑
i=k+1

n∑
j=i+1

Bj,n (3.118)

=

n∑
j=k+2

j∑
i=k+2

Bj,n =

n∑
j=k+2

(j − k − 1)Bj,n =

n∑
j=k+1

(j − k − 1)Bj,n = βk,k+1.

and finally, making use of (3.40), γkk can be written as

γkk =
k∑

j=0

Bj,n − (k + 1) + nτ =
k∑

j=0

Bj,n − (k + 1)
n∑

j=0

Bj,n +
n∑

j=0

jBj,n (3.119)

=
k∑

j=0

(j − k)Bj,n +
n∑

j=k+1

(j − k − 1)Bj,n = −βkk + βk,k+1

Considering the above Bézier representation of γkk with monotonically increasing sequence
of n+ 1 control points, {−k, . . . , 0, 0, . . . , n− k − 1}, the sum

∑n
i=0 |γki| can be computed as

n∑
i=0

|γki| =
k−1∑
i=0

|γki|+ |γkk|+
n∑

i=k+1

|γki| =
{

2βkk, τ ≤ τ0,
2βk,k+1, τ > τ0

(3.120)

where τ0 ∈ [τk, τk+1] is the corresponding parameter value to the unique zero of γkk. Since∑n
i=0 |γki| is a non-negative convex function over [τk, τk+1] (see Fig. 3.18), we get

max
τk≤τ≤τk+1

n∑
i=0

|γk,i(τ)| = 2max{βkk(τk), βk,k+1(τk+1)} (3.121)

Therefore,

max
k
∥

n∑
i=0

|γki|∥k = 2max
k

βkk(τk) (3.122)

= 2max
k

k∑
j=0

(k − j)Bj,n(τk)

= 2max
k

(n− k)k

n
Bk,n(

k

n
)

= 2
⌊n2 ⌋⌈n2 ⌉
n

B⌈n
2
⌉,n
(⌈n2 ⌉
n

)
= 4N∞(n)B⌈n

2
⌉,n
(⌈n2 ⌉
n

)
That being the case, the bound on ∥r− l∥∞,[0,1] including ∥∆r∥∞ is given by [NPL98]

75

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

∥r− l∥∞,[0,1] ≤ L∞(n)∥∆r∥∞, (3.123)

where

L∞(n) = 4N∞(n)B⌈n
2
⌉,n
(⌈n2 ⌉
n

)
. (3.124)

3.2.4.3 Bound alternatives

Bounds involving p-norm of ∆2r or ∆r can be computed by making proper choices of p and q
in the Hölder’s inequality. To obtain N∞ and L∞, the inequality

n−1∑
i=1

βki∆2ri ≤ ∥βki∥q∥∆2r∥p, q−1 + p−1 = 1, (3.125)

was used with p =∞ and q = 1. Among alternative estimates, the two cases, which p = 1 and
q =∞, and p = q = 2, warrant particular attention.

� p = 1 and q =∞

The distance from the scalar-valued polynomial r(τ) of degree n to its control polygon l(τ)
is bounded by

∥r(τ)− l(τ)∥∞,[0,1] ≤ N1(n)∥∆2r∥1, (3.126)

where

N1(n) = max
k
∥max

i
βki∥k = β⌈n

2
⌉,⌈n

2
⌉(τ

∗) = 2N∞(n)Bn
⌈n
2
⌉(τ

∗) (3.127)

where τ∗ := ⌈n2 ⌉/n [NPL98].
Similarly, we can derive

∥r(τ)− l(τ)∥∞,[0,1] ≤ L1(n)∥∆r∥1, (3.128)

where

L1(n) = max
k
∥max

i
|γki|∥k = γk∗

(k∗ + 1

n

)
(3.129)

where k∗ := ⌊n−2
3 ⌋.

The bounds in (3.113), (3.126), and (??), containing the norm of the second difference vector,
can be interpreted as measuring an estimate of the maximum, total, and average curvature,
respectively. As we will see below, in the first case sharpness is obtained when the curvature is
distributed most evenly, while sharpness in the second is attained when curvature is distributed
most unevenly.

3.2.4.4 Sharpness of the bounds

The above estimated bounds are sharp for all degrees [NPL99], [KKK04]. For quadratic curves,
i.e. n = 2, (3.108) becomes strict equality, i.e.,

∥r(τ)− l(τ)∥∞,[0,1] = ∥∆2r1∥∞N∞(2) (3.130)

where

N∞(2) = max
0≤k≤1

max
τ∈[τk.τk+1]

βk1(τ) (3.131)

76

3.2. Bernstein polynomials and Bézier curves

Therefore, the bound (3.113) is sharp for degree 2. For the m-fold degree elevated represen-
tation of a quadratic curve, r(m)(τ), the second differences of the control points are all equal,
i.e.

∆2r
(m)
i = ∆2r

(m)
1 , i = 1, . . . ,m + 1. (3.132)

and we get equality in (3.108)

∥r(m)(τ)− l(τ)∥∞,[0,1] = |∆2r
(m)
1 | max

0≤k≤m+1
max

τ∈[τk,τk+1]

m+1∑
i=1

βki(τ) (3.133)

and thus

N∞(2 + m) = max
0≤k≤m+1

max
τ∈[τk,τk+1]

m+1∑
i=1

βki(τ), ∥∆2r
(m)∥∞ = |∆2r

(m)
1 | (3.134)

Therefore, the bound (3.113) is sharp for all degrees, if r has no inflection point, i.e. the
sequence of second differences has no sign changes. (cf. Fig. 3.19.)

The above result can be extended to (3.126). Similarly, for quadratic curves (3.126) is sharp
and

N1(2) = max
0≤k≤n−1

max
τ∈[τk.τk+1]

max
1≤i≤n−1

βki(τ) = max
0≤k≤1

max
τ∈[τk.τk+1]

βk1(τ) = N∞(2) (3.135)

Also, for a Bézier curve whose control polygon has the shape of an angle, i.e.,

∆2r⌈n
2
⌉ ̸= 0 ∆2ri = 0 for i ̸= ⌈n

2
⌉, (3.136)

the inequality (3.126) turns into equality

r(τ∗)− l(τ∗) = ∆2r⌈n
2
⌉β⌈n

2
⌉,⌈n

2
⌉(τ

∗) = ∥∆2r∥1N1(n). (3.137)

Therefore, (3.126) is sharp for all degrees if the sequence of second differences has one non-
zero entry at i = ⌈n2 ⌉, where

∑
i βki has a maximum.

3.2.4.5 Bound improvement at the end points

Considering that r(0) = r0 and r(1) = rn, and that the Bézier curve is tangent to its control
polygon over the intervals [0, 1n] and [n−1

n , 1], the above bounds can be improved at the end-
points [NPL98]. The first-order Taylor expansion of r at τ = 0, r(0) + r′(0)τ , agrees with the
first leg of the control polygon, (1− nτ)r0 + nτr1. Hence, for τ ∈ [0, 1/n] and ξ(τ) ∈ (0, 1), the
bound (3.113) can be refined as

∣∣∣r(τ)−
(

(1− nτ)r0 + nτr1

)∣∣∣ =
∣∣∣r′′(ξ(τ))

2
τ2
∣∣∣ (3.138)

≤ τ2

2
n(n− 1)∥∆2r∥∞

≤ n− 1

2
∥∆2r∥∞τ.

The bound improvement for τ ∈ [n−1
n , 1] can be obtained by replacing τ with 1 − τ in the

right-hand side of (3.138). Similarly, the bound (3.126) can be refined over [0, 1/n] as∣∣∣r(τ)−
(

(1− nτ)r0 + nτr1

)∣∣∣ ≤ n− 1

2
∥∆2r∥1τ. (3.139)

77

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

3.2.4.6 Polygonal Envelopes

The above estimated bounds can be used to construct polygonal envelopes of the scalar-valued
polynomial r. The envelope for a constant c, provided by the right-hand side of one of the above
inequalities that bounds the distance between the Bézier curve and its control polygon, is given
by

E(r(τ); p, c) = l(τ)⊕ {q ∈ R| |q| ≤ c} (3.140)

which is the Minkowski sum of the control polygon and a closed set. Fig. (3.19) compares
the polygonal envelopes constructed with different bounds. Fig. (3.19) shows sharpness of the
bound implied by N∞ bound for the first and second (From top) Bézier curves. The third
example and illustrates the effect of sign changes in the sequence of second differences, ∆2r, on
the sharpness of the bound, and the fourth demonstrate a Bézier curve with hat-shaped control
polygon for which (3.126) is sharp.

It should be noted that all bounding regions can be improved at the end points. For N∞,
in particular, using (3.138), the envelope on [0, 1/n] is confined to the region enclosed by the
triangle with vertices

r0, and r1 ±
n− 1

2n
∥∆2r∥∞. (3.141)

The envelope can be rendered tighter with combining bounds, e.g. taking the intersection
with the control polygon [NPL98]. Also, improvements can be made by using bounds that are
more local to each segment. In (3.113), for example, the bound can be refined by replacing the
maximum value of

∑
i βki over [0, 1] with its maximum over a particular interval.

Table 3.1: The smallest possible constant that bounds the distance between a Bézier curve and
its control polygon, for 1, 2, and ∞-norm, and n = 2, . . . , 8.

n 2 3 4 5 6 7 8

N∞(n) 1
4

1
3

1
2

3
5

3
4

6
7 1

N1(n) 0.2500 0.2963 0.3750 0.4147 0.4688 0.5036 0.5469

N2(n) 0.2500 0.2986 0.3853 0.4331 0.5015 0.5480 0.6079

3.2.4.7 Convergence under subdivision

Here, we use the above computed bounds to evaluate the rate of convergence of the sequence of
Bézier control polygons, generated with repeated subdivision or degree elevation, to a curve.

As we saw previously, adaptive refinement of the control point sequence of r(τ) can be
achieved by generating control polygons over the sub-intervals of the domain with repeated
subdivision. The curve segment restricted to the sub-interval [0, τ0], τ0 ∈ (0, 1), can be expressed
as

r[0,τ0](τ) :=

n∑
i=0

ri,[0,τ0]Bi,n(t), (3.142)

where ri,[0,τ0] are the coefficients computed with the de Casteljau’s recursive formula (3.65), and
can be expressed as

ri,[0,τ0] = r
(i)
0 =

i∑
k=0

Bk,i(τ0)r
(0)
k =

i∑
k=0

Bk,i(τ0)rk i = 0, . . . , n− 2. (3.143)

78

3.2. Bernstein polynomials and Bézier curves

Figure 3.19: One dimensional Bézier curve (solid black line), its control poly-
line (solid blue line), and the envelope (dashed line) constructed with the
bound implied by (from left to right) (1) N∞, (2) N2, (3) N1. The control
point sequence for the Bézier curve is (from top to bottom) (1) [0, 1, 1, 0], (2)
[0, 1, 3, 6, 10, 14], (3) [0, 1,−1, 0], (4) [0, 1, 2, 3, 2, 1].

79

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

and thus, the second differences of the control points is obtained as

∆2ri+1,[0,τ0] = ri,[0,τ0] − 2ri+1,[0,τ0] + ri+2,[0,τ0] (3.144)

= τ20 (r
(i)
0 − 2r

(i)
1 + r

(i)
2)

= τ20 (∆2r
(i)
1) = τ20

(i∑
j=0

Bj,i(τ0)∆2rj+1

)
.

Therefore, the distance between r[0,τ0](τ), and its control polygon l[0,τ0](τ), is bounded by

∥r[0,τ0](τ)− l[0,τ0](τ)∥∞,[0,τ0] ≤ τ20N∞(n)∥∆2r∥∞ (3.145)

where ∥∆2r∥∞ is the maximum absolute second difference of the original control points. By
symmetry, the bound for the segment over the interval [τ0, 1] is

∥r[τ0,1](τ)− l[τ0,1](τ)∥∞,[τ0,1] ≤ (1− τ0)2N∞(n)∥∆2r∥∞ (3.146)

Therefore, the bounds on the two segments generated with the subdivision of r are scaled
versions of the original bound. It can be concluded, from (3.145) and (3.146), that the distance
between the polynomial r and the control polygon generated with subdivision at τ0 is bounded
by

∥r(τ)− l[0,τ0]∪[τ0,1](τ)∥∞,[0,1] ≤ τ̄2N∞(n)∥∆2r∥∞ (3.147)

where l[0,τ0]∪[τ0,1] is the union of the control polygons of r[0,τ0] and r[τ0,1], and τ̄ := max{τ0, 1−τ0}
[NPL98]. The upper bound can be refined by repeated subdivision. The distance between r to
l(m), the control polygon after m-fold subdivision at the local parameter τ0, is bounded by

∥r(τ)− l(m)(τ)∥∞,[0,1] ≤ τ̄2mN∞(n)∥∆2r∥∞ (3.148)

The above bound establishes the quadratic convergence rate of the refined control polygon
to the curve segment under subdivision. It follows directly from (3.148) that the distance of r(τ)
to the composite control polygon generated with repeated subdivision at

[0,
1

2m
,

2

2m
, . . . , 1] (3.149)

is reduced by 1
4 , and is, asymptotically, as good an approximation as the polyline connecting

the grid points (
τi, r(τi)

)
i = 0, . . . , n2m (3.150)

where τi = i
n2m [PBP02].

Considering (3.144), the optimal subdivision parameter, τ0 ∈ (0, 1), for minimizing the
distance between the Bézier curve r(τ) and the generated control polygon after subdivision, can
be obtained by solving the following problem

min
τ0∈(0,1)

max
i=1,...,n−1

{|∆2ri,[0,τ0]|, |∆2ri,[τ0,1])|} (3.151)

= min
τ0∈(0,1)

max
i=1,...,n−1

{
τ20

∣∣∣ i∑
j=0

Bj,i(τ0)∆2rk+1

∣∣∣, (1− τ0)2∣∣∣ i∑
j=0

Bj,i(1− τ0)∆2rn−1−j

∣∣∣}
(3.152)

80

3.2. Bernstein polynomials and Bézier curves

� For n = 2, after scaling by ∆2r0, the problem becomes

min
0<τ0<1

max{τ20 , (1− τ0)2}, (3.153)

and τ0 = 1
2 is optimal.

� For n = 3, assuming that ∆2ri ̸= 0, and ∆2r1 = 1 + δ and ∆2r2 = 1, the second difference
can be normalized by ∆2r2, and the problem becomes

min
0<τ0<1

max{τ20 |1 + δ|, (1− τ0)2, τ20 |1 + δ − δτ0|, (1− τ0)2|1 + δ(1− τ0)|}, (3.154)

and τ0 = 0.43, is the solution.

It should be noted that for n = 2 and n = 3, the optimal subdivision parameter τ0, mini-
mizing the distance, does not coincide with the point of maximum curvature, which is usually
used for adaptive subdivision of Bézier curves.

3.2.4.8 Convergence under degree elevation

With degree elevation, the number of coefficients increases by one and since the new coefficients
are obtained as convex combinations of the original coefficients, it is possible to show convergence
of the sequence of the control polygons corresponding to repeated degree elevation to the graph
of the polynomial on [0, 1].

For unit degree elevation, we have

n∑
i=0

riBi,n(τ) =
n+1∑
i=0

rn+1
i Bi,n+1(τ). (3.155)

Differentiating twice yields,

n(n− 1)

n−2∑
i=0

∆2r
n
i+1B

n−2
i = (n+ 1)n

n−1∑
i=0

∆2r
n+1
i+1 B

n−1
i (3.156)

Considering (3.69), the maximum ∥∆2r
n+1∥∞ is obtained when all second differences ∆2ri

are equal, implying

∥∆2r
n+1∥∞ ≤

n− 1

n+ 1
∥∆2r∥∞. (3.157)

The distance between the control polygon ln+1 of the degree elevated representation and the
Bézier curve r is therefore

∥r− l(n+1)∥∞,[0,1] ≤ K(n, n+ 1)N∞(n)∥∆2r∥∞, (3.158)

where

K(n, n+ 1) :=
n− 1

n+ 1

N∞(n+ 1)

N∞(n)
(3.159)

Similarly, for elevation to the degree 2kn

K(n, 2kn) =
n(n− 1)

2kn(2kn+ 1)

N∞(2kn)

N∞(n)
=

1

2

{
n−1

n+1/2 if n is even
n2

(n+1/2)(n+1) if n is odd

}
≤ 1

2
. (3.160)

81

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Therefore, the distance between the Bézier curve of degree n and the control polygon of the
curve elevated to the degree 2kn, is bounded by

∥r− l(2kn)∥∞,[0,1] ≤
1

2
N∞(n)∥∆2r∥∞, (3.161)

where ∥∆2r∥∞ is the maximum absolute second difference of the original control point sequence
[NPL98].

The above inequality implies that the distance between a Bézier curve and the generated
polygon with degree elevation is (asymptotically) reduced by 1

2 . Therefore, while an approximant
of a Bézier curve can be obtained from the sequence of control polygons generated with either
subdivision and degree elevation, the former converges faster.

3.3 Case study

In this section we put the performance and the computational efficiency of the proposed method
into test through different simulation examples. First, we consider the go-to-formation maneu-
ver, described in the previous chapter, and write the constraints (2.32) as functions of the flat
output. Next, we study the more challenging problem of generating collision-free trajectories for
drones flying in confined spaces. We derive a set of collision avoidance constraints that explicitly
takes into account the drone’s orientation. We show that the obtained set of constraints can be
expressed as Bézier curves, and thus the method proposed in (3.2.3.2) can be applied to solve
the problem.

3.3.1 Go-to-Formation maneuver

Here, we use the Bézier curve-based method proposed in this chapter to solve the multiple
vehicle motion planning problem studied in Sec. 2.4.1. Recalling from Chapter 2, the vehicle’s
model is described with

ẋ =

ẋ
ẏ
v̇

ψ̇
ω̇

 =

v cos(ψ)
v sin(ψ)

a
ω
r

 . (3.162)

With the choice of x(t) and y(t) as flat outputs, the trajectory for each vehicle is parame-
terized with a n-degree planar Bézier curve given by

pi(τ) =

[
xi(τ)
yi(τ)

]
=

n∑
k=0

pi,kBk,n(τ) i = 1, . . . , Nv (3.163)

where pi,k ∈ R2 are the control points that need to be determined by solving an optimization
problem. The independent variable τ ∈ [0, 1] is defined as

τ = ζ(t) =
t

tf
(3.164)

A subset of the control points can be readily determined from the initial and final conditions
on the states and inputs of the vehicle’s model. Particularly, considering (3.61), the first and
last control points are obtained as

82

3.3. Case study

pi,0 =

[
xi(0)
yi(0)

]
=

[
xi,0
yi,0

]
pi,n =

[
xi(1)
yi(1)

]
=

[
xi,f
yi,f

]
(3.165)

where (xi,0, yi,0) and (xi,f , yi,f) denote respectively the initial and final positions of the i-th
vehicle. The rest of the control points will be determined such that they satisfy the constraints,

vmin ≤ v(t) ≤ vmax (3.166)

amin ≤ a(t) ≤ amax

sin(ψmin) ≤ sin(ψ(t)) ≤ sin(ψmax)

ωmin ≤ ω(t) ≤ ωmax,

for ∀t ∈ [0, tf], and minimize the cost function

J =

∫ 1

0

∥∥∥Q
1
2u(τ)

∥∥∥2 dτ + ρtf , (3.167)

where u = [a, r]T , and Q is the weighting matrix. The above cost function and constraints can
be re-written in terms of the flat outputs, xi(τ) and yi(τ), and their derivatives. Considering
the vehicle’s model, the speed and acceleration are obtained as

v(t) =
1

tf

√
x′2 + y′2 (3.168)

a(t) =
1

t2f

x′x′′ + y′y′′√
x′2 + y′2

where x′ = d
dτ

(
x(ζ(t))

)
and x′′ = d2

dτ2

(
x(ζ(t))

)
. We drop the subscript i for simplicity. The

course angle and the course rate can also be re-written as

ψ(τ) = arcsin
y′

x′2 + y′2
(3.169)

ω(t) =
1

tf

x′y′′ − y′x′′
x′2 + y′2

Also, the collision avoidance constraint between the i-th and the j-th vehicles, given by∥∥pi(τ)− pj(τ)
∥∥2 ≥ R2 ∀τ ∈ [0, 1] i, j ∈ {1, . . . , Nv} (3.170)

is immediately expressed in terms of the flat outputs. The inequality (3.170) guarantees temporal
separation of the two trajectories. In the following, we will show how the spatial separation
between trajectories can be handled.

Spatial collision-avoidance constraints as Bézier Surface

The spatial collision-avoidance constraint between the i-th and the j-th vehicles, whose tra-
jectories, pi and pj, are parameterized with Bézier curves of degree n and m, is expressed as

R2 ≤
∥∥pi(u)− pj(v)

∥∥2 ∀u ∈ [0, 1] and ∀v ∈ [0, 1]. (3.171)

The right-hand side of the above inequality can be defined as a bivariate function,

83

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

S(u, v) =
(n∑

k=0

pi,kBk,n(u)−
m∑
l=0

pj,lBl,m(v)
)2
, (3.172)

From the Bernstein polynomial properties, we have

∥
n∑

k=0

pi,kBk,n(u)∥2 =
2n∑
i=0

riBi,2n(u) =
2n∑
i=0

riBi,2n(u)
2m∑
j=0

Bj,2m(v) (3.173)

∥
m∑
l=0

pj,lBl,m(v)∥2 =
2m∑
j=0

sjBj,2m(v) =
2m∑
j=0

sjBj,2m(v)
2n∑
i=0

Bi,2n(u)

where

ri =

min{i,n}∑
k=max{0,i−n}

(pi,k
Tpi,i−k)

(
n
k

)(
n

i−k

)(
2n
i

) (3.174)

sj =

min{j,m}∑
l=max{0,j−m}

(pj,l
Tpj,j−l)

(
m
l

)(
m
j−l

)(
2m
j

)
Also, the inner product of pi(u) and pj(v) can be obtained as

n∑
k=0

pi,kBk,n(u).
m∑
l=0

pj,lBl,m(v) (3.175)

=

(
2n∑
i=0

(min{i,n}∑
k=max{0,i−n}

pi,k

(
n
k

)(
n

i−k

)(
2n
i

))
Bi,2n

)T(2m∑
j=0

(min{j,m}∑
l=max{0,j−m}

pj,l

(
m
l

)(
m
j−l

)(
2m
j

))
Bj,2m

)

=

2n∑
i=0

2m∑
j=0

qi,jBi,2n(u)Bj,2m(v),

where

qi,j =
(min{i,n}∑

k=max{0,i−n}

pi,k

(
n
k

)(
n

i−k

)(
2n
i

))T(min{j,m}∑
l=max{0,j−m}

pj,l

(
m
l

)(
m
j−l

)(
2m
j

))
. (3.176)

Therefore, S(u, v) can be written as a Bézier surface

S(u, v) =

2n∑
i=0

2m∑
j=0

ci,jBj,2m(v)Bi,2n(u) (3.177)

whose control points are

ci,j = ri + sj − 2qi,j . (3.178)

The proposed Bernstein relaxation and refinement for evaluating inequality constraints on
Bézier curves can be extended to Bézier surfaces. Therefore, the spatial collision-avoidance
constraint (3.171) can be replaced by a set of constraints on the control points ci,j .

Bézier surfaces: de Casteljau’s Algorithm

84

3.3. Case study

The de Casteljau’s algorithm can be extended to handle Bézier surfaces. The Bézier surface
S(u, v) defined as

S(u, v) =
n∑

i=0

m∑
j=0

ci,jBj,m(v)Bi,n(u) (3.179)

can be re-written as

S(u, v) =
n∑

i=0

di(v)Bi,n(u) (3.180)

where

di(v) =

m∑
j=0

ci,jBj,m(v) (3.181)

For a given parameter value v̄, di(v̄), i = 0, . . . , n, is a point on the Bézier curve defined by
the set of m + 1 control points ci,0, . . . , ci,m. Also, from (3.180), S(ū, v̄) can be computed as
a point on a Bézier curve with n + 1 control points d0(v̄), . . . , dn(v̄). Therefore, for the given
parameter value (ū, v̄), the corresponding point on a Bézier surface can be found by applying
the de Casteljau’s algorithm several times. This procedure is summarized in Algorithm 2 for a
Bézier surface defined by a n×m control net.

Algorithm 2 Computing S(ū, v̄) using the de Casteljau’s algorithm

Input: ū and v̄
Output: S(ū, v̄)

1: for i = 1 : n do
2: di(v̄)← Apply the de Casteljau’s algorithm to the i-th row of the control net with v̄;
3: end for
4: S(ū, v̄)← Apply the de Casteljau’s algorithm to di(v̄), i = 0, . . . , n with ū;

Having obtained the set of constraints in terms of the flat output, xi(τ) and yi(τ), the
trajectory generation problem is converted to an optimization problem with the control points
pi,k, i = 1, . . . , Nv, k = 0, . . . , n as decision variables. Once the optimization problem is solved,
the trajectories as well as the input profiles can be deduced from the obtained control points.
In the examples presented below, the optimization problems are all solved with the FORCES
Pro NLP solver.

Recalling that the sum and the product of two Bernstein polynomials are also a Bernstein
polynomial, the constraints (3.166), (3.170), and (3.171) can be immediately expressed in Bézier
form, and thus they can be replaced by a set of constraints on their control points. Below,
we compare the computational efficiency of the proposed Bernstein relaxation and refinement
method for evaluating inequality constraints with the method explained in Algorithm 1 and the
time gridding approach.

3.3.1.1 Simulation Results

The first example consists of 5 vehicles in a go-to-formation maneuver. Given the vehicles’
initial positions, we require a set of 5 collision-free trajectories, parameterized as planar Bézier
curves, such that they guide the vehicles to the desired positions. The initial and final positions
are shown in Fig. 3.20a with • and ×, respectively. The trajectories should guarantee that all
vehicles reach their final positions simultaneously with desired speed and orientation. In this
example, the final course angle and speed of all vehicles are set to 0◦ and 0.7m

s , respectively. The

85

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

generated trajectories should also satisfy the bounds on the states and inputs, given in Table
3.2, while minimizing the cost function with Q = diag(1, 0.5) and ρ = 10. A minimum distance
of 5 meters should be kept among the vehicles during the entire travel time.

Fig. 3.20a shows the trajectories generated using Bézier curves of degree 6. The obtained
travel time to final positions is 83.87 seconds, i.e. t∗f = 83.87s. The speed, acceleration, course
angle, and course rate of the vehicles are displayed in Fig. 3.20b. The results confirm that the
states and inputs are within the required bounds. The average solution time, obtained on a
desktop computer with 2.60 GHz i7-4510U CPU and 6.00 GB RAM, is 365 milliseconds. The
same problem is also solved using the direct multiple shooting method described in the previous
chapter with 180 shooting intervals. While the generated trajectories with the two methods are
almost identical, the Bézier curve-based method ensures constraint satisfaction for the entire
travel time, and results in much shorter computation times, which was to be expected due to the
reduced number of decision variables and constraints in the underlying optimization problem.
We’ve also employed different approaches for evaluating inequality constraints and compared
the recorded computation times in Table 3.3. It should be noted that while Algorithm 1 yields
non-smooth optimization problems, and non-smooth optimization methods must be, technically,
used to handle them, the results in Table 3.3 are obtained with standard optimization methods,
and finite difference for approximating Jacobian of the constraint functions. Using non-smooth
approaches such as bundle methods would result in longer computation times. A similar problem
is solved for 5 drones using spatial Bézier curves and the obtained trajectories are shown in Fig.
3.33.

In the next example, we consider two vehicles moving in an environment with static and
moving obstacles. The goal is to generate smooth trajectories that guide the vehicles to their
desired final positions, shown with × in Fig. 3.22, while avoiding the obstacles. Also, a minimum
distance of 2 m must be kept between the two vehicles during the entire travel time. In order to
address the uncertainties in the environment, the trajectories are re-planned as new obstacles
are detected. At each re-planning step, an optimization problem is solved to generate a Bézier
curve, from the position of the vehicles at the current time instant to the final positions, taking
into account the most recent measurements of the obstacles’ positions. Therefore, it is necessary
to consider the continuity conditions between consecutive Bézier segments at the joining points
to ensure that the generated trajectories are smooth.

Fig. 3.22 shows the trajectories generated at different time instances using planar Bézier
curve of degree 6. At t = 0, the trajectory is generated from the drone’s initial position to
its final position such that collisions with the 3 known obstacles are avoided. At t = 5.6s and
t = 6.8s, the trajectories are re-planned to avoid collision with the new obstacles detected along
the trajectory. The average computation time for solving the optimization problems, using the
proposed Bernstein relaxation and refinement method, is 146 ms. A comparison of the com-
putation times obtained with different approaches of evaluating the inequality constraints is
given in Table 3.3. In all simulation results presented in this chapter, a non-conservative set of
constraints is made with repeated subdivision such that the generated trajectories match those
obtained with the multiple shooting method over fine discretization grids. As the recorded com-
putation times presented verify, the proposed Bézier curve-base method, with smaller number of
decision variables and constraints, can generate collision-free trajectories in much shorter time
without compromising on the performance of the trajectories.

We also compare the computation times of solving the autonomous cinematography prob-
lem (2.50) using different approaches discussed in this chapter. Expressing the mutual visi-
bility constraint (2.52) as well as the constraints (2.50.c-2.50.g) as Bernstein polynomials is
straightforward. The bound constraints on the gimbal yaw angle with respect to the quadrotor,
|QψC | ≤ π/2, can be expressed as a Bernstein polynomial considering that

cos(QψC) =
vXY

TqXY

∥vXY ∥∥qXY ∥
(3.182)

86

3.3. Case study

Table 3.2: Upper and lower bounds on the states and inputs of the vehicle’s model

minimum value maximum value

ν(
m

s
) 0.1 1.5

ψ(rad) −π
2

π

2

a(
m

s2
) -0.1 0.1

ω(
rad

s
) -0.349 0.349

where vXY = [vx, vy]T and qXY = [qx, qy]T . The trajectories in Fig. 2.26 and Fig. 2.23 are
recreated using the proposed Bézier curve-based method in this chapter and the computation
times are presented in Table 3.3.

Table 3.3: Recorded computation times for generating trajectories using different approaches to
evaluating inequality constraints.

Computation Time (ms)

Bézier curve-based Bézier curve-based
Number method with method with the

of Bernstein relaxation GJK-based approach Direct multiple
Vehicles and refinement in Alg. 1 shooting method

g
o
-t
o
-f
o
rm

a
ti
o
n

m
a
n
e
u
v
e
r

5 (Fig. 3.20) 365 546 1017

5 (Fig. 3.33) 647 934 2184

2 (Fig. 3.22) 146 421 818

a
u
to

n
o
m
o
u
s

c
in
e
m
a
to

g
ra

p
h
y 1 (Fig. 2.26) 63 96 312

2 (Fig. 2.23) 117 342 651

3.3.2 Collision-avoidance constraints for an ellipsoid model of the drone body

3.3.2.1 Quadrotor model

Here, the simplified quadrotor equations of motion are described by

mp̈ = mge3 + f, (3.183)

where p ∈ R3 is the position and m is the mass of the quadrotor. In addition, g = 9.8 m
s2

is the
gravitational acceleration, and e3 = [0 0 1]T . The first term on the right-hand side of (3.183)
is gravity in the zI direction, and the second term, f ∈ R3, is the thrust force aligned with the
body’s z-axis.

87

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

(a) Temporally de-conflicted trajectories generated for 5 vehicles using Bézier curves
of degree 6. The trajectories are obtained in 365 milliseconds.

(b) The speed, acceleration, course angle and course rate of the 5 vehicles are within
the required bounds.

Figure 3.20: The go-to-formation maneuver for 5 vehicles. Trajectories are generated with the
Béier curve-based method proposed in this chapter.

Figure 3.21: Collision-free trajectories for 5 drones generated with Bézier curves of degree 8.

88

3.3. Case study

(a) t = 0

(b) t = 5.6s

(c) t = 6.8s

Figure 3.22: To deal with the uncertainties in the obstacles’ positions, trajectories for two drones
are re-planned at different time instances. The trajectories are generated using Bézier curves
of degree 8. Imposing continuity constraints at the joining point of consecutive segments does
guarantee smoothness of the overall trajectory.

89

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

f = −T IzB (3.184)

where T ∈ R is the net thrust, IzB = RBzB = Re3 is the body frame z-axis expressed in {I}, and
R ≡ I

BR ∈ SO(3) is the rotation matrix from the body frame {B}, centered at the quadrotor’s
center of gravity, to the fixed inertial frame {I}. For simplicity, we drop the superscript I and
consider zB = IzB. Figure 3.23 is a graphical representation of the quadrotor and the associated
reference frames.

Figure 3.23: The quadrotor reference frames.

Trajectory Parameterization

The quadrotor dynamics (3.183) with the four inputs is differentially flat [MK11], and therefore
the state and the input of the system can be expressed as functions of the flat outputs and a
finite number of its derivatives. The position vector together with the yaw angle can be selected
as flat outputs of the system. Here, p ∈ R3 is parameterized as a Bézier curve, given by

p(τ) =
n∑

k=0

pkBk,n(τ) (3.185)

where pk ∈ R3 are the control points. The linear velocity, v = ṗ, and linear acceleration, a = p̈,
can be expressed as parametric Bézier curves through the first and second derivative of p with
respect to time, yielding

v(t) =
n−1∑
k=0

vkBk,n−1(ζ(t))

a(t) =

n−2∑
k=0

akBk,n−2(ζ(t)) (3.186)

where the control points vk and ak are obtained as

vk =
n

tf

(
pk+1 − pk

)
k = 0, . . . , n− 1

ak =
n(n− 1)

t2f

(
pk+2 − 2pk+1 + pk

)
k = 0, . . . , n− 2 (3.187)

The thrust T and rotation matrix R can also be expressed as functions of the flat output
and its derivatives. The net thrust T can be written as

T = m∥p̈− ge3∥. (3.188)

90

3.3. Case study

Assuming that the rotation matrix R = [xB,yB, zB] is parameterized by the Z-Y -X Euler
angles λ = [ϕ, θ, ψ]T as

R = Rz(ψ)Ry(θ)Rx(ϕ), (3.189)

then the columns of the rotation matrix are extracted from

zB =
ge3 − p̈

∥ge3 − p̈∥ xB =
r× zB
∥r× zB∥

, yB = zB × xB (3.190)

where the unit vector r is defined as

r = [− sinψ, cosψ, 0]T (3.191)

The above equations declare that the vehicle’s orientation can be fully determined from the
second derivative of the trajectory and the yaw angle. As mentioned before, the yaw angle ψ is a
component of the flat output, and therefore it can be controlled independently without affecting
the trajectory generation. Using the differential flatness property of the system, trajectories
consistent with dynamics can be planned in the space of flat outputs, where (3.183) is trivially
satisfied and the original input and state constraints are transformed into constraints on the flat
output and its derivatives.

3.3.2.2 Collision Avoidance Constraint

Using the conventional way of modeling the drone body as a sphere can be too conservative and
might lead to an infeasible problem for the examples described above. As explained before, ap-
proximating the drone body shape by an ellipsoid allows the incorporation of the drone attitude
in the trajectory generation problem. This is a requisite for generating collision-free trajectories
in small spaces. However, as opposed to spherical shapes, there is no simple algebraic inequality
for detecting collisions between two ellipsoid-shaped bodies. In this section we use the separat-
ing hyperplane theorem [BBV04] of convex sets (See Remark 3.2, Theorem 2) to derive collision
avoidance constraints between two drones.

The drone body is approximated by an ellipsoid centered at c = p(t) with its principal axes
aligned in the direction of the body frame axes.

E ≡ {x ∈ R3|(x− c)TLLT (x− c) ≤ 1} (3.192)

where L = RΛ−1 and Λ is a diagonal matrix with diagonal elements equal to the length of the
principal semi-axis.

Λ =

rD 0 0
0 rD 0
0 0 hD

 (3.193)

A separating hyperplane for two ellipsoids E1 and E2 is a hyperplane that has E1 on one
side of it and E2 on the other side, that is to say the hyperplane H defined as,

H ≡ {x ∈ R3|αTx− β = 0} (3.194)

is a separating hyperplane for E1 and E2 if,

αTx− β ≤ 0 ∀x ∈ E1 (3.195)

αTx− β > 0 ∀x ∈ E2

The ellipsoid E1 can be equivalently represented as,

91

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Remark 3.2: Separating hyperplane theorem for con-
vex sets

The separating hyperplane theorem is one of the most fun-
damental theorems about convex sets.

Theorem 1: Let C and D be two convex sets in Rn that do
not intersect, i.e., C∩D = ∅. Then, there exist a ∈ Rn, a ̸= 0
and b ∈ R, such that aTx ≤ b for all x ∈ C and aTx ≥ b for
all x ∈ D [BBV04].

Neither inequality in the theorem can be made strict. If the
sets C and D are strictly separated, as is the case in the
above picture, then ∃a, b s.t.aTx < b,∀x ∈ C and aTx >
b,∀x ∈ D. A special case of Theorem 1 with strict separation
is as follows:

Theorem 2: Let C and D be two convex sets in Rn that
do not intersect, i.e., C ∩D = ∅, and at least one of them is
closed. Then, there exist a ∈ Rn, a ̸= 0 and b ∈ R, such that
aTx < b for all x ∈ C and aTx > b for all x ∈ D.

Figure 3.24: The quadrotor body can be represented as a sphere with radius rD (right), or an
ellipsoid aligned with the axes of the body frame (left). Approximating the drone body with
an ellipsoid allows considering the quadrotor’s rotational motion.

E1 ≡ {x ∈ R3|yTy ≤ 1,y ≡ LT
1 (x− c1)} (3.196)

92

3.3. Case study

Figure 3.25: 2D sketch of an ellipsoid E1 and a hyperplane H in the original space (left) and
the corresponding sketch in the transformed space (right) in which E1 is transformed into a
unit ball at the origin.

With the transformation y ≡ LT
1 (x − c1), E1 is transformed into a unit ball at the origin

and H into a hyperplane H ′,

H ′ ≡ {y ∈ R3|αT
1 y − β1 = 0} (3.197)

where

α1 = L−1
1 α, β1 = β −αT c1 (3.198)

If the following inequality holds,

|β −αT c1| ≥ ∥L−1
1 α∥ (3.199)

then the unit ball and H ′ do not intersect and so do not E1 and H in the original space.
Accordingly, the following set of inequalities makes that H is a separating hyperplane for E1

and E2 centered at p1(τ) and p2(τ) [SCP21],

(α(τ)Tp1(τ)− β(τ))(α(τ)Tp2(τ)− β(τ)) < 0

|β(τ)−α(τ)Tpi(τ)| ≥ ∥L−1
i (τ)α(τ)∥, i = 1, 2. (3.200)

The normal vector α(τ) and the offset β(τ) are also parameterized as Bézier curves to
describe the time evolution of the separating hyperplane,

α(τ) =

nα∑
i=0

αiBi,nα(τ), β(τ) =

nβ∑
i=0

βiBi,nβ
(τ) (3.201)

This approach is more efficient and adds on fewer number of optimization variables to the
problem compared to the time gridding approach that requires finding one separating hyperplane
at each sample time. Having α, β and pi, i = 1, 2 parameterized as Bézier curves and noting
that

L−T
i L−1

i = Ri

(
r2DI − (r2D − h2D)e3e3

T
)
RT

i (3.202)

∥L−1
i (τ)α(τ)∥2 can be expressed as a Bézier curve according to

∥L−1
i (τ)α(τ)∥2 =r2D

(
α(τ)Tα(τ)

)
− (r2D − h2D)

(
α(τ)T zB(τ)

)2
. (3.203)

93

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

where zB,i = Rie3 is fully obtained from p̈i as stated in (3.190). Therefore, the inequalities in
(3.200) can be effortlessly written as Bézier curves and evaluated with the approach described
in Sec. (3.2.3.2). Note that the constraint for collision avoidance between an ellipsoid and a
polygon can be easily derived in the same fashion as (3.200).

3.3.2.3 Simulation results

In this section, the efficacy of the proposed method for generating feasible and collision-free
trajectories are assessed through different simulations involving one or more drones navigating
narrow gaps. Here, the drones are assumed to have a hub-to-hub length of 360 mm, a height
of 222 mm, and a propeller length of 230 mm. Therefore, the drone body is approximated by
an ellipsoid with rD = 300 mm and hD = 110 mm. The cost function in all of the simulations
below is given by

J =

∫ 1

0

∥∥∥p(4)(τ)
∥∥∥2 dτ + ρtf , (3.204)

where tf is the total flight time, and ρ is the scaling coefficient. A smaller ρ results in longer
flight times. The lower and upper bounds on the first, second, third, and fourth derivatives of
the trajectory are 7m

s , 10m
s2

, 50m
s3

, and 60m
s4

respectively.
In the first example, we consider a single drone traversing a 120× 48cm gap with ϕgap = 45◦

(Fig. 3.26a). Flying through such a gap while maintaining a safe distance of 80 mm away from
the frame edges would not be possible without proper adjustments of pitch and roll angles. In
order to traverse the narrow gap, the trajectory shown with the solid line is generated with the
method proposed above which uses separating hyperplanes between the ellipsoid and edges to
avoid collisions with the gap frame, without directly imposing constraints on attitude angles.
The trajectory is generated using a Bézier curve of degree 12, and the inequalities are evaluated
as explained in Sec. (3.2.3.2). The optimal solution is computed in 306 ms. The generated
trajectory is compared to the one obtained with the method proposed in [Fal+17], which consists
of a quadratic polynomial piece for traversing the gap, and an approach trajectory that guides the
drone from its initial position to the starting position of the traverse trajectory. The approach
trajectory in [Fal+17] is generated such that it also enables state estimation, while here it is
obtained by minimizing the cost function (3.204); yet the traverse trajectory is generated the
exact same way as in [Fal+17].

The traverse trajectory lies in the plane Π, that passes through the gap’s center and is
orthogonal to the gap while being parallel to the longest edge (See Fig 3.27). The drone’s
trajectory along Π is described as

p(t) = p1 + v1t+
1

2
gΠt

2 (3.205)

where gΠ = ge3 − g(eT3
Πe3)

Πe3 and

p1 = p(t1) = pG − l1Πe1 − l2Πe2, (3.206)

v1 = v(t1) =
(l1
tc
− 1

2
gΠ,1tc

)
Πe1 +

(l2
tc
− 1

2
gΠ,2tc

)
Πe2

The unit vectors Πe1 and Πe2, spanning the plane Π, are determined from the gap’s position
and orientation. l1 and l2 denote respectively the distance of the starting position, p1, to the
center of the gap along Πe1 and Πe2, and are obtained by solving an optimization problem that
minimizes tc defined as

tc =

√
2l1
|gΠ,1|

(3.207)

94

3.3. Case study

(a) Trajectories guiding a drone through a narrow gap inclined at 45◦ with respect to the horizontal
plane. The ellipsoids show the flight attitude at different time samples along the trajectories. The
objective function values for the solid line and dashed line are 1.0071× 103 and 2.7777× 103 respectively.

(b) The velocity, acceleration, jerk, and snap along the x-y-z axis for the above generated trajectories.
The dotted lines show the lower and upper bounds.

Figure 3.26: Comparing the proposed method in the thesis to the method in [Fal+17] for
generating a trajectory that guides a drone through a gap inclined at 45◦.

It can be readily observed from the trajectories and the input profiles in Fig. 3.26 that
enforcing the trajectory to lie on the plane Π can ensure collision avoidance with the gap frame,
but it does not yield the optimal solution. The proposed method outperforms the method in
[Fal+17] in the sense that it yields a less conservative trajectory, offering a reduced value of the
cost function.

The results in Fig. 3.28, Fig. 3.29, and Fig. 3.30 display the trajectories, thrust and
input profiles obtained with the proposed method for flying a drone with hD = 30 mm and
rD = 150 mm through a 120mm × 550mm gap inclined at 30◦, 45◦, and 90◦ respectively. Fig.
3.31 compares the trajectory generated with the proposed method for a gap with a frame size
of 180mm × 550mm inclined at 60◦ to the one obtained from the frequently used approach
that aligns the drone’s orientation with that of the gap as flying past its center. The following
inequality constraint can ensure the proper alignment of the body z-direction with a desired
direction d,

95

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.27: The orthogonal plane Π to an inclined gap [Fal+17] (left). The drone’s trajectory
must pass through the center of the gap, pG, while lying in the plane Π. A view of the traverse
trajectory in the direction of the normal vector to the plane Πe3 (right).

cosαd ≤ dT zB ≤ 1 (3.208)

where αd is the permissible angular deviation from d. Both d and αd are determined according
to the size of the drone and the actual orientation and width of the gap. It should be noted
that the inequality constraint (3.208) should be imposed at specified times when the drone is
flying through the gap center. Also, while using (3.208) minimizes the collision risk with the
gap frame, it might yield an increase in the cost value. This can be clearly observed from the
input profile corresponding to each trajectory shown in (Fig. 3.31). The proposed method is
also evaluated and demonstrated successfully in real experiments involving a single drone flying
through a narrow gap inclined at different orientations. Fig. 3.32 shows the experimental results
for a gap inclined at 60◦.

The performance of the proposed method is also evaluated in trajectory generation problems
for multiple vehicles. In the next example, we consider two drones switching their positions.
Figure (3.33) compares the trajectories generated with an ellipsoid model of the drone body to
those generated with the widely used sphere model. Clearly, the sphere model takes no notice of
the drone’s shape and orientation, and imposes a conservative bound on the minimum distance
between two drones. This results in an extended arc-length as shown in Fig. 3.33. The main
advantage of using an ellipsoid model, however, becomes evident when dealing with confined
spaces where a sphere model yields an infeasible problem. This is better shown in the next two
examples. Fig. 3.34 and Fig. 3.35 show, respectively, the generated trajectories for two and
four drones flying through a small gap in a wall towards their desired positions on the other
side of the wall. The set of inequality constraints (4.9) with separating hyperplanes, rotating
and translating over time, is incorporated into the optimization problem to guarantee collision
avoidance between the ellipsoids. Both examples are solved with given fixed final times, i.e.,
tf = 1.5s and tf = 3.5s, respectively. The average computation time for obtaining the optimal
trajectories in Fig. 3.35 and Fig. 3.34, parameterized as Bézier curves of degree 12 and degree
9, is 712 ms and 481 ms, respectively.

96

3.3. Case study

(a) The generated trajectory is visualized from different angles. The initial and final
positions are shown with • and •, respectively.

(b) The net thrust required for executing the trajectory in (a).

(c) The speed, acceleration, jerk, and snap along the x-y-z axis for the generated
trajectory in (a). The dotted lines show the lower and upper bounds.

Figure 3.28: The generated trajectory for flying a drone with hD = 30 mm and rD = 150 mm
through a gap with the frame size of 120mm× 550mm, centered at [3.4, 1.6,−2] and inclined at
30◦.

97

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

(a) The generated trajectory is visualized from different angles. The initial and final
positions are shown with • and •, respectively.

(b) The net thrust required for executing the trajectory in (a).

(c) The speed, acceleration, jerk, and snap along the x-y-z axis for the generated
trajectory in (a). The dotted lines show the lower and upper bounds.

Figure 3.29: The generated trajectory for flying a drone with hD = 30 mm and rD = 150 mm
through a gap with the frame size of 120mm× 550mm, centered at [3.3, 1.7,−2] and inclined at
45◦.

98

3.3. Case study

(a) The generated trajectory is visualized from different angles. The initial and final
positions are shown with • and •, respectively.

(b) The net thrust required for executing the trajectory in (a).

(c) The speed, acceleration, jerk, and snap along the x-y-z axis for the generated
trajectory in (a). The dotted lines show the lower and upper bounds.

Figure 3.30: The generated trajectory for flying a drone with hD = 30 mm and rD = 150 mm
through a gap with the frame size of 120mm× 550mm, centered at [3.5, 2,−2.5] and inclined at
90◦.

99

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

(a) The trajectory generated with the proposed method is visualized from different
angles. The initial and final positions are shown with • and •, respectively.

(b) The net thrust required for the trajectories generated
with the two methods.

(c) The speed, acceleration, jerk, and snap along the x-y-z axis obtained with the
two methods. The dotted lines show the lower and upper bounds.

Figure 3.31: Comparing the trajectory generated with the proposed method in the thesis (solid
line) to the one generated using (3.208) (dashed line) for flying a drone through a 180mm ×
550mm gap centered at [3, 1.4,−2] inclined at 60◦.

100

3.3. Case study

(a) The generated trajectory (red) and the trajectory executed in the experiment (blue).

Figure 3.32: The experimental results for a single drone flying through a gap inclined at 60◦.

101

Chapter 3. Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems

Figure 3.33: Comparing collision-free trajectories, for two drones switching positions, generated
with an ellipsoid model of the drone body (solid lines) and a sphere model (dashed lines).

Figure 3.34: Generated trajectories for 4 drones flying through a gap and switching positions
in a given time. The initial (left) and final (right) positions of the drones are shown in the
XY-plane. Using a sphere model of the drone body yields an infeasible problem.

Figure 3.35: Collision-free trajectories for steering two drones through a narrow gap in a wall
towards their desired position on the other side. The initial and final positions are shown with
squares and circles respectively.

102

Chapter 4

Distributed Algorithm for Real-time
Multi-drone Trajectory Re-planning

103

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

In this chapter we develop a distributed trajectory generation framework, with low computa-
tion and communication demands, for multiple quadrotors flying in (relatively) close proximity
to each other. We specifically address the shortcomings of approximating the drone body with
a disc (or sphere) for generating feasible collision-free trajectories for large groups of drones.
A sphere model, used in most existing distributed collision avoidance schemes, may be overly
conservative in confined spaces since it invalidates trajectories whose feasibility depends on the
consideration of the flight attitude. Instead, we model the drone body with an ellipsoid, and
employ the Voronoi partitioning of space to derive local collision avoidance constraints that
take into account the drone’s real size and orientation. The approach presented here can be
integrated into any other distributed schemes that utilize separating hyperplanes for decoupling
collision avoidance constraints. Yet the main reason for adopting Voronoi diagram is that using
time invariant boundary hyperplanes determined prior to solving a sub-problem, despite being
more conservative, can significantly reduce communication and computational load, allowing for
higher re-planning rates.

Incorporating the resulting set of constraints into the optimization sub-problems, solved
by each vehicle, allows finding collision-free trajectories for guiding a group of drones through
confined spaces by proper adjustment of attitude angles. Also, we show that the obtained set
of constraints can be expressed as Bézier curves, and hence can be efficiently evaluated with the
proposed method in the previous chapter. Hence, it can be guaranteed that inter-vehicle collision
avoidance requirements are met at any instant of time even over a long planning horizon.

In the synchronous distributed scheme presented here, each vehicle uses the position infor-
mation of its neighbors, updated at each sampling time, and solves a sub-problem to generate its
trajectory inside (a subset of) its Voronoi cell towards the closest point (in the cell) to its goal
position. We also present an efficient method to compute this point, which is needed to appro-
priately define the terminal constraint and cost in the sub-problem. A sequence of sub-problems
are then solved in a receding-horizon manner until the vehicles reach their goal positions. We
show that the proposed method has a higher success rate at finding collision-free trajectories for
larger groups of quadrotors compared to other Voronoi diagram-based methods. We also show
that it can effectively reduce the total flight time required to perform point-to-point maneuvers.
We illustrate that the computation time required to generate trajectories with the proposed
method satisfies timing constraints of real-time applications.

4.1 Literature Review

For a large group of vehicles, the trajectory generation problem translates into an optimization
problem that involves a large number of constraints and decision variables. The computational
cost of solving such an optimization problem centrally can be prohibitively high. To reduce
the computational complexity, a multitude of distributed schemes have been proposed for de-
composing the optimization problem into smaller sub-problems that can be solved locally by
each vehicle. The major challenge is to ensure that local decisions do also satisfy the coupling
collision avoidance constraints. This is mainly addressed by exchanging information among the
vehicles on their current states, future input sequences, etc. Depending on the communication
strategy, the sub-problems might be solved sequentially or concurrently, with possibly several
iterations of optimization and communication to achieve the required performance.

In [KH11], the collision avoidance constraint, usually expressed in terms of the two-norm of
a relative position vector, is approximated by a set of linear constraints. The sub-problem for
each vehicle is then formulated as a mixed-integer linear programming (MILP) that includes
the vehicle’s individual variables as well as variables of a subset of neighbors. This enables
cooperation among vehicles by allowing a vehicle to make feasible perturbations to neighboring
vehicles’ decisions. The sub-problems are solved sequentially by each vehicle, and the algorithm
iterates over the group of vehicles until convergence, during each cycle of a model predictive

104

4.1. Literature Review

control (MPC) scheme.

Sequential Convex Programming (SCP)-based methods have also been used for solving dis-
tributed multiple vehicle trajectory generation problems [ASD12],[MCH14]. [CCH15] addresses
the infeasiblity of intermediate problems in decoupled-SCP methods, arising from convex approx-
imation of collision-avoidance constraints, i.e. linearizing them, and proposes incremental SCP
(iSCP) which tightens collision constraints incrementally. Compared to sequential approaches in
[Kuw+07], [CHL10], [Ted+10], that cast the trajectory of anterior vehicles as dynamic obstacles
for a posterior vehicle, the methods proposed in [CCH15] and [KH10] result in less constrained in-
termediate problem and faster convergence rate, yet, similar to most MPC-SCP-based methods,
they would require the vehicles to exchange a full representation of their decisions to neighboring
vehicles over a communication network.

The synchronous approach in [VP17a] extends the ADMM-based distributed MPC (dMPC)
scheme, developed in [VP17b] for formation control, to problems with inter-vehicle collision
avoidance constraints. These constraints are decoupled using separating hyperplanes, which
enforces each vehicle to stay within one half-space of a time-varying plane for a certain time
horizon. The resulting sub-problems are solved simultaneously by vehicles, while the normal
vector and offset shared between a vehicle and a neighbor, for characterizing their separating
hyperplane, are updated at each cycle of the dMPC, using the interchanged information about
generated trajectories at the previous cycle.

In the decentralized trajectory planner proposed in [TH21], vehicles re-plan their trajectories
asynchronously, independent of the planning status of other vehicles. At each iteration, a vehicle
considers trajectories assigned to neighboring vehicles as constraints, and solves an optimization
problem including as decision variables the normal and offset of planes that separate the outer
polyhedral representation of its trajectory and those of its neighbors. A check-recheck scheme is
then performed to ensure that the generated trajectory does not collide with trajectories other
vehicles have committed to during the optimization time. Therefore, to guarantee deconfliction
between vehicles, the planner requires a vehicle to broadcast its computed trajectory to its
neighboring vehicles at the end of each re-planning iteration.

The on-demand approach to local collision avoidance, proposed in [LS19], imposes constraints
only at specific time instances when collisions between a vehicle and its neighbors are predicted.
Predicting collisions along a time horizon, however, relies on an accurate knowledge of the neigh-
bors’ future actions which must be communicated at every sampling time. The dMPC scheme
in [LVS20] for distributed trajectory generation is based on this predict-avoid paradigm and an
event-trigered replanning strategy, and has been shown to result in less conservative trajecto-
ries, but at the cost of voiding the collision avoidance guarantees for all time instances over the
horizon. To capture the downwash effect of quadrotor’s propellers, the collision avoidance con-
straint in [LVS20] is modified with a diagonal scaling matrix, which approximates the quadrotor
body with a translating ellipsoid elongated along the vertical axis, yet it ignores the quadrotor’s
rotational motion.

Reciprocal velocity obstacle (RVO) and its variants have been widely used in distributed col-
lision avoidance [VLM08], [Ber+11b], [Ber+11a], [Alo+12], [Sna+11]. At each time step, RVO
[VLM08] builds the set of all relative velocities leading to a collision between a vehicle and its
neighbors, and chooses a new constant velocity outside this set, and closest to the desired value,
to avoid collisions. Therefore, RVO requires the position and velocity information to be com-
municated, or sensed, between nearby neighbors. Other variants such as Acceleration Velocity
Obstacle (AVO), which addresses the instantaneous change of velocity in RVO by taking into
account acceleration constraints, need further information like acceleration to be interchanged.
Reciprocally-Rotating Velocity Obstacle (RRVO) [GLA14] uses rotation information to mitigate
deadlocks caused by symmetries of representing vehicles with translating discs in RVO. It relies
on the assumption that neighbors may rotate equally (or equally opposite), bounded by a max-
imum value, to compute an approximation of swept areas for rotating polygon-shaped vehicles,

105

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

and use them for constructing Velocity Obstacles. A new velocity and rotation is then selected
at each time step to avoid collisions.

Another approach to distributed collision avoidance is to construct the Voronoi diagram of
the group of vehicles and generate the trajectory for each vehicle so that it’s entirely within the
vehicle’s Voronoi cell [Bor00], [Gar+06], [BG08], [Cor+04]. Since Voronoi cells do not overlap,
it can be guaranteed that the generated trajectories are collision-free. To consider the physical
size of a vehicle, modified Voronoi cell used in [BCH14],[Zho+17] retracts boundary hyperplanes
of the cell by a safety radius for disc-shaped vehicles. At each sampling time, upon receiving
the relative position information, trajectories are re-planned to conform to the updated Voronoi
diagram. The resulting sub-problems can be solved simultaneously, in a receding horizon manner
until vehicles reach their final positions. The Voronoi-based approaches only require the vehicles
to know relative positions to neighboring vehicles, and therefore is well suited to applications
where vehicles only have relative position sensing and no communication network [ŞHA19].

4.2 problem formulation

The multiple vehicle trajectory generation problem addressed in this chapter can be defined as
finding optimal trajectories that guide a group of vehicles from their initial positions to some
desired final positions. The generated trajectories should jointly minimize a cost function, cor-
responding to the accomplishment of mission goals and objectives, and satisfy a set of local and
coupling constraints, so that they are dynamically-feasible and collision-free. For Nv vehicles,
this problem can be formulated as the following optimal control problem.

min
ui(.)
i∈[Nv]

∑
i∈[Nv]

J(xi(.),ui(.)) (4.1)

s.t. ẋi(t) = f(xi(t),ui(t)) (Dynamics)

xi(0) = xi,0 (Initial state)

xi(tf) = xi,f (Final state)

c(xi(t),xj(t)) ≤ 0 j ∈ [Nv]\{i} (collision avoidance)

xi(t) ∈ Xi (State Constraints)

ui(t) ∈ Ui (Input constraints)

where [Nv] = {1, . . . , Nv}. The cost to be minimized is the sum of the vehicles’ individual costs,
J , given by the functional,

J [ui(.)] =

∫ tf

0
L(xi,ui)dt (4.2)

where xi(t) ∈ Rnx and ui(t) ∈ Rnu are the state and the input vectors of the vehicle’s model
described by an ODE, and, xi,0 and xi,f are the initial and final values of the state of the i-th
vehicle, respectively. Xi and Ui denote the set of admissible states and inputs for the i-th vehicle
derived from limits imposed by vehicle dynamics and the surrounding environment.

In order to reduce the computational complexity of solving (4.1) for large Nv with increased
numbers of constraints and variables, one can divide the problem into a set of small-scale sub-
problems. Here, the sub-problems are formulated such that each involves only a vehicle’s individ-
ual costs and constraints, and hence can be solved independently by vehicles. The sub-problems
must include constraints to ensure that the trajectory generated locally by a vehicle does satisfy
the coupling collision avoidance constraints.

The key idea to ensure inter-vehicle collision avoidance is to decompose the environment
into non-overlapping regions, provided by a Voronoi diagram, and generate the trajectory for

106

4.2. problem formulation

each vehicle such that it’s entirely within its partition. The Voronoi diagram is updated at each
sampling time according to the relative positions of vehicles, and a sequence of sub-problems is
solved in a receding horizon manner until the vehicles reach their final positions. For the i-th
vehicle, the problem that has to be solved at the time instant tk can be expressed as,

min
xi,k(.),ui,k(.)

J(xi,k(.),ui,k(.)) (4.3)

s.t. ẋi,k(t) = f(xi,k(t),ui,k(t)) (Dynamics)

xi,k(tk) = x̂i,k (Initial state)

xi,k(t) ∈ Ci,k(x̄k) (collision avoidance)

xi,k(t) ∈ Xi,k (State Constraints)

ui,k(t) ∈ Ui,k (Input constraints)

where xi,k(t) and ui,k(t) are the state and the input profiles of the vehicle over the time interval
[tk, tk + th], with th being the planning horizon, and x̂i,k denotes its state at the time instant tk.
The cost function in the above sub-problem is modified as,

J [ui,k(.)] =

∫ tk+th

tk

L(xi,k,ui,k)dt+ ϕ(xi,k(tk + th)) (4.4)

where the second term is added to penalize the distance, at tk + th, to the point in the Voronoi
partition that is closest to the goal position.

In the optimization problem (4.3), Ci,k may denote the Voronoi partition of the i-th vehicle.
The Voronoi diagram is updated for each sub-problem according to the vehicles’ configuration at
that time instant, i.e. x̄k = {x̂j,k}j∈[Nv]. Since Voronoi partitions are disjoint and the assigned
trajectory to the each vehicle for the time horizon th is contained within its partition, it can be
guaranteed that there is no collision between the trajectories over the time interval [tk, tk + th].

The distributed trajectory generation framework is summarized in Algorithm 3. In Sec.
4.2.1, we study how to define the Voronoi diagram for a group of vehicles, and then we modify
Ci,k to explicitly take into account the orientation while generating collision-free trajectories for
multiple drones.

Algorithm 3 Distributed Trajectory Generation Framework

1: k = 0
2: x̂i,0 ← Initial position of the i-th vehicle
3: repeat
4: Receive position information from neighbors
5: Broadcast own position to neighbors
6: Update Voronoi partition
7: Compute the closest point in the Voronoi partition to

the goal position ▷ Sec. 4.2.2
8: Set the cost function (4.4)
9: Set the constraints ▷ Sec. 4.2.1, Sec. 4.2.3

10: Solve the optimization sub-problem
11: until x̂i,k = xi,f .

4.2.1 Decoupling the inter-vehicle collision avoidance constraint

In this section, we present a Voronoi diagram-based approach to decoupling inter-vehicle collision
avoidance constraints. Although the presence of obstacles, interpreted as non-decision-making

107

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

agents, is not explicitly considered here, incorporating vehicle–obstacle collision avoidance con-
straints into the problem simply amounts to taking into account the obstacles’ position when
updating the Voronoi partition (step 6 of Algorithm 3).

The widely used approach in the literature to avoid collisions between a drone and obstacles
is to model the drone body as a sphere with radius rD, and then simply building the collision-free
space, Cfree, by inflating the obstacles with a factor rD. As a result, collision-free trajectories
can be obtained by enforcing the vehicle, which is now treated as a point in the space, to be
inside Cfree [LaV06]. Considering now the collision avoidance between the i-th and j-th drones,
the corresponding constraint can be derived similarly by

∥pi − pj∥ ≥ 2rD (4.5)

where ∥.∥ denotes the Euclidean distance. Ignoring the real shape and orientation of the drone,
and approximating its body with a sphere, invalidates trajectories that are feasible upon con-
sidering the flight attitude. For this reason, the above approach might be too conservative for
trajectory generation in confined spaces and can even fail to find feasible collision-free trajecto-
ries when multiple drones are involved.

Approximating the drone body with an ellipsoid, whose principal axis is aligned with the
body frame axes, allows for considering the drone orientation while inspecting for collisions
against other vehicles. The collision-avoidance constraints for two ellipsoid-shaped drones, as
proposed in the previous chapter, can be derived using separating hyperplanes. The ellipsoids
Ei and Ej , corresponding to the i-th and j-th drones, defined as

Ei ≡ {p ∈ R3|p = pi +RiΛw, ∥w∥ ≤ 1}, (4.6)

do not intersect if they satisfy

αTp− β ≤ 0 ∀p ∈ Ei

αTp− β > 0 ∀p ∈ Ej (4.7)

where α ∈ R3 and β ∈ R are, respectively, the normal vector and offset of the separating
hyperplane for Ei and Ej , defined as H ≡ {p ∈ R3|αTp− β = 0}.

Since

−∥ΛRTα∥ ≤ αTRΛw ≤ ∥ΛRTα∥ (4.8)

the set of inequalities (4.7) holds if and only if,

αTpi − β ≥ ∥ΛRT
i α∥

αTpj − β ≤ −∥ΛRT
j α∥. (4.9)

Satisfying the set of constraints (4.9) will guarantee that the two ellipsoids Ei and Ej ,
centered at pi and pj and rotated with Ri and Rj , do not intersect, and hence there is no
collision between the i-th and j-th drones.

For multiple vehicle trajectory generation, collision-avoidance constraints, either in the form
of the inequality constraint (4.5), for spheres, or the set of constraints (4.9), for ellipsoids, must
be incorporated in the optimization problem for each pair of vehicles. As the number of vehicles
involved in a mission grows, the resulting increase in the number of constraints would inevitably
exacerbate the computational issues of finding collision-free trajectories in a centralized manner.

A. Collision avoidance constraint for algorithm 3

108

4.2. problem formulation

We now use (4.9) and the Voronoi partitioning of space to derive collision-avoidance con-
straints that can be integrated into the distributed trajectory generation framework of algorithm
3. Incorporating the resulting constraints into the vehicle’s sub-problem (4.3) can guarantee that
the generated trajectory is entirely within (a subset of) the vehicle’s Voronoi cell, for the time
interval th, taking into account the shape and orientation of drones. Since Voronoi cells are
pairwise disjoint, the locally generated trajectories are collision-free for all future time before th.

Each Voronoi cell in an n-dimensional space is a convex polytope bounded by a number of
(n − 1)-dimensional convex polytopes. For a group of vehicles in a 3-dimensional space, the
general Voronoi cell of the i-th vehicle is defined as

Vi = {p ∈ R3|pij
T
(
p− 1

2
(pi + pj)

)
≤ 0,∀j ∈ [Nv]\{i}} (4.10)

where pij = pj − pi, and pi and pj are the position of the i-th and j-th vehicles at the current
time instant. Note that, Vi is the intersection of half-spaces corresponding to hyper-planes with
α = pij and β = 1

2p
T
ij(pi + pj). An arbitrary point in Vi is closer to the i-th vehicle than any

other vehicle [Cor+04], i.e.,

∥p− pi∥ ≤ ∥p− pj∥, ∀p ∈ Vi & j ̸= i (4.11)

The boundary of the Voronoi cell, ∂Vi, is the union of multiple faces, each of which include
points in the space that are equidistant to the i-th vehicle and a neighboring vehicle.

In order to account for the size of a vehicle, the Buffered Voronoi Cell (BVC) proposed in
[Zho+17] retracts the boundary of the general Voronoi cell by a safety radius, so that if the
vehicle’s center is inside the BVC, its body, approximated by a sphere of radius rD, will be
entirely within its Voronoi cell. The BVC of the i-th vehicle, denoted by V̄i, is defined as

V̄i = {p ∈ R3| pT
ij(p−

1

2
(pj + pi)

)
+ rD∥pij∥ ≤ 0,∀j ∈ [Nv]\{i}} (4.12)

For a group of vehicles in a collision-free configuration, the BVC defined as above has the
following properties,

1. V̄i ⊂ Vi.
According to the BVC definition, for any point p′ ∈ V̄i, we have

pT
ij(p

′ − 1

2
(pj + pi)

)
≤ −rD∥pij∥ ≤ 0 (4.13)

which also satisfies (4.10), and thus p′ ∈ Vi.

2. ∀p′ ∈ V̄i and ∀q′ ∈ V̄j , ∥p′ − q′∥ ≥ 2rD.
According to (4.12), we have

pT
ij(p

′ − 1

2
(pj + pi)

)
≤ −rD∥pij∥

pT
ji(q

′ − 1

2
(pj + pi)

)
≤ −rD∥pji∥. (4.14)

Adding the above two inequalities, we get

pT
ij(p

′ − q′) ≤ −2rD∥pij∥ (4.15)

Using the Cauchy-Schwarz inequality, we can conclude that

∥p′ − q′∥ ≥
∥pT

ij(p
′ − q′)∥
∥pij∥

≥ 2rD∥pij∥
∥pij∥

= 2rD. (4.16)

109

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

Figure 4.1: (a) The Voronoi diagram for six drones in 2D space. The Voronoi boundary edges
are shown with solid black lines, and the buffered Voronoi cells are shaded in dark blue. (b)
The Voronoi diagram for 10 drones in a collision-free configuration in 3D space. The Voronoi
boundary ∂V is shaded in light blue, and the buffered Voronoi cells V̄ for two neighboring drones
in the center are shown in dark blue.

3. V̄i ∩ V̄j = ∅, ∀i ̸= j.

For an arbitrary point p′ ∈ V̄i, we have

pT
ji(p

′ − 1

2
(pj + pi)

)
+ rD∥pji∥ ≥ rD∥pij∥+ rD∥pij∥ = 2rD∥pij∥, (4.17)

which contradicts to the definition of V̄j . Similarly, for an arbitrary point q′ ∈ V̄j , we get
q′ /∈ V̄i. Therefore, the two sets Vi and Vj are disjoint.

Considering the above properties, the vehicles are guaranteed to avoid collisions due to the
buffer region of rD along ∂Vi. Fig. 4.1b shows the Voronoi diagram for 10 drones in a collision-
free configuration and the BVC for two adjacent drones.

The BVC is defined based on a symmetrical approximation of the vehicle’s body with a
translating disc. In order to reduce the conservatism and avoid infeasibility issues due to ignoring
the real shape and orientation of the vehicle, we approximate the drone with an ellipsoid (4.6),
and propose Ci in problem (4.3), to be defined as [SCP22]

Ci = {(p, p̈) ∈ R6|pT
ij

(
p− 1

2
(pj + pi)

)
+ ∥ΛRTpij∥ ≤ 0, ∀j ∈ [Nv]\{i}} (4.18)

If the trajectory of the i-th drone pi(t) satisfies the above set of local collision avoidance
constraints for all t ∈ [tk, tk + th], then the ellipsoid representing the drone body is within the
Voronoi cell for the entire time horizon; that is the ellipsoid centered at pi and aligned with the
columns of Ri does not intersect the Voronoi boundary, stated mathematically

∥∂Ei − ∂Vi∥ ≥ 0 (4.19)

110

4.2. problem formulation

Noting that

hD∥pij∥ ≤ ∥ΛRTpij∥ ≤ rD∥pij∥, (4.20)

it can be induced that,

V̄i(rD) ⊂ projXY ZCi ⊂ V̄i(hD) ⊂ Vi (4.21)

where projXY ZCi is the projection of Ci onto the 3 dimensional subspace spanned by e1, e2, and
e3.

Therefore, incorporating (4.18) into the optimization problem (4.3) will ensure that the gen-
erated trajectories are collision-free while alleviating infeasibility problems by taking orientations
into account. Also, since

∥ΛRTpij∥2 = r2D∥pij∥2 − (r2D − h2D)(pT
ijzB)2 (4.22)

and considering that zB is fully obtained from p̈ (3.190), the above set of local collision avoidance
constraints can be expressed as constraints in Bézier form, and thus, they can be evaluated
efficiently using the method proposed in Sec. 3.2.3.2.

4.2.2 Finding the closest point to the goal position

As explained above, at each time instant the Voronoi cell Vi is updated according to the relative
position of the i-th vehicle to other vehicles. The optimization problem (4.3) is then solved
to generate a trajectory, for a time horizon th, that guides the vehicle towards the point in
the cell closest to the goal position. This process is repeated until the vehicle reaches its final
position. At each sampling time, the closest point must be found prior to solving the trajectory
generation problem. Therefore, having an efficient scheme for finding the closest point is critically
important to avoid long computational delays between updating the Voronoi cell and re-planning
the trajectory.

The point in a convex polytope that is closest to a query point q is either q itself or a point
on the boundary of the polytope. A naive way to find the closest point in a convex polytope in
a 3-dimensional space, represented by P = (F,E,V), where F is the set of faces, E is the set of
edges and, V is the set of vertices, is to check the distance between q ∈ R3 to all faces, edges,
and vertices for finding the minimum. However, for complex polytopes the computation time is
not negligible.

The geometric approach proposed in [Zho+17] for a polygon in a 2-dimensional space calcu-
lates the barycentric coordinates and an angle from the query point to the two vertices of each
edge to find out the closest point. Since this approach iterates over all edges, its computational
complexity can significantly increase as the number of Voronoi neighbors of a vehicle increases.
Here, we make use of the GJK distance algorithm and devise an approach that can efficiently
determine whether the query point is inside the polytope, i.e. q ∈ P , in which case the closest
point is q itself. Otherwise, the presented algorithm returns the closest feature of P to q, and the
closest point can be obtained by projecting q onto it. The proposed approach is not limited to
distance queries between a point and a polytope, and can also be used when the final constraint
in (4.3) is relaxed to a small box or sphere around the goal position, and used in conjunction
with a terminal cost term.

In the following we review the building blocks of the GJK algorithm. The original GJK
algorithm is very versatile and can be used for distance queries between convex objects in
general [Eri04]. However, as we will explain below, the algorithm can be implemented more
efficiently for polytopes.

111

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

Figure 4.2: The Minkowski difference of two convex polygons A and B. Since A and B intersect,
C contains the origin.

4.2.2.1 Overview

The GJK distance algorithm, or simply GJK algorithm, is an iterative algorithm that casts the
distance query between two convex shapes into a point-simplex polytope distance query in a
configuration space where a unique solution exists. The algorithm relies on a support mapping
function to incrementally build simplices that are closer to the query point [GJK88]. GJK has
been extensively used for collision detection between generic convex shapes [Van03], [Eri04].
The original algorithm, however, can be used to compute the minimum distance, and also the
respective pair of (closest) points, between two convex shapes [TCF13].

4.2.2.2 Configuration Space Obstacle

The Minkowski difference between two convex sets A and B, referred to as the translational
configuration space obstacle [Eri04], is defined as

C = A⊖B (4.23)

= A⊕ (−B) = {c : c = a− b; a ∈ A, b ∈ B}

which is a set of vectors in an affine space. C can be visualized as the area swept by A translated
to every point in −B, the reflection of B over the origin. It can be proven that C is convex.
More particularly, if A and B are convex polygons, then C is also a convex polygon and its
vertices are the differences of the vertices of A and B.

The distance query between A and B can be translated into finding the point with minimum
norm in C, indicated with ν(C), i.e.,

distance (A,B) = min {∥a− b∥ : a ∈ A, b ∈ B} (4.24)

= min {∥c∥ : c ∈ C} = ∥ν(C)∥

If A and B have one or more points in common then C includes the origin and ∥ν(C)∥ = 0
(See Fig. 4.2), otherwise A and B are disjoint and their distance is greater than zero (See Fig.
4.3). Since C is convex, its point of minimum norm, ν(C), is unique.

There exists algorithms for building the Minkowski difference, however, computing the entire
Minkowski difference is computationally infeasible at runtime. As we will see below, the GJK
algorithm can be implemented without building the entire C explicitly, as it only samples the
points in C using a support mapping function.

112

4.2. problem formulation

Figure 4.3: Finding the minimum distance between two convex bodies A and B is equivalent to
finding the minimum distance of their Minkowski difference, C, to the origin.

Figure 4.4: The support point of the Minkowski difference can be determined by subtracting
the support points of the two shapes.

4.2.2.3 Support Mapping Function

GJK relies on the so-called support mapping function to construct a new simplex. A support
mapping function sC(d) of the convex set C maps a given vector d to a point in the set, called
the support point, according to

dTw = dT sC(d) = max{dTp;p ∈ C} (4.25)

Therefore, the support point w can be interpreted as the furthest point in C along the
direction d. The support point is not necessarily unique. For d = 0 any point in C may be
returned as a support point. However, the support mappings in GJK is imposed to return a
point on the boundary of the object.

The support mapping function defined above is the maximum over a linear function, and
can be expressed in terms of the support mappings for A and B (See Fig. 4.4), i.e.,

sC(d) = sA(d)− sB(−d) (4.26)

Therefore, points from the Minkowski difference, C, can be computed, on demand, from the
supporting points of A and B.

A support point of a convex polytope can be computed efficiently. For a polytope P , the
support point is a vertex of P ,

w = sP (d) ∈ vert(P) (4.27)

obtained such that

113

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

Figure 4.5: Simplices in R2.

dT sP (d) = max{dTv;v ∈ vert(P)}. (4.28)

Therefore, for polytopes, the support point can be uniquely determined by simply scanning
through the list of vertices for the vertex that is the most extreme in the search direction
d. Therefore, the computation time is linear in the number of vertices of P . For complex
polytopes, the vertices adjacency information and the coherence between consecutive calls to
support mapping functions can be exploited to find the support point with almost constant time
complexity [Van03].

4.2.2.4 Simplices

A m-simplex in Rn, is the convex hull of a set of m + 1 (m ≤ n) affinely independent vertices
in Rn. Fig. 4.5 illustrates the simplices in R2. In R3, a simplex can be a point, a line, a
triangle or a tetrahedron with 1, 2, 3, and 4 vertices, respectively. A simplex in R3 has 2m+1−1
vertices, edges, faces, and volume, each of which associated with a Voronoi region in the three-
dimensional space. The Voronoi region of a feature of the simplex is the set of points that are at
least closer to one point of the feature than any other point of the simplex not included in the
feature. Examples of Voronoi regions for 1-simplex and 2-simplex in R2 are shown in Fig. 4.6.
For a simplex indicated with V = {v1, . . . ,vm+1}, the Voronoi region associated to a feature
of the simplex is denoted by Vι, where ι is an ordered tuple listing the indices of the vertices
specifying the feature.

The GJK algorithm builds simplices that are subsets of the Minkowski difference C by
selecting the vertices on the boundary of C. This follows immediately from the fact that C is a
compact set and every convex combination of the points in C is a point in C. Fig. 4.10 shows
simplices in a representative C in three-dimensional space.

The GJK algorithm uses the results of the Carathéodory’s theorem, which says each point
of convex body, H ∈ Rn, can be expressed as the convex combination of n + 1 or fewer points
of H. This allows expressing a point in a simplex as a convex combination of its vertices,

c =

m+1∑
i=1

λivi, λi ≥ 0,

m∑
i=1

λi = 1. (4.29)

More specifically, a point lying on a feature of the simplex specified with Vι, is expressed as

c =
∑
i∈ι

λivi, λi > 0,
∑
i∈ι

λi = 1. (4.30)

The coefficients λi are called the barycentric coordinates.

114

4.2. problem formulation

(a) Voronoi regions of a 1-simplex

(b) Voronoi regions of a 2-simplex

Figure 4.6: Each feature of a simplex is linked to a Voronoi region.

4.2.2.5 Convergence and termination

In order to obtain the minimum distance between two general convex bodies A and B, the GJK
algorithm approximates the closest point in their Minkowski difference to the origin, i.e. ν(C),
with an iterative search. The algorithm relies on the support mapping function to incrementally
build simplices in C that are closer to the origin [GJK88]. At each iteration, a search direction
is set as

dk = −νk (4.31)

where νk is minimum norm point of the current simplex whose vertices are indicated with Vk,
i.e.,

νk = ν(conv(Vk)) (4.32)

A support point wk = sC(−νk) is added as a vertex to the current simplex. Vk+1 is then
updated such that it only contains the smallest set of vertices in Yk = Vk ∪ {wk} that supports
νk+1 = ν(conv(Yk)), and earlier vertices that do not back νk+1 are discarded. (Algorithms for
computing ν and updating V are explained in the next section.)

Since Vk ⊂ Yk it may be concluded that

∥ν(Vk+1)∥ = ∥ν(Vk ⊂ {wk})∥ ≤ ∥ν(Vk)∥, (4.33)

and thus, νk calculated at each iteration is closer to the origin than the previous one, More
specifically

∥νk+1∥ ≤ ∥νk∥ (4.34)

115

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

with equality only if νk = ν(C) [GJK88]. Fig. 4.7 illustrates the descent nature of the GJK
algorithm. It is shown in [Van03] that ∥νk∥2 − νT

k wk ≥ 0, with equality only if νk = ν(C).
Although wk is not necessarily unique, ∥νk∥2 − νT

k wk is uniquely defined for each νk, and
provides an upper bound for the squared distance between νk and ν(C), that is

∥νk − ν(C)∥2 ≤ ∥νk∥2 − νT
k wk (4.35)

Also, the absolute error in ∥νk∥ is bounded by

∥νk∥ − ∥ν(C)∥ ≤ ∥νk − ν(C)∥ ≤ γk (4.36)

where γk = sqrt(∥νk∥2−νT
k wk) [Van03]. Since γk is continuous in νk and γk = 0 for νk = ν(C),

it can be inferred that the error bound converges to zero as ν → ν(C). Therefore, for a given
positive absolute error tolerance ϵabs, there exist a k such that γk ≤ ϵabs.

Algorithm 4 describes the GJK algorithm [Van03] for general convex shapes. The algorithm
may terminate if |V | = 4 or ∥ν∥2 ≤ ϵtol∥ymax∥2, both of which establish that ν(aff(V)) = 0; Or
it may terminate if νk is sufficiently close to ν(C), that is

∥ν∥2 − νTw ≤ ϵ2rel∥ν∥2 (4.37)

for a given tolerance value ϵrel > 0. The GJK algorithm, as described in Alg. 4, depends heavily
on the computation of νk for testing the termination condition and finding the search direction.
The original GJK algorithm employs the Johnson Distance Subalgorithm [GJK88] (explained in
the next section) to compute νk at each iteration.

Here, we exploit unique features of polytopes and present a faster way to evolve simplices in
the GJK algorithm. Instead of computing νk at each iteration, we employ an easily computable
search direction dk ↑↓ νk to find the support point, and only compute the minimum norm point
when the algorithm terminates. The termination condition is also modified appropriately such
that it is independent of νk.

The following proposition offers a criterion for deciding weather or not νk = ν(conv(Vk)) =
ν(C) without explicitly computing νk.

Proposition 1. dT
k (wk − v1) ≥ 0, with equality only if νk = ν(conv(Vk)) = ν(C).

Proof. (i) From the definition of the support mapping function we have

dT
kwk ≥ dT

k c ∀c ∈ C (4.38)

In particular, for c = v1, we get

dT
kwk ≥ dT

k v1 (4.39)

and thus, dT
k (wk − v1) ≥ 0.

(ii) Now, assuming that dT
k (wk − v1) = 0, and expressing the minimum norm point as νk =

−αdk, α > 0, we derive

∥νk∥2 ≤ ∥νk∥2 + ∥νk − c∥2

= ∥c∥2 − 2(νT
k c− ∥νk∥2)

= ∥c∥2 − 2α(dT
k νk − dT

k c)

= ∥c∥2 − 2α(dT
k v1 − dT

k c)

= ∥c∥2 − 2α(dT
kwk − dT

k c)

≤ ∥c∥2, (4.40)

116

4.2. problem formulation

From (4.40), νk is closer to the origin than any other point c ∈ C and thus, is the unique
point of minimum norm in C, i.e., νk = ν(C).

In (4.40), we make use of the fact that the search direction dk is perpendicular to the convex
hull of Vk, and thus we have

dT
k (νk − v) = 0 ∀v ∈ conv(Vk). (4.41)

A natural choice, as used above, is v1 ∈ Vk, yielding dT
k νk = dT

k v1.

For a polytope P , GJK arrives at the actual ν(P) in a finite number of iterations [Van03],
and thus, the stop criterion for the conditional loop in the algorithm can be replaced by

dT
k (wk − v1) ≤ 0 (4.42)

If (4.42) holds then Vk represents the closest feature of the polygon to the origin, i.e.,
ν(conv(Vk)) = ν(P), and the point of minimum norm in P can be obtained by projecting
the origin onto the convex hull of Vk as

ν(P) =
dT
k v1

∥dk∥2
dk. (4.43)

Algorithm 5 summarizes GJK with all necessary modifications to have it run efficiently for
polytopes. The algorithm may terminate if |V | = 4, in which case aff(V) is the whole space and
ν(P) must be the origin; or it may return Vk representing a vertex, an edge or a face of P if
(4.42) holds. Figure 4.8 shows possible outputs of Algorithm 5 for a representative polyhedron.

To derive the termination condition (4.42) we used the fact that the search direction dk is
in the opposite direction of νk. In Sec. 4.2.2.6.A we explain the algorithm for updating dk at
each iteration.

4.2.2.6 Johnson’s Distance Sub-algorithm

The Johnson’s distance sub-algorithm is an algorithm for computing the point of minimum
norm, νk+1 = ν(conv(Vk ∪ {wk})), and the smallest subset, Vk+1 ⊂ Vk ∪ {wk} = Yk, supporting
it [JC98]. (Here, we drop the superscript for simplicity). Since the GJK algorithm updates the
simplices by adding a single vertex at a time, the maximum cardinality of Y ⊂ Rn is n+ 1 and,
thus, Y specifies the vertices of a m-simplex in Rn. For Y = {y1, . . . ,ym+1}, ν can be expressed
as

ν =

m+1∑
i=1

λivi where

m+1∑
i=1

λi = 1 and λi ≥ 0. (4.44)

The smallest subset V ⊂ Y , such that ν ∈ conv(V) is obtained by discarding all yi for which
λi = 0, i.e.,

V = {yi : λi > 0} (4.45)

It can be concluded immediately that ν is also the closest point of the affine hull of V to
the origin, i.e., ν = ν(conv(V)) = ν(aff(V)). Therefore, the set V = {yi : i ∈ IV }, where
IV ⊂ {1, . . . ,m+ 1}, must satisfy

ν = ν(aff(V)) =
∑
i∈IV

λiyi where
∑
i∈IV

λi = 1 and λi > 0, (4.46)

and

117

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

Figure 4.7: Finding the closest point to the origin on a polygon using the GJK algorithm. The
set of vertices Y = Vk ∪ {wk} and Vk+1 ⊂ Yk are shown at each iteration. The iterative search
descends such that the generated simplex at each iteration offers a better approximation of the
ν(C) that the previous one.

118

4.2. problem formulation

Figure 4.8: Examples of the closest feature of a polyhedron to the origin are shown above. The
closest feature can be a vertex, an edge or a face with |V | = 1, 2, or 3, respectively. If |V | = 4
the origin is contained in the interior of P . Once the closest feature specified with V is obtained,
the closest point, i.e., ν(P), can be determined as shown above.

ν(aff(V ∪ {yj})) =
∑

i∈IV ∪{j}

λiyi where
∑

i∈IV ∪{j}

λi = 1 and λj ≤ 0,∀j /∈ IV . (4.47)

The subset V identifies a face of the simplex Y (or its interior). To determine whether a face
of Y , Yι ⊂ Y, ι ⊂ {1, . . . ,m+ 1}, is the smallest subset supporting ν, it is necessary to compute
λis representing ν(conv(Yι)), and check if they comply with (4.46) and (4.47). Assuming that
Yι is a face of the simplex defined with Yι = {yi : i ∈ ι} = {v1, . . . ,vr}, and bearing in mind
that the closest point of Yι to the origin is perpendicular to aff(Yι), then

(vj − vl)
T ν(conv(Yι)) = 0, l ̸= j j, l ∈ {1, . . . , r} (4.48)

Therefore, the barycentric coordinates can be computed by solving a system of linear equa-
tions that embeds the above orthogonality condition, that is

1 . . . 1
(v2 − v1)

Tv1 . . . (v2 − v1)
Tvr

...
...

(vr − v1)
Tv1 . . . (vr − v1)

Tvr

λ1
λ2
...
λr

 =

1
0
...
0

 (4.49)

A solution to the above algebraic system can be obtained by using Cramer’s rule and a
cofactor expansion around the first row as,

λj =
−11+jdetA1j

detA
(4.50)

119

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

Figure 4.9: The bottom-up approach to searching all 2m+1 − 1 non-empty subsets of Y for a
2-simplex used in Johnson’s distance subalgorithm (left). The method presented in Alg. 6 to 8
conducts a search only through 2m subsets whose Voronoi region can possibly contain the origin
(right).

However, since the cardinality of the smallest subset supporting ν is not known a priori, the
Johnson’s distance algorithm solves (4.49) for all the non-empty subsets of Y , and recursively
computes ∆i(Yι) defined as

∆i(Yι) = −1(1+j)detA1j (4.51)

for vj = yi, i ∈ ι, to express

ν(aff(Yι)) =
∑
i∈ι

λiyi where λi =
∆i(Yι)

detA
(4.52)

Starting from the m+ 1 singletons, Yι = {yi}, ∆i(Yι) is trivially obtained as

∆i({yi}) = 1 (4.53)

whereas for Yι ∪ {yj}, j /∈ ι

∆j(Yι ∪ {yj}) =
∑
i∈ι

∆i(Yι)
(
(v1 − yj)

Tyi

)
. (4.54)

Since detA =
∑

i∈ι ∆i(Yι), λi is obtained as

λi =
∆i(Yι)∑
i∈ι ∆i(Yι)

. (4.55)

Since for affinely independent subset, detA > 0, the sign of λi can be determined from the
sign of ∆i(Yι). Thus, if Yι satisfies

∆i(Yι) > 0 ∀i ∈ ι and ∆j(Yι ∪ {yj}) ≤ 0 ∀j /∈ ι (4.56)

then λi for Yι also complies with (4.46) and (4.47), and, thus, Yι is the unique face of the
simplex supporting ν, and V = Yι. The Johnson’s distance algorithm inspects all the 2m+1 − 1
non-empty subsets (all the faces and the interior of the simplex) to find the one that satisfies
(4.56). Fig. 4.9 illustrates the bottom-up approach used in the Johnson’s distance algorithm for
searching through all the non-empty subsets of a 2-simplex.

In practice the GJK algorithm tends to form degenerate simplices with vertices that are close
to being affinely dependent. This can affect the numerical stability of the Johnson’s algorithm
since detA is close to 0 for such simplices. Therefore, the GJK algorithm may return erroneous
results as detA approaches machine precision. This issue is addressed in [MPB17], where a
more robust distance algorithm, named the signed volumes method, is proposed. This method

120

4.2. problem formulation

is based on the fact that λis are invariant to affine transformations and, thus, can be computed
in a lower dimensional space and be used in the original space of the simplex. Accordingly,
the signed volumes method project the vertices into a lower dimensional space to get rid of
their affine dependency. The barycentric coordinates are then obtained by solving a simpler
well-conditioned system of equations. More details on irregularities in the GJK algorithm and
measures to preserve precision in the computations can be found in [Van03].

A. Efficient approach to finding the smallest subset V supporting ν

An alternative way of implementing the distance algorithm is to search through the Voronoi
regions of the features of a simplex for the one that contains the origin. This method is based
on the fact that ν = ν(Y) ∈ conv(V) if and only if O ∈ VV . Accordingly, the algorithm
considers all the non-empty subsets of Y , and tests their Voronoi regions for containment of the
origin using sets of inequalities. The barycentric coordinates and the point of minimum norm
can be computed once the feature, specified by the unique subset satisfying the inequalities, is
identified.

The algorithm, as explained in [Eri04] and [Van03], search through the subsets one by one,
in order of increasing size. For example, for a 3-simplex with Y = {y1,y2,y3,y4}, the algorithm
inspects a total of 15 subsets corresponding to 4 vertices, 6 edges, 4 faces and the interior of
the simplex. However, ordering the vertices of Y such that y1 is the last added point to Y , i.e.,
y1 = wk, we can conclude that only the 8 subsets, containing y1 as an element, can possibly
satisfy the containment test. This is immediately followed from the fact that y1 is the support
point obtained from searching in the direction of −ν({y2,y3,y4}). That being the case, we
can immediately invalidate 7 features, and test the remaining features for containment using
inequality sets specific to each one.

Fig. 4.10 shows the list of 2m Voronoi regions of a m-simplex that can possibly contain the
origin.

Defining the vector nycybya prependicular to the face specified with {ya,ybyc} as

nv3v2v1 = (v2 − v1)× (v3 − v1) (4.57)

and bearing in mind that,

(yT
1 ny4y3y2)(yT

i ny4y3y2) < 0 i ̸= 1 (4.58)

the set of inequalities for determining whether the interior of a 3-simplex contains the origin is
obtained as

(yT
1 ny3y2y1)(yT

4 ny3y2y1) < 0 (4.59)

(yT
1 ny4y3y1)(yT

2 ny4y3y1) < 0

(yT
1 ny4y2y1)(yT

3 ny4y2y1) < 0

The above set simply considers the 3 faces passing through y1 and checks if the origin is
between the plane supporting the face and a parallel plane passing through the vertex not in
the face. Therefore, if (4.59) holds then O ∈ V(1,2,3,4).

The set of inequalities for testing the Voronoi region associated with y1 can be defined as

(
(O − v1)

Tnv3v2v1

)(
(v4 − v1)

Tnv3v2v1

)
≤ 0 (4.60)

(O − v1)
T
(
nv3v2v1 × (v2 − v1)

)
≤ 0

(O − v1)
T (v2 − v1) ≤ 0

121

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

If the above inequalities are satisfied, then the origin lies in V(1), and V = {y1}. Analogous
sets of inequalities can be obtained for testing the Voronoi regions of the edges and faces of
the simplex. It should be noted that most of the computed quantities in the resulting set of
inequalities for testing different Voronoi regions are the same and need not be recomputed. This
allows an efficient implementation of the test as summarized in S1D, S2D, or S3D subroutines,
presented in Alg. 6 to 8, for |Y | = 1, 2, or 3, respectively.

The presented case-based approach to identifying the smallest subset V ⊂ Y such that ν ∈
conv(V), differs from the Johnson’s distance algorithm in the sense that, instead of computing
λi (or ∆i) for each of the 2m+1 − 1 non-empty subsets of Y and checking whether they satisfy
(4.46) and (4.47), it identifies the unique set of vertices yi that satisfy (4.46) and (4.47) by
searching through 2m subsets, and only then computes λi or ν if necessary. However, as we
explained before we do not compute ν until the very end, and thus Alg. 6 to 8 only return a
search direction which is almost readily available from the previously computed quantities. It
can be observed from Alg. 6 to 8 that the search direction is simply a vector pointing from
conv(Vk+1) to the origin.

Algorithm 4 The numerical GJK distance algorithm (adapted from [Van03])

1: v = ”Arbitrary point in C = A−B”
2: ν = −v
3: V = ∅
4: Y = ∅
5: repeat
6: w = sC(−ν);
7: if w ∈ Y or ∥ν∥2 − νTw ≤ ϵ2rel∥ν∥2 then
8: ν is close enough to ν(C)
9: return ν

10: end if
11: Y ← V ∪w;
12: [V, λ]← DistanceSubalgorithm(Y);
13: ν =

∑
λiyi : yi ∈ V, i ∈ IV

14: until |V | = 4 or ∥ν∥2 ≤ ϵtol max{∥yi∥2;yi ∈ V };
15: return ν = O

Algorithm 5 GJK for polygons

1: v = ”Arbitrary point in vert(P)”
2: d = −v
3: V = {v}
4: Y = ∅
5: repeat
6: w = sP (d);
7: if dT (w − v1) ≤ 0 then
8: V represents the closest face of P to O
9: return ν(V)

10: end if
11: Y ← V ∪w;
12: [V,d]← CallSmD(Y);
13: until |V | = 4;
14: P contains O
15: return ν = O

122

4.2. problem formulation

Algorithm 6 Sub-routine for |Y | = 2

1: function S1D({v2,v1}) 1

2: if vT
1 v12 ≥ 0 then

3: V ← {v1}
4: d← −v1

5: else
6: V ← {v2,v1}
7: d← −v12 × v1 × v12

8: end if
9: end function

Algorithm 7 Sub-routine for |Y | = 3

1: function S2D ({v3,v2,v1})
2: nv3v2v1 = v12 × v13

3: if vT
1 (nv3v2v1 × v12) ≥ 0 then

4: [V,d]← S1D({v2,v1})
5: else

6: if v1
T (v13 × nv3v2v1) ≥ 0 then

7: [V,d]← S1D({v3,v1})
8: else

9: if vT
1 nv3v2v1 ≥ 0 then

10: V ← {v3,v2,v1}
11: d← −nv3v2v1

12: else
13: V ← {v3,v2,v1}
14: d← nv3v2v1

15: end if
16: end if
17: end if
18: end function

4.2.3 Continuity conditions

As explained before, at each sampling time, a trajectory, expressed as a parametric Bézier
curve, is generated for the time horizon [tk, tk + th], and the trajectory for the entire flight time
is formed by joining segments of these Bézier curves end-to-end. The smoothness of the resulting
composite trajectory must be guaranteed by enforcing continuity at the joining points of two
consecutive segments up to a certain derivative. Assuming that the time horizon is equal to
∆t = tk − tk−1, the trajectory generated for the i-th vehicle at tk must satisfy

drpi,k(0)

dtr
=
drpi,k−1(1)

dtr
r ∈ {0, . . . , r} (4.61)

for a desired r. The first and second-order parameteric continuity conditions are given in (3.78)
and (3.79), respectively. Similar conditions can be derived for higher-order continuity between
two Bézier curves. It should be noted that in practice the time horizon is usually greater than
∆t, in which case a Bézier curve describing the segment over the time interval [tk−1, tk] can be
obtained by subdividing pk−1(.) at tk with the de Casteljau’s algorithm.

123

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

Algorithm 8 Sub-routine for |Y | = 4

1: function S3D({v4,v3,v2,v1})
2: nv3v2v1 = v12 × v13

3: if (vT
1 nv3v2v1)(vT

14nv3v2v1) ≥ 0 then

4: [V,d]← S2D({v3,v2,v1})
5: else

6: nv4v3v1 = v13 × v14

7: if (vT
1 nv4v3v1)(vT

12nv4v3v1) ≥ 0 then

8: [V,d]← S2D({v4,v3,v1})
9: else

10: nv4v2v1 = v12 × v14

11: if (vT
1 nv4v2v1)(vT

13nv4v2v1) ≥ 0 then

12: [V,d]← S2D({v4,v2,v1})
13: else

14: V ← {v4,v3,v2,v1}
15: end if
16: end if
17: end if
18: end function

Figure 4.10: A m-simplex is linked to 2m+1− 1 Voronoi regions associated to its vertices, edges,
faces, and volume. The list of 2m Voronoi regions that can possibly contain the origin is given
in this table. It should be noted that v1 is the latest vertex added to V .

4.3 Simulation Results

In this section, the efficacy of the proposed method for generating feasible and collision-free
trajectories in (vehicle-) dense environments are assessed through different simulation examples.

124

4.3. Simulation Results

We compare the resulting trajectories to those generated with the well-studied BVC approach.
We specifically test the capability of the two methods to generate trajectories that ensure all
drones involved in a simulation example reach their final positions, and compare the flight time,
obtained with each of them, to complete point-to-point transition missions. We also present the
recorded computation time for executing the proposed algorithm in this paper to emphasize its
suitability for real-time applications.

In the simulations presented below, we assume all drones have the same size, and their BVC
(4.12) is defined with the safety radius rD = 0.30 m. To specify the set (4.18), we approxi-
mate the drone body with an oblate spheroid with Λ = diag([0.30 m, 0.30 m, 0.11 m]). In both
methods, trajectories are parameterized with Bézier curves. Upper and lower bounds on the
speed and acceleration are assumed to be ±2.3 m

s and ±7.1 m
s2

respectively. At each replanning
step, the planner finds the closest point in the updated Voronoi cell to the goal position using
the algorithm in Section 4.2.2. The computed point is then used to define the terminal cost

term. The first term of the cost function in all subproblems is defined as
∫ 1
0 ∥p

(4)
i,k (τ)∥2dτ . The

time horizon and the replanning step are also considered to be the same for both methods. The
obtained solution at the previous replanning step is used to set the initial guess for the current
sub-problem. We use FORCES Pro [DJ19] to generate solvers for the resulting sub-problems.
The sub-problems, involving the set of control points p̄i,k as decision variables, can be refor-
mulated to match the supported classes of problem in FORCES Pro. Here, all computations
are executed on a single desktop computer, with 2.60 GHz i7-4510U CPU and 6.00 GB RAM;
however, in practice, the resulting independent sub-problems can be solved in parallel.

As mentioned before in the paper, in Voronoi-based methods, a vehicle only requires the
position information from its neighboring vehicles to generate its trajectory. Therefore, they
are more suitable for implementation when vehicles have limited communication capability, and
have to rely solely on onboard sensing. In reality, the position sensor noise can impact the
planner performance, yet this is more pronounced when estimating other information, such as
velocity, from noise-corrupted measurements is needed. Therefore, Voronoi-based planners are
more robust when there is no communication network. Nevertheless, in the following simulations,
we assume that accurate position information is available with no delay at the replanning time.

In the first example, we consider five drones flying from their initial positions to given final
positions. This example is similar to one in [Zho+17] where a random offset is added to break
the symmetry in the drones’ initial and final configurations. Figure 4.11 (right) shows collision-
free trajectories generated with the distributed scheme described above, with a replanning rate
of 20 Hz. For this particular example, the resulting trajectories match those generated with
BVC with a flight time of 11.6782 s. Figure 4.11 (left) shows collision-free trajectories obtained
from the centralized solution, which delivers a total flight time of 9.4347 s, yet, while the central
solution is obtained in 601 ms, the average computation time for solving the sub-problems in
the decentralized scheme is only 49 ms.

In the next example, we consider 18 drones switching positions in a 3 m× 5 m× 2 m space,
with a maximum speed and acceleration of ±4.7 m

s and ±9.8 m
s2

, respectively. Figure 4.12a shows
the initial and final configurations, and Figure 4.12b displays collision-free trajectories generated
with the proposed distributed scheme in the paper implemented at 10 Hz. While both methods
could find collision-free trajectories for guiding the team of drones from their initial positions
to their goal positions, the flight time achieved with the proposed method is markedly shorter
than the time obtained with BVC. We also performed a trial simulation with 34 drones in a
similar configuration. Table 4.1 compares the success rate and the flight time to complete the
transition using BVC and the proposed method.

In the third example, we consider 100 drones flying in an 8 m×8 m×3.5 m space. The initial
and final positions for the drones are displayed with dot and square markers in Figure 4.13. We
test both methods in 30 different trials. In each trial, final positions are randomly assigned to
drones. A trial is considered successful if all drones could reach their final positions within the

125

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

stipulated time. The proposed method with 23 successful trials and an average total flight of 1s
outperforms the BVC with only 16 completed trials. It should be noted that using well-devised
deadlock prevention strategies or loosening time constraints can improve the success rate of both
methods. Figure 4.13 shows collision-free trajectories generated with the proposed method for
one of the trials at different time steps. The average computation time for solving sub-problems
in this example was around 115 milliseconds. In addition, compared to the geometric algorithm
in [Zho+17], the closest point in a Voronoi cell to the goal position was obtained at least 10 times
faster with the proposed algorithm in Section 4.2.2. The computation time for finding the closest
point, and solving the optimization problem, depends on the number of neighboring drones (See
Table 4.2 for recorded computation times in simulation examples with 18, 34, and 100 drones).
In most applications, with typical Voronoi diagrams, the number of boundary planes, i.e., the
number of Voronoi neighbors, is small. Thus, the proposed distributed algorithm is scalable to
arbitrary numbers of vehicles.

Figure 4.11: Comparing collision-free trajectories generated with the centralized solution (left)
and the proposed decentralized approach (right) for five drones flying from their initial positions
to given final positions. While the central solution yields a shorter flight time, its computation
time is significantly longer than average time required to solve the sub-problems in the dis-
tributed method.

126

4.3. Simulation Results

Figure 4.12: (a) Initial (left) and final (right) position configurations for 18 drones. Each drone
is assigned a unique color and a number next to it. (b) Collision−free trajectories for 18 drones
switching their positions in a 3 m × 5 m × 2 m space. The total flight time for the drones to
reach their final positions is 5.1 s using the proposed method, which is shorter than the 6.3 s
flight time obtained with the BVC.

127

Chapter 4. Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning

Figure 4.13: Collision−free trajectories for 100 drones flying from their initial positions (dots)
to randomly specified final positions (squares) at different replanning steps.

Table 4.1: Comparing the number of successful trials and the average flight time achieved with
the BVC and the proposed method in the paper.

Number of Drones
BVC Proposed Method

Flight Time Completed Trials Flight Time Completed Trials

18 6.812 s 5/5 5.327 s 5/5

34 8.105 s 7/10 6.625 s 8/10

100 14.573 s 16/30 11.462 s 23/30

Table 4.2: Recorded computation times for finding the closest point in a Voronoi cell to the
goal position and solving the optimization problem in simulation examples with 18, 34, and 100
drones.

Number of Drones
Computation Time (ms)

Finding the Closest Point Solving the Sub-Problem

18 <0.1 77.562

34 <0.1 98.330

100 0.171 121.633

128

Chapter 5

Conclusion and Future Work

129

Chapter 5. Conclusion and Future Work

5.1 Conclusion

In this thesis we developed a Bézier curve based trajectory generation method for multiple
autonomous vehicles, motivated by practical problems that arise in emerging applications of
networked aerial vehicles. We proposed an efficient method for evaluating collision-avoidance
constraints, and demonstrated its suitability for real-time applications with strict time con-
straints. We also addressed the shortcomings of the existing trajectory generation methods to
consider the rotational motion of a drone and derived collision avoidance constraints taking into
account the drone’s orientation along a trajectory. We also developed a distributed trajectory
generation framework, with low computation and communication demands, which allows for
real-time re-planning of trajectories for large groups of drones flying in a common workspace.
In this chapter we summarize the contributions of the thesis and provide suggestions for future
research work.

5.1.1 Summary

In Chapter 2 we formulated the optimal trajectory generation problem for autonomous drone
cinematography and AUV range-based positioning, and employed the direct multiple shooting
method in conjunction with a structure-exploiting solver to efficiently solve the resulting NLPs.
The simulation results presented in Chapter 2 verified the applicability of numerical optimal
control approaches to generate trajectories in multi-vehicle missions with complex constraints
and objectives.

In Chapter 3 we leveraged the unique properties of Bézier curves and developed a computa-
tionally efficient trajectory generation framework for differentially flat systems. We addressed
the issue of evaluating inequality constraints in the semi-infinite optimization problem associated
with polynomial path parameterization. Such problems involve constraints that bound functions
of a finite number of control points over an entire time interval. In order to obtain a compu-
tationally tractable optimization problem, we replaced inequality constraints, whose functions
are represented as Bernstein polynomials, with constraints on their control points, yielding a
finite-dimensional problem with a small number of constraints. We also proposed a method to
reduce the conservatism in the resulting set of constraints, that might be caused by the gap
between a Bernstein polynomial and its control polygon. The proposed method is based on the
de Casteljau’s algorithm to find a more refined Bézier control polygon of the Bernstein poly-
nomial with repeated subdivision. We showed that the proposed method would allow refining
the representation of the polynomial locally with control points that are arbitrarily close to the
curve. We also presented quantitative bounds on the distance between a Bernstein polynomial
and its Bézier control polygon and used the result to derive an appropriate criterion for deciding
whether the composite control polygon obtained with repeated subdivision is a good approxi-
mant of the Bernstein polynomial. We compared the proposed method to other approaches for
evaluating inequality constraints and showed that it can effectively speed up the solution time
of generating and re-planning trajectories.

We also addressed the motion planning problem for drones flying in small spaces, where
finding feasible trajectories is impossible unless the flight attitude angles are taken into account.
In order to include the attitude angles in the trajectory generation problem, we modeled the
drone body with an ellipsoid and utilized the separating hyperplane theorem to derive collision
avoidance constraints between two ellipsoids. We showed that incorporating the resulting set of
constraints would enable the planner to generate trajectories that can safely navigate a drone
through narrow gaps, or maneuver multiple drones in a tight space without collisions. We also
showed that the resulting constraints can be expressed as inequalities in Bézier form and thus can
be integrated seamlessly into the proposed Bézier curve-based trajectory generation framework.

In Chapter 4, we presented a distributed algorithm to generate collision-free trajectories for
a group of quadrotors flying through a common workspace. In the proposed setup, each vehicle

130

5.2. Future Work

would replan its trajectory, in a receding horizon manner, by solving a small-scale optimization
problem that only involves its own individual variables. We adopted the Voronoi partitioning
of space to derive local constraints that guarantee collision avoidance with all neighbors for a
certain time horizon. The collision avoidance constraints were obtained taking into account the
orientation to avoid infeasiblity issues caused by ignoring the quadrotor’s rotational motion. It
was shown that the resulting set of constraints can be expressed as Bézier curves, and thus can
be evaluated efficiently, without discretization, using the method proposed in Chapter 3. This
would ensure that collision avoidance requirements are satisfied at any time instant, even for an
extended planning horizon. It was shown through extensive simulations, with up to 100 drones,
that the proposed method has a higher success rate at finding collision-free trajectories for large
groups of drones compared to the widely used BVC method.

We also presented an efficient approach to implementing the GJK distance algorithm for
polytopes, which is used to compute the closest point of the vehicle’s Voronoi cell to the vehicle’s
goal position prior to solving the optimization problem at each re-planning step. The presented
algorithm is different from the original GJK algorithm in the sense that: (i) it does not rely
on the computation of the point of minimum norm at each iteration, instead it uses an easily
computable search direction to find new support points and to check a modified termination
condition; (ii) it does not inspect all Voronoi regions to evolve simplices, alternatively it searches
through the least number of regions by discarding those that cannot contain the origin. Once
the closest feature of the polytope to the origin is determined, the point of minimum norm is
obtained by projecting the origin onto the feature. It was shown that the proposed approach
can effectively reduce the computational delays between updating the vehicles’ Voronoi diagram
and re-planning trajectories.

5.2 Future Work

5.2.1 Rational Bézier curves

In Chapter 3, we proposed an efficient method for evaluating an inequality constraint provided
that its function can be expressed as a scalar-valued Bézier curve. Extending the proposed
method to constraints with functions in the form of rational Bézier curves can be an interesting
topic for future research work. This would require new shape control tools that are more efficient
than the classical way of manipulating rational Bézier curves.

A rational Bézier curve of degree n is defined with a set of n+ 1 control points P0, . . . , Pn as

r(τ) =
n∑

i=0

Ri,n(τ)Pi (5.1)

where Ri,n(τ) is defined as

Ri,n(τ) =
wiBi,n(τ)∑n
j=0wjBj,n(τ)

(5.2)

with the weights wi > 0. The numerator and denominator of r(τ) behave like ordinary Bézier
curves, and thus the de Casteljau’s algorithm can be applied to each separately for the evaluation
of r(τ). However, this approach has a time complexity of O(n2). More efficient de Casteljau-
type evaluation algorithms for rational Bézier curve can be found in [Far83], [SJ15] and [WC20].
Alternatively, a rational Bézier curve can be expressed in barycentric form over a set of distinct
nodes τ0, . . . , τn as [RH21],

r(τ) =

∑n
i=0(−1)i βi

t−ti
Qi∑n

i=0(−1)i βi

t−ti

(5.3)

131

Chapter 5. Conclusion and Future Work

where Qi = r(τi) are the interpolation points and βi are non-zero weights defined as

βi = (−1)n+iαiz(τi) (5.4)

with the Lagrange weights αi =
∏n

j=0,j ̸=i
1

τi−τj
, i = 0, . . . , n and z(τ) =

∑n
i=0wiBi,n(τ).

Representing a rational Bézier curve as above allows direct control over the shape of the
curve, i.e., the curve can be enforced to pass through some desired points. The curve flatness can
also be adjusted by modifying the weights βi. Furthermore, degree elevation can be performed
simply and efficiently by adding new interpolation points Qj = r(τj), τj ∈ [0, 1]\{τ0, . . . , τn}
and adapting the weights accordingly [RH21]. Therefore, to benefit from the simplicity of the
barycentric form, while making use of the properties of the Bézier form, it may be desirable to
convert a curve from Bézier form to barycentric form for editing its control points and weights
as required by the trajectory generation problem.

5.2.2 Computation delay compensation for real-time implementation

In chapter 4, we introduced a distributed algorithm for generating collision-free trajectories for
multiple drones, taking into account their orientation. In order to avoid substantial communica-
tion between drones, we adopted Voronoi-based space partitioning and derived local constraints
that guarantee collision avoidance with neighboring vehicles for an entire time horizon. As we
explained, at each re-planning step, upon receiving (or sensing) the new position information,
a vehicle would find the closest point in its Voronoi cell to the goal position, and solve an opti-
mization problem, using as the initial condition the current state of the vehicle, to generate its
trajectory for the time horizon. However, it should be noted that the computation time to find
the optimal solution can lead to a (significant) delay between updating the position information
and executing the trajectory. Therefore, in practice, the computational delay must be explic-
itly considered to avoid performance degradation (or even failure) of the planner in real-time
applications.

This issue can be addressed by setting the initial condition in the optimization sub-problem
solved at the time instant tk as

xi,k(0) = xi,k−1(tk + δt) (5.5)

where δt is an estimation of the computation time required to find the closest point and solve
the optimization problem. Assuming that the time for computing the closest point is negligible,
it is imperative to re-plan the trajectory in an allocated time < δt. If the solver cannot find the
optimal solution in less than δt, the best feasible solution is executed. That being the case, it is
of utmost importance to use a solver that can guarantee intermediate solutions are feasible.

132

Appendix A

Structure exploiting NLP solver

The NLP resulting from the direct multiple shooting method can be solved efficiently by ex-
ploiting its special structure. In the following, we briefly outline the block Cholesky procedure
which was first developed in [WB09] for block structured QPs and later extended to nonlinear
non-convex problems in [Dom+12] and [Zan+17].

A general NLP formulation is given by

min
z
F (z) (A.1)

s.t. G(z) = 0, (A.1a)

H(z) ≤ 0. (A.1b)

where G : Rnz → Rneq and H : Rnz → Rnineq . The Karush-Kuhn-Tucker (KKT) optimality
conditions for the above NLP are

∇zL(z∗, µ∗, λ∗) = 0

G(z∗) = 0,

H(z∗) ≤ 0,

λ∗ ≥ 0

H(z∗)Tλ∗ = 0. (A.2)

where L(.) is the Lagrangian defined as

L(z, λ, µ) = F (z) +G(z)Tµ+H(z)Tλ, (A.3)

and µ ∈ Rneq and λ ∈ Rnineq are the Lagrange multipliers associated with equality and inequality
constraints respectively. One approach to solving the NLP (A.1) is via interior point (IP)
methods which replace the non-smooth conditions in (A.2) by smoothed version, expressed as

∇zL(z∗, µ∗, λ∗) = 0,

G(z∗) = 0,

H(z∗) + s = 0,

ΛS = 0, (A.4)

where s ∈ Rnineq is the vector of slack variables, S = diag(s) and Λ = diag(λ). The conditions
in (A.4) can be summarized as

R(w) = 0. (A.5)

133

Appendix A. Structure exploiting NLP solver

where w = (z, µ, λ, s)T . Newton’s method can be applied to solve the above system of equations
by linearizing around the current guess wj = (zj , µ, λ, s)T and generating a sequence of points
by solving

R(wj) +∇R(wj)(∆w) = 0 (A.6)

where ∆w = wj+1 −wj and

∇R =

H JT

eq JT
ineq 0

Jeq(z)
Jineq(z) I

S Λ

 (A.7)

In (A.7), Jeq and Jineq denote respectively the Jacobian matrices of the equality constraints
and inequality constraints, and H is obtained as

H = ∇2
zF +

neq∑
i=1

µT
i ∇2

zGi +

nineq∑
i=1

λT
i ∇2

zHi (A.8)

The above linear system can be reduce by eliminating ∆s and the Lagrange multipliers ∆λ
using

∆s = Λ−1(−rs − S∆λ), (A.9)

and

∆λ = S−1Λ(rI + Jineq(z)∆z)− S−1rs, (A.10)

where rs = ΛS and rI = H(z) + s. The resulting augmented system can be expressed as[
Φ Jeq(z)T

Jeq(z) 0

][
∆z
∆µ

]
= −

[
rd
rE

]
, (A.11)

where

Φ = H(z, µ, λ) + Jineq(z)TS−1ΛJineq(z),

rd = ∇zL(z, µ, λ) + Jineq(z)TS−1rs − Jineq(z)TS−1ΛrI ,

rE = G(z). (A.12)

The above form of the KKT system is called the symmetric indefinite form [WB06]. By
forming the Schur complement of the matrix in (A.11), a more compact and symmetric system
can be obtained as [Dom+12]

Y∆µ = β. (A.13)

where

Y = Jeq(z)Φ−1Jeq(z)T ,

β = rE − Jeq(z)Φ−1rd. (A.14)

Once (A.13) is solved the search direction can be computed as

∆z = Φ−1(−rd − Jeq(z)T∆µ). (A.15)

134

Solving the KKT system and finding the search direction is the most computationally expen-
sive step in the interior point method. For a generic NLP, the system of linear equations (A.13)
(or (A.11)) is solved by first computing the LDLT factorization of the matrix Y . However,
for the NLP obtained via direct multiple shooting discretization, Y can be factored efficiently
by block-wise Cholesky factorization. This is due to the fact that the direct multiple shooting
method yields a block diagonal Hessian matrix and a block banded Jacobian matrix (See sec.
2.3.2), and thus, the resulting augmented Hessian matrix Φ and its inverse exhibit block diagonal
structure. Consequently, the matrix Y has a block tri-diagonal structure, expressed as

Y =

Y11 Y 12 0 . . . 0
Y T
12 Y22 Y23 . . . 0
...

. . .
. . .

. . .
...

0 . . . Y T
N−2,N−1 YN−1,N−1 YN−1,N

0 . . . 0 Y T
N−1,N YN

 . (A.16)

The Cholesky factor of Y = LY L
T
Y , expressed as

LY =

L11 0 0, . . . 0
L21 L22 0, . . . 0
0 L32 L33 . . . 0
...

...
. . .

. . . 0
0 0 . . . LN,N−1 LN,N

 , (A.17)

can be computed by solving [Dom+12]

Y11 = L11L
T
11,

Yk,k+1 = Lk,kL
T
k+1,k, 1 ≤ k ≤ N,

Yk,k − Lk,k−1L
T
k,k−1 = Lk,kL

T
k,k, 2 ≤ k ≤ N. (A.18)

It must be noted that the matrix to be decomposed, Y , can be obtained efficiently using the
Cholesky factors of Φ = LΦL

T
Φ [Zan+17].

135

Appendix A. Structure exploiting NLP solver

136

Appendix B

FORCES Pro

B.1 FORCES Pro High-Level Interface

Throughout the thesis, we have used FORCES Pro high-level interface to generate solvers for the
optimization problems. Here, we explain how to express an optimization problem in FORCES
Pro python client, through a simple example of a single vehicle, described with the model (2.31),
moving from its initial position to a given final position while avoiding a static obstacle. The
FORCES Pro NLP solver takes in (potentially) non-convex, finite-time nonlinear OCPs with
horizon length of N in the following form,

Figure B.1: Supported problem in FORCES Pro high-level interface [DJ19]

where zk ∈ Rnk is the vector of optimization variables and usually consists of all inputs and
states in the problem; pk ∈ Rlk is the vector of real-time data; fk : Rnk × Rlk → R is the
stage cost function; ck : Rnk ×Rlk → Rneq is the stage transition function which, along with the
matrix Ek, connect variables of k+1-th stage to those of k-th stage; and hk : Rnk×Rlk → Rnineq

expresses the (potentially non-convex) inequality constraints. I and N indicate respectively the
indices of the optimization variables that are assigned initial and final values. All parameters
highlighted in red can be changed in real-time while invoking the generated solver.

In order to generate a solver for the above optimization problem, all functions and the
corresponding dimensions must be defined as explained below.

B.1.1 Expressing the optimization problem in python

Once the FORCES Pro client has been downloaded and the requirements have been installed, the
FORCES Pro Python client must be added to the Python path. This will allow the user to import
forcespro and/or forcespro.nlp in Python scripts and to use the FORCES Pro functionality. To

137

Appendix B. FORCES Pro

make the FORCES Pro client available, the user must add FORCES Pro client directory to the
PYTHONPATH or to sys.path before importing it in the script, as follows:

import sys

sys.path.append(’C:/path/to/forces -pro -client/’)

FORCES pro requires all functions and their derivatives (Jacobians) to be evaluated in
each iteration. This can be done by providing external function evaluation in C (used fre-
quently throughout the thesis) or using the automatic differentiation tool CasADi integrated
with FORCES Pro. For the CasADi-based approach, the package must be imported at the
beginning of the script:

import numpy as np

import casadi

import forcespro

import forcespro.nlp

In FORCES Pro python client, optimization problems are described with objects of different
types. For the CasADi-based approach, one should use the SymbolicModel with no argument or
with a single argument, denoting the number of stages, if the dimensions, cost function or other
quantities vary in different stages of the problem. The dimension of the optimization variables,
the number of equality and inequality constraints, and the number of real-time parameters
should be defined as:

Problem dimensions

Nstages = 80 # number of stages

model = forcespro.nlp.SymbolicModel(Nstages)

model.nvar = 7 # number of variables

model.neq = 5 # number of equality constraints

model.nh = 1 # number of inequality constraint

model.npar = 2 # number of runtime parameters

The cost function can be defined using a handle to a Python function with the optimization
variables as its first argument:

Objective function

model.objective = lambda z: z[0]**2 + z[1]**2

where the optimization variables, z, indexed from 0 are the collection of the 2 inputs and 5
states of the vehicle’s model (2.31).

In order to define the equality constraints imposed by the continuous-time model of the
vehicle dynamics, one must first describe the model of the system as a python function:

def continuous_dynamics(x, u):

return casadi.vertcat(x[2] * casadi.cos(x[3]),

x[2] * casadi.sin(x[3]),

u[0],

x[4],

u[1])

and then use an integrator function, such as the explicit RK4 (the default integrator), and set
its options, like the integration interval, and then set model.eq as:

integrator_stepsize = 0.1

model.eq = lambda z: forcespro.nlp.integrate(continuous_dynamics , z[2:7], z

[0:2],

integrator=forcespro.nlp.integrators.RK4 ,

stepsize=integrator_stepsize)

model.E = np.concatenate ([np.zeros ((5,2)), np.eye(5)], axis =1)

The selection matrix E links the stage optimization variables to the states and inputs of the
continuous dynamics function.

The nonlinear inequality constraints can be similarly defined with Python functions. For
example, the collision avoidance constraint between the vehicle and a static obstacle and the
corresponding upper and lower bounds should be expressed as:

138

B.1. FORCES Pro High-Level Interface

Inequality constraints

model.ineq = lambda z,p: (z[2] - p[0]) ** 2 + (z[3] - p[1]) ** 2

Upper/lower bounds for the inequality constraint

model.hu = +np.inf

model.hl = 1**2

The position of the obstacle is defined with the run-time parameter p which is declared
during call to the solver.

The upper and lower bounds on the optimization variables, i.e., inputs and states of the
vehicle’s model, should be defined as:

upper/lower variable bounds

model.lb = np.array ([-0.1, -0.1, 0, 0, 0, -np.pi/2, np.pi])

model.ub = np.array ([+0.1 , +0.1, 100, 100, 0.7, np.pi/2, np.pi])

For varying dimensions, parameters, constraints, or functions, the quantities defined above
must be expressed as Python lists of length ’Nstages’ , each item of which is linked to a stage
of the problem.

Finally, the initial and final conditions on the optimization variables must be set as follows:

Initial and final conditions

Initial condition on vehicle ’s position , speed and course angle

xinit = np.array ([0.5 , 1, 0, np.deg2rad (45)])

model.xinitidx = range (2,6)

Final condition on on vehicle ’s position , speed and course angle

xfinal = np.array ([2, 5.5, 0.6, np.deg2rad (0)])

model.xfinalidx = range (2,6)

The indices also need to be specified to indicate on which variables the initial and final
conditions are imposed.

Having defined the different elements of the optimization problem as above, the next code
snippet sets the solver options and generates the FORCES solver.

Set solver options

codeoptions = forcespro.CodeOptions(’FORCESNLPsolver ’)

codeoptions.maxit = 500 # Maximum number of iterations

codeoptions.printlevel = 0

codeoptions.optlevel = 0 # 0 no optimization , 1 optimize for size ,

2 optimize for speed , 3 optimize for size &

speed

codeoptions.nlp.bfgs_init = 3.0*np.identity (7) # initialization of the

Hessian approximation

codeoptions.noVariableElimination = 1.

Creates code for symbolic model formulation given above , then connects to

the

server to generate new solver

solver = model.generate_solver(options=codeoptions)

Once the solver is generated, several files, including the compiled solver and MATLAB/Python
interfaces for calling it, are downloaded to the current working directory. In order to use the
generated solver for solving an instance of the optimization problem, an initial guess, initial and
final conditions, and runtime parameters must be defined as follows:

x0i = (model.lb + model.ub) / 2.0

x0 = np.transpose(np.tile(x0i , (1, model.N)))

xinit = np.transpose(np.array([1, 1, 0, np.deg2rad (30)]))

xfinal = np.transpose(np.array ([2, 6, 0.5, np.deg2rad (0)]))

problem = {"x0": x0 ,

"xinit": xinit ,

"xfinal": xfinal}

139

Appendix B. FORCES Pro

Set runtime parameters

params = np.array ([1.5, 3.5])

problem["all_parameters"] = np.transpose(np.tile(params ,(1,model.N)))

Here, the initial guess is set to be in the middle of upper and lower bounds; however,
the FORCES Pro NLP solver finds the solution to local optimality and the initialization can
significantly impact the quality of the resulting solution. Therefore, one should provide another
initialization point if a better guess is available. Once the real-time parameters are set for all
stages, the solver can be invoked using its MEX interface:

output , exitflag , info = solver.solve(problem)

Make sure the solver has exited properly.

assert exitflag == 1, "bad exitflag"

The exitflag shoud always be checked before using the solution to make sure the solver has
exited without an error. For more information about using FORCES Pro the reader is referred
to [DJ19].

140

Appendix C

B-spline Curves

C.1 B-spline basis functions: definition and properties

Let T be a set of m+ 1 non-decreasing points, t0 ≤ t1 ≤ · · · ≤ tm. The points tj j = 0, . . . ,m
are called knots, the set T is called the knot vector and the half-open interval [tj , tj+1) is the
j-th knot span. Computing B-spline basis functions requires specification of a knot vector , T ,
along with the degree k [PT96]. Given a specific T , the associated B-spline basis functions of
degree k are defined recursively as

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t)+

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t) k ≥ 1 (C.1)

where Ni,0 is a step function and is defined as

Ni,0(t) =

{
1 for ti ≤ t < ti+1

0 otherwise
(C.2)

Fig. C.1 shows B-spline basis functions of degree 0 over the knot interval T = {0, 0.25, 0.5, 0.75, 1}.

Figure C.1: B-spline basis functions of degree 0, T = {0, 0.25, 0.5, 0.75, 1}.

B-spline basis functions of degree 1 and 2 are computed below using Eq. (C.1). Fig. C.2
and Fig. C.3 display Ni,1 and Ni,2 respectively.

141

Appendix C. B-spline Curves

Figure C.2: B-spline basis functions of degree 1,
T = {0, 0.25, 0.5, 0.75, 1}.

N0,1(t) =

{
4t

2(1− 2t)

0 ≤ t < 0.25

0.25 ≤ t < 0.5

N1,1(t) =

{
4t− 1

3− 4t

0.25 ≤ t < 0.5

0.5 ≤ t < 0.75

N2,1(t) =

{
2(2t− 1)

4(1− t)
0.5 ≤ t < 0.75

0.75 ≤ t < 1

Figure C.3: B-spline basis functions of degree 2,
T = {0, 0.25, 0.5, 0.75, 1}
.

N0,2(t) =

8t2

−1.5 + 12t− 16t2

4.5− 12t+ 8t2

0 ≤ t < 0.25

0.25 ≤ t < 0.5

0.5 ≤ t < 0.75

N1,2(t) =

−0.5− 4t+ 8t2

−1.5 + 8t− 8t2

8(1− t)2

0.25 ≤ t < 0.5

0.5 ≤ t < 0.75

0.75 ≤ t < 1

Since knots are not necessarily distinct, Eq.(C.1) can yield zero in the quotient, i.e. ti =
ti+k or ti+1 = ti+k+1, in which case the quotient is considered to be zero. B-splines ba-
sis functions of degree 0, 1, and 2 are computed below using the zero convention for T =
{0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1}, and are displayed in Fig. C.4 and Fig. C.5 respectively.

B-splines defined above have the following properties,

� Ni,k(t) is a piece-wise polynomial of degree k, and is k−r times continuously differentiable
at a knot, where r is the multiplicity of the knot.

� Ni,k(t) ≥ 0 for all i, k, and t.

� Ni,k(t) is zero outside of [ti, ti+k+1),

N0,0(t) = 0 for all t

N1,0(t) = 0 for all t

N2,0(t) = 1 0 ≤ t < 0.3

N3,0(t) = 1 0.3 ≤ t < 0.5

N4,0(t) = 0 for all t

N5,0(t) = 1 0.5 ≤ t < 0.6

N6,0(t) = 1 0.6 ≤ t < 1

N7,0(t) = 0 for all t

N8,0(t) = 0 for all t

Table C.1: B-spline basis functions of degree 0, T = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1}.

142

C.2. B-spline curves: definition and properties

Figure C.4: B-spline basis functions of degree 1,
T = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1}.

N0,1(t) = 0 for all t

N1,1(t) = 1− 10
3 t 0 ≤ t < 0.3

N2,1(t) =

{
10
3 t

2.5(1− 2t)

0 ≤ t < 0.3

0.3 ≤ t < 0.5

N3,1(t) = 5t− 1.5 0.3 ≤ t < 0.5

N4,1(t) = 6− 10t 0.5 ≤ t < 0.6

N5,1(t) =

{
10t− 5

2.5(1− t)
0.5 ≤ t < 0.6

0.6 ≤ t < 1

N6,1(t) = 2.5t− 1.5 0.6 ≤ t < 1

N7,1(t) = 0 for all t

Figure C.5: B-spline basis functions of degree 2,
T = {0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1}.

N0,2(t) = (1− 10
3 t)

2 0 ≤ t < 0.3

N1,2(t) =

{
20
3 (t− 8

3 t
2)

2.5(1− 2t)2
0 ≤ t < 0.3

0.3 ≤ t < 0.5

N2,2(t) =

{
20
3 t

2

−3.75 + 25t− 35t2
0 ≤ t < 0.3

0.3 ≤ t < 0.5

N3,2(t) =

{
(5t− 1.5)2

(6− 10t)2
0.3 ≤ t < 0.5

0.5 ≤ t < 0.6

N4,2(t) =

{
20(−2 + 7t− 6t2)

5(1− t)2
0.5 ≤ t < 0.6

0.6 ≤ t < 1

N5,2(t) =

{
20t2 − 20t+ 5

−11.25t2 + 17.5t− 6.25

0.5 ≤ t < 0.6

0.6 ≤ t < 1

N6,2(t) = 6.25t2 − 7.5t+ 2.25 0.6 ≤ t < 1

� In any knot span [tj , tj+1), at most k+1 of the Ni,k are non-zero, namely Nj−k,k, . . . , Nj,k.

� For any knot span [tj , tj+1),
∑j

i=j−kNi,k(t) = 1.

� A knot vector of the form

T = {0, . . . , 0︸ ︷︷ ︸
k+1

, 1, . . . , 1︸ ︷︷ ︸
k+1

} (C.3)

yield the Bernstein polynomials of degree k.

C.2 B-spline curves: definition and properties

Given n+1 control points, c0, . . . , cn, and a knot vector T , a B-spline curve of degree k is defined
by

c(t) =
n∑

i=0

ciNi,k(t), n ≥ k − 1, t ∈ [tk, tm−k]. (C.4)

which is a piece-wise polynomial curve defined over the interval [t0, tf] for a clamped knot vector
of the form,

143

Appendix C. B-spline Curves

T = {t0, . . . , t0︸ ︷︷ ︸
k+1

, tk+1, . . . , tm−k−1, tf , . . . , tf︸ ︷︷ ︸
k+1

} (C.5)

The degree k of a B-spline curve, the number of its control points, n+ 1, and the number of
knots, m+ 1, are related by

m = k + n+ 1 (C.6)

Fig. C.6 and Fig. C.7 show examples of B-spline curves together with their corresponding
control polygon.

Figure C.6: A cubic B-spline curve and its control polygon
(left), the corresponding B-spline basis functions(right) with
T = {0, 0, 0, 0, 1, 1, 2, 2, 2, 4, 5, 5, 5, 5}. The control polygon is obtained
by connecting the points with coordinates (t̄i, ci), i = 0, . . . , n, where
t̄i =

ti+1+···+ti+k

k .

Figure C.7: A cubic B-spline curve and its control polygon (left),
the corresponding B-spline basis functions(right) with unclamped T =
{0, 1, 2, 3, 4, 5, 6, 7, 8}. The curve is not clamped at the end points, and is
only defined over the interval t ∈ [tk, tm−k] = [3, 5]

Most algorithms for Bézier curves have a generalized form for B-spline curves. (See [PT96]
and [PBP02] for a full list of properties and algorithms). The de Casteljau’s algorithm, in partic-
ular, can be realized through a special multiple knot Insertion. On accounts of the fundamental
equality (C.6), introducing a new knot into T without changing the shape of the curve, i.e., the
so-called knot insertion, must be followed by increasing n, i.e. adding a new control point, or in-
creasing k. Adding a new control point is usually done by removing some of the existing control
points and replacing them with new ones by corner cutting, which changes the control polygon

144

C.2. B-spline curves: definition and properties

locally over the affected knot spans. Increasing the degree of the curve k, as an alternative,
would change the control polygon of the curve globally.

C.2.1 Convergence under knot insertion

The sequence of control polygons generated with repeated knot insertion into the knot vector
T converges to the B-spline curve c(t), and the convergence rate is quadratic in the maximum
knot distance, i.e.,

max∥c(t̄i)− ci∥ = O(h2) (C.7)

where t̄i =
ti+1+...,ti+k

k and

h = max{∆ti|[ti, ti+1] ⊂ [t0, tf]} (C.8)

The maximum is taken over all i such that [ti+1, ti+k] ⊂ [t0, tf] [PBP02].

145

Appendix C. B-spline Curves

146

References

[HR71] GA Hicks and WH Ray. “Approximation methods for optimal control synthesis”.
In: The Canadian Journal of Chemical Engineering 49.4 (1971), pp. 522–528.

[SS78] RWH Sargent and GR Sullivan. “The development of an efficient optimal control
package”. In: Optimization Techniques. Springer, 1978, pp. 158–168.

[Far83] Gerald Farin. “Algorithms for rational Bézier curves”. In: Computer-aided design
15.2 (1983), pp. 73–77.

[DP85] Rina Dechter and Judea Pearl. “Generalized best-first search strategies and the
optimality of A”. In: Journal of the ACM (JACM) 32.3 (1985), pp. 505–536.

[Kha86] Oussama Khatib. “The potential field approach and operational space formulation
in robot control”. In: Adaptive and Learning Systems. Springer, 1986, pp. 367–377.

[GJK88] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. “A fast procedure for
computing the distance between complex objects in three-dimensional space”. In:
IEEE Journal on Robotics and Automation 4.2 (1988), pp. 193–203.

[RK88] Elon Rimon and Daniel E Koditschek. “Exact robot navigation using cost func-
tions: the case of distinct spherical boundaries in En”. In: Proceedings. 1988 IEEE
International Conference on Robotics and Automation. IEEE. 1988, pp. 1791–1796.

[Fli+92] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. “Sur lessystèmesnon
linéaires différentiellement plats”. In: CR Acad. Sci. Paris (1992), p. 619.

[Don+93] Bruce Donald, Patrick Xavier, John Canny, and John Reif. “Kinodynamic motion
planning”. In: Journal of the ACM (JACM) 40.5 (1993), pp. 1048–1066.

[DX95] Bruce Randall Donald and Patrick G. Xavier. “Provably good approximation al-
gorithms for optimal kinodynamic planning for Cartesian robots and open-chain
manipulators”. In: Algorithmica 14.6 (1995), pp. 480–530.

[EKR95] Gamal Elnagar, Mohammad A Kazemi, and Mohsen Razzaghi. “The pseudospectral
Legendre method for discretizing optimal control problems”. In: IEEE transactions
on Automatic Control 40.10 (1995), pp. 1793–1796.

[Fli+95] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. “Flatness and
defect of non-linear systems: introductory theory and examples”. In: International
journal of control 61.6 (1995), pp. 1327–1361.

147

References

[LT95] Anis Limaiem and Francois Trochu. “Geometric algorithms for the intersection of
curves and surfaces”. In: Computers & graphics 19.3 (1995), pp. 391–403.

[LM95] Ming C Lin and Dinesh Manocha. “Fast interference detection between geometric
models”. In: The visual computer 11.10 (1995), pp. 542–561.

[MRS95] Richard M Murray, Muruhan Rathinam, and Willem Sluis. “Differential flatness of
mechanical control systems: A catalog of prototype systems”. In: ASME interna-
tional mechanical engineering congress and exposition. Citeseer. 1995.

[AV96] SK Agrawal and T Veeraklaew. “A higher-order method for dynamic optimization
of a class of linear systems”. In: (1996).

[FG96] R Farouki and T Goodman. “On the optimal stability of the Bernstein basis”. In:
Mathematics of computation 65.216 (1996), pp. 1553–1566.

[Kav+96] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces”. In: IEEE
transactions on Robotics and Automation 12.4 (1996), pp. 566–580.

[PT96] Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media,
1996.

[AF98] SK Agrawal and N Faiz. “Optimization of a class of nonlinear dynamic systems: new
efficient method without lagrange multipliers”. In: Journal of optimization theory
and applications 97.1 (1998), pp. 11–28.

[Bet98] John T Betts. “Survey of numerical methods for trajectory optimization”. In: Jour-
nal of guidance, control, and dynamics 21.2 (1998), pp. 193–207.

[FA98] Nadeem Faiz and Sunil K Agrawal. “Optimal control of 2-input chained systems
using higher-order method”. In: Proceedings of the 1998 American Control Confer-
ence. ACC (IEEE Cat. No. 98CH36207). Vol. 1. IEEE. 1998, pp. 6–7.

[JC98] David E Johnson and Elaine Cohen. “A framework for efficient minimum distance
computations”. In: Proceedings. 1998 IEEE International Conference on Robotics
and Automation (Cat. No. 98CH36146). Vol. 4. IEEE. 1998, pp. 3678–3684.

[NPL98] D Nairn, J Peters, and D Lutterkort. “Sharp, Quantitative Bounds on the Distance
Between a Bezier Curve and its Control Polygon”. In: (1998).

[VM98] Michiel J Van Nieuwstadt and Richard M Murray. “Real-time trajectory generation
for differentially flat systems”. In: International Journal of Robust and Nonlinear
Control: IFAC-Affiliated Journal 8.11 (1998), pp. 995–1020.

[NPL99] David Nairn, Jörg Peters, and David Lutterkort. “Sharp, quantitative bounds on the
distance between a polynomial piece and its Bézier control polygon”. In: Computer
Aided Geometric Design 16.7 (1999), pp. 613–631.

[BK00] Robert Bohlin and Lydia E Kavraki. “Path planning using lazy PRM”. In: Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE International Conference on

148

References

Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1.
IEEE. 2000, pp. 521–528.

[Bor00] Scott A Bortoff. “Path planning for UAVs”. In: Proceedings of the 2000 American
Control Conference. ACC (IEEE Cat. No. 00CH36334). Vol. 1. 6. IEEE. 2000,
pp. 364–368.

[KL00] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach to
single-query path planning”. In: Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 995–1001.

[EK01] Gershon Elber and Myung-Soo Kim. “Geometric constraint solver using multivari-
ate rational spline functions”. In: Proceedings of the sixth ACM symposium on Solid
modeling and applications. 2001, pp. 1–10.

[FAM01] Nadeem Faiz, Sunil K Agrawal, and Richard M Murray. “Trajectory planning of
differentially flat systems with dynamics and inequalities”. In: Journal of Guidance,
Control, and Dynamics 24.2 (2001), pp. 219–227.

[Jad01] Ali Jadbabaie. “Receding horizon control of nonlinear systems: A control Lyapunov
function approach”. PhD thesis. Citeseer, 2001.

[LS02] Christian Lennerz and Elmar Schomer. “Efficient distance computation for quadratic
curves and surfaces”. In: Geometric Modeling and Processing. Theory and Applica-
tions. GMP 2002. Proceedings. IEEE. 2002, pp. 60–69.

[MMR02] Ph Martin, Richard M Murray, and Pierre Rouchon. “Flat systems”. In: (2002).

[PM02] Nicholas M Patrikalakis and Takashi Maekawa. Shape interrogation for computer
aided design and manufacturing. Vol. 15. Springer, 2002.

[PBP02] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline
techniques. Vol. 6. Springer, 2002.

[MMR03] Phillipe Martin, Richard M Murray, and Pierre Rouchon. “Flat systems, equivalence
and trajectory generation”. In: (2003).

[RF03] I Michael Ross and Fariba Fahroo. “Legendre pseudospectral approximations of
optimal control problems”. In: New trends in nonlinear dynamics and control and
their applications. Springer, 2003, pp. 327–342.

[Van03] Gino Van Den Bergen. Collision detection in interactive 3D environments. CRC
Press, 2003.

[BBV04] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[Cor+04] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. “Coverage con-
trol for mobile sensing networks”. In: IEEE Transactions on robotics and Automa-
tion 20.2 (2004), pp. 243–255.

149

References

[Eri04] Christer Ericson. Real-time collision detection. Crc Press, 2004.

[KKK04] Menelaos I Karavelas, Panagiotis D Kaklis, and Konstantinos V Kostas. “Bounding
the distance between 2D parametric Bézier curves and their control polygon”. In:
Computing 72.1 (2004), pp. 117–128.

[Kir04] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

[DBS05] Moritz Diehl, Hans Georg Bock, and Johannes P Schlöder. “A real-time iteration
scheme for nonlinear optimization in optimal feedback control”. In: SIAM Journal
on control and optimization 43.5 (2005), pp. 1714–1736.

[FLS05] Dave Ferguson, Maxim Likhachev, and Anthony Stentz. “A guide to heuristic-based
path planning”. In: Proceedings of the international workshop on planning under un-
certainty for autonomous systems, international conference on automated planning
and scheduling (ICAPS). 2005, pp. 9–18.

[FDF05] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Maneuver-based motion plan-
ning for nonlinear systems with symmetries”. In: IEEE transactions on robotics 21.6
(2005), pp. 1077–1091.

[GMS05] Philip E Gill, Walter Murray, and Michael A Saunders. “SNOPT: An SQP algorithm
for large-scale constrained optimization”. In: SIAM review 47.1 (2005), pp. 99–131.

[SKI05] Shingo Shimoda, Yoji Kuroda, and Karl Iagnemma. “Potential field navigation of
high speed unmanned ground vehicles on uneven terrain”. In: Proceedings of the
2005 IEEE International Conference on Robotics and Automation. IEEE. 2005,
pp. 2828–2833.

[Die+06] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber. “Fast direct
multiple shooting algorithms for optimal robot control”. In: Fast motions in biome-
chanics and robotics. Springer, 2006, pp. 65–93.

[Gar+06] Santiago Garrido, Luis Moreno, Mohamed Abderrahim, and Fernando Martin. “Path
planning for mobile robot navigation using voronoi diagram and fast marching”. In:
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2006, pp. 2376–2381.

[KP06] Maciej Kalisiak and Michiel van de Panne. “RRT-blossom: RRT with a local flood-
fill behavior”. In: Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. IEEE. 2006, pp. 1237–1242.

[LaV06] Steven M LaValle. “Planning algorithms”. In: (2006).

[MZ06] Weiyin Ma and Renjiang Zhang. “Efficient piecewise linear approximation of Bézier
curves with improved sharp error bound”. In: International Conference on Geomet-
ric Modeling and Processing. Springer. 2006, pp. 157–174.

[WB06] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming”. In: Mathematical
programming 106.1 (2006), pp. 25–57.

150

References

[Bed+07] Nazareth Bedrossian, Sagar Bhatt, Mike Lammers, and Louis Nguyen. “Zero-Propellant
Maneuver [TM] Flight Results for 180 deg ISS Rotation”. In: Proceedings of the 20th
International Symposium on Space Flight Dynamics. 2007.

[DS07] Tor Dokken and Vibeke Skytt. “Intersection algorithms and CAGD”. In: Geometric
Modelling, Numerical Simulation, and Optimization. Springer, 2007, pp. 41–90.

[Kuw07] Yoshiaki Kuwata. “Trajectory planning for unmanned vehicles using robust receding
horizon control”. PhD thesis. Massachusetts Institute of Technology, 2007.

[Kuw+07] Yoshiaki Kuwata, Arthur Richards, Tom Schouwenaars, and Jonathan P How. “Dis-
tributed robust receding horizon control for multivehicle guidance”. In: IEEE Trans-
actions on Control Systems Technology 15.4 (2007), pp. 627–641.

[LRG07] L Ryan Lewis, I Michael Ross, and Qi Gong. “Pseudospectral motion planning
techniques for autonomous obstacle avoidance”. In: 2007 46th IEEE Conference on
Decision and Control. IEEE. 2007, pp. 5997–6002.

[BG08] Priyadarshi Bhattacharya and Marina L Gavrilova. “Roadmap-based path planning-
using the voronoi diagram for a clearance-based shortest path”. In: IEEE Robotics
& Automation Magazine 15.2 (2008), pp. 58–66.

[CCE08] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. “Path planning based on bézier
curve for autonomous ground vehicles”. In: Advances in Electrical and Electronics
Engineering-IAENG Special Edition of the World Congress on Engineering and
Computer Science 2008. IEEE. 2008, pp. 158–166.

[EG08] Gershon Elber and Tom Grandine. “Hausdorff and Minimal Distances between
Parametric Freeforms in R2 and R3”. In: International conference on geometric
modeling and processing. Springer. 2008, pp. 191–204.

[Far08a] Rida T Farouki. Pythagorean-hodograph curves: algebra and geometry inseparable,
Geometry and Computing. 2008.

[Far08b] Rida T Farouki. “The Bernstein basis”. In: Pythagorean-Hodograph Curves: Algebra
and Geometry Inseparable (2008), pp. 249–260.

[MM08] MH Mabrouk and CR McInnes. “Solving the potential field local minimum problem
using internal agent states”. In: Robotics and Autonomous Systems 56.12 (2008),
pp. 1050–1060.

[VLM08] Jur Van den Berg, Ming Lin, and Dinesh Manocha. “Reciprocal velocity obstacles
for real-time multi-agent navigation”. In: 2008 IEEE international conference on
robotics and automation. Ieee. 2008, pp. 1928–1935.

[Che+09] Xiao-Diao Chen, Linqiang Chen, Yigang Wang, Gang Xu, Jun-Hai Yong, and Jean-
Claude Paul. “Computing the minimum distance between two Bézier curves”. In:
Journal of Computational and Applied Mathematics 229.1 (2009), pp. 294–301.

151

References

[WB09] Yang Wang and Stephen Boyd. “Fast model predictive control using online optimiza-
tion”. In: IEEE Transactions on control systems technology 18.2 (2009), pp. 267–
278.

[Bis+10] Adrian N Bishop, Barış Fidan, Brian DO Anderson, Kutluyıl Doğançay, and Pub-
udu N Pathirana. “Optimality analysis of sensor-target localization geometries”. In:
Automatica 46.3 (2010), pp. 479–492.

[CHL10] Georgios Chaloulos, Peter Hokayem, and John Lygeros. “Distributed hierarchical
MPC for conflict resolution in air traffic control”. In: Proceedings of the 2010 Amer-
ican Control Conference. IEEE. 2010, pp. 3945–3950.

[Che+10] Xiao-Diao Chen, Weiyin Ma, Gang Xu, and Jean-Claude Paul. “Computing the
Hausdorff distance between two B-spline curves”. In: Computer-Aided Design 42.12
(2010), pp. 1197–1206.

[GT10] Elena Glassman and Russ Tedrake. “A quadratic regulator-based heuristic for rapidly
exploring state space”. In: 2010 IEEE International Conference on Robotics and
Automation. IEEE. 2010, pp. 5021–5028.

[GKM10] Chad Goerzen, Zhaodan Kong, and Bernard Mettler. “A survey of motion plan-
ning algorithms from the perspective of autonomous UAV guidance”. In: Journal
of Intelligent and Robotic Systems 57.1 (2010), pp. 65–100.

[KH10] Yoshiaki Kuwata and Jonathan P How. “Cooperative distributed robust trajectory
optimization using receding horizon MILP”. In: IEEE Transactions on Control Sys-
tems Technology 19.2 (2010), pp. 423–431.

[QR10] Alban Quadrat and Daniel Robertz. “Controllability and differential flatness of
linear analytic ordinary differential systems”. In: Proceedings of 19th International
Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary),(05-
09/07/10). 2010.

[Rao+10] Anil V Rao, David A Benson, Christopher Darby, Michael A Patterson, Camila
Francolin, Ilyssa Sanders, and Geoffrey T Huntington. “Algorithm 902: Gpops, a
matlab software for solving multiple-phase optimal control problems using the gauss
pseudospectral method”. In: ACM Transactions on Mathematical Software (TOMS)
37.2 (2010), pp. 1–39.

[Ted+10] Francesco Tedesco, Davide M Raimondo, Alessandro Casavola, and John Lygeros.
“Distributed collision avoidance for interacting vehicles: a command governor ap-
proach”. In: IFAC Proceedings Volumes 43.19 (2010), pp. 293–298.

[Ber+11a] Jur van den Berg, Stephen J Guy, Jamie Snape, Ming C Lin, and Dinesh Manocha.
“Rvo2 library: Reciprocal collision avoidance for real-time multi-agent simulation”.
In: See https://gamma. cs. unc. edu/RVO2 (2011).

[Ber+11b] Jur van den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. “Reciprocal
n-body collision avoidance”. In: Robotics research. Springer, 2011, pp. 3–19.

152

References

[Cha+11] Jung-Woo Chang, Yi-King Choi, Myung-Soo Kim, and Wenping Wang. “Computa-
tion of the minimum distance between two Bézier curves/surfaces”. In: Computers
& Graphics 35.3 (2011), pp. 677–684.

[DG11] Moritz Diehl and Sébastien Gros. “Numerical optimal control”. In: Optimization in
Engineering Center (OPTEC) (2011).

[HFD11] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. “An auto-generated real-
time iteration algorithm for nonlinear MPC in the microsecond range”. In: Auto-
matica 47.10 (2011), pp. 2279–2285.

[KF11] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal mo-
tion planning”. In: The international journal of robotics research 30.7 (2011), pp. 846–
894.

[KH11] Yoshiaki Kuwata and Jonathan P How. “Cooperative distributed robust trajectory
optimization using receding horizon MILP”. In: IEEE Transactions on Control Sys-
tems Technology 19.2 (2011), pp. 423–431.

[MK11] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory generation and con-
trol for quadrotors”. In: 2011 IEEE international conference on robotics and au-
tomation. IEEE. 2011, pp. 2520–2525.

[Sna+11] Jamie Snape, Jur Van Den Berg, Stephen J Guy, and Dinesh Manocha. “The hy-
brid reciprocal velocity obstacle”. In: IEEE Transactions on Robotics 27.4 (2011),
pp. 696–706.

[Alo+12] Javier Alonso-Mora, Andreas Breitenmoser, Paul Beardsley, and Roland Siegwart.
“Reciprocal collision avoidance for multiple car-like robots”. In: 2012 IEEE Inter-
national Conference on Robotics and Automation. IEEE. 2012, pp. 360–366.

[AÅD12] Joel Andersson, Johan Åkesson, and Moritz Diehl. “CasADi: A symbolic package for
automatic differentiation and optimal control”. In: Recent advances in algorithmic
differentiation. Springer, 2012, pp. 297–307.

[ASD12] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex programming
approach”. In: 2012 IEEE/RSJ international conference on Intelligent Robots and
Systems. IEEE. 2012, pp. 1917–1922.

[BW12] Christof Büskens and Dennis Wassel. “The esa nlp solver worhp”. In: Modeling and
optimization in space engineering. Springer, 2012, pp. 85–110.

[Dom+12] Alexander Domahidi, Aldo U Zgraggen, Melanie N Zeilinger, Manfred Morari, and
Colin N Jones. “Efficient interior point methods for multistage problems arising in
receding horizon control”. In: 2012 IEEE 51st IEEE conference on decision and
control (CDC). IEEE. 2012, pp. 668–674.

[Far12] Rida T Farouki. “The Bernstein polynomial basis: A centennial retrospective”. In:
Computer Aided Geometric Design 29.6 (2012), pp. 379–419.

153

References

[GGJ12] Alexandra Grancharova, Esten I Grøtli, and Tor A Johansen. “Distributed MPC-
based path planning for UAVs under radio communication path loss constraints”.
In: IFAC Proceedings Volumes 45.4 (2012), pp. 254–259.

[Häu+12] Andreas J Häusler, Alessandro Saccon, A Pedro Aguiar, John Hauser, and António
M Pascoal. “Cooperative motion planning for multiple autonomous marine vehi-
cles”. In: IFAC Proceedings Volumes 45.27 (2012), pp. 244–249.

[KNN12] Moharam Habibnejad Korayem, Mostafa Nazemizadeh, and Hamed Rahimi No-
hooji. “Smooth jerk-bounded optimal path planning of tricycle wheeled mobile ma-
nipulators in the presence of environmental obstacles”. In: International Journal of
Advanced Robotic Systems 9.4 (2012), p. 105.

[Per+12] Alejandro Perez, Robert Platt, George Konidaris, Leslie Kaelbling, and Tomas
Lozano-Perez. “LQR-RRT*: Optimal sampling-based motion planning with auto-
matically derived extension heuristics”. In: 2012 IEEE International Conference on
Robotics and Automation. IEEE. 2012, pp. 2537–2542.

[TCF13] Vasyl Tereshchenko, Sergii Chevokin, and Andriy Fisunenko. “Algorithm for finding
the domain intersection of a set of polytopes”. In: Procedia Computer Science 18
(2013), pp. 459–464.

[Vuk+13] Milan Vukov, Alexander Domahidi, Hans Joachim Ferreau, Manfred Morari, and
Moritz Diehl. “Auto-generated algorithms for nonlinear model predictive control on
long and on short horizons”. In: 52nd IEEE Conference on Decision and Control.
IEEE. 2013, pp. 5113–5118.

[BCH14] Saptarshi Bandyopadhyay, Soon-Jo Chung, and Fred Y Hadaegh. “Probabilistic
swarm guidance using optimal transport”. In: 2014 IEEE Conference on Control
Applications (CCA). IEEE. 2014, pp. 498–505.

[Fer+14] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock,
and Moritz Diehl. “qpOASES: A parametric active-set algorithm for quadratic pro-
gramming”. In: Mathematical Programming Computation 6.4 (2014), pp. 327–363.

[GLA14] Andrew Giese, Daniel Latypov, and Nancy M Amato. “Reciprocally-rotating veloc-
ity obstacles”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2014, pp. 3234–3241.

[HK14] Toru Hirata and Makoto Kumon. “Optimal path planning method with attitude
constraints for quadrotor helicopters”. In: Proceedings of the 2014 International
Conference on Advanced Mechatronic Systems. IEEE. 2014, pp. 377–381.

[MCH14] Daniel Morgan, Soon-Jo Chung, and Fred Y Hadaegh. “Model predictive control of
swarms of spacecraft using sequential convex programming”. In: Journal of Guid-
ance, Control, and Dynamics 37.6 (2014), pp. 1725–1740.

[PR14] Michael A Patterson and Anil V Rao. “GPOPS-II: A MATLAB software for solving
multiple-phase optimal control problems using hp-adaptive Gaussian quadrature
collocation methods and sparse nonlinear programming”. In: ACM Transactions on
Mathematical Software (TOMS) 41.1 (2014), pp. 1–37.

154

References

[WD14] Peng Wang and Baocang Ding. “A synthesis approach of distributed model pre-
dictive control for homogeneous multi-agent system with collision avoidance”. In:
International Journal of Control 87.1 (2014), pp. 52–63.

[CCH15] Yufan Chen, Mark Cutler, and Jonathan P How. “Decoupled multiagent path plan-
ning via incremental sequential convex programming”. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2015, pp. 5954–5961.

[Cho+15] Ronald Choe, Javier Puig, Venanzio Cichella, Enric Xargay, and Naira Hovakimyan.
“Trajectory generation using spatial Pythagorean Hodograph Bézier curves”. In:
AIAA Guidance, Navigation, and Control Conference. 2015, p. 0597.

[Hau15] Kris Hauser. “Lazy collision checking in asymptotically-optimal motion planning”.
In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE.
2015, pp. 2951–2957.

[LDM15] Alexander Liniger, Alexander Domahidi, and Manfred Morari. “Optimization-based
autonomous racing of 1: 43 scale RC cars”. In: Optimal Control Applications and
Methods 36.5 (2015), pp. 628–647.

[OG15] Hao Yi Ong and J Christian Gerdes. “Cooperative collision avoidance via proxi-
mal message passing”. In: 2015 American Control Conference (ACC). IEEE. 2015,
pp. 4124–4130.

[Rig15] Gerasimos G Rigatos. Nonlinear control and filtering using differential flatness ap-
proaches: applications to electromechanical systems. Vol. 25. Springer, 2015.

[SJ15] Zbynek Sir and Bert Jüttler. “On de Casteljau-type algorithms for rational Bézier
curves”. In: Journal of Computational and Applied Mathematics 288 (2015), pp. 244–
250.

[CLS16] Jing Chen, Tianbo Liu, and Shaojie Shen. “Online generation of collision-free trajec-
tories for quadrotor flight in unknown cluttered environments”. In: 2016 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 1476–
1483.

[Cic+16] Venanzio Cichella, Ronald Choe, Syed Bilal Mehdi, Enric Xargay, Naira Hovakimyan,
Vladimir Dobrokhodov, Isaac Kaminer, Antonio M Pascoal, and A Pedro Aguiar.
“Safe coordinated maneuvering of teams of multirotor unmanned aerial vehicles: A
cooperative control framework for multivehicle, time-critical missions”. In: IEEE
Control Systems Magazine 36.4 (2016), pp. 59–82.

[GM16] Mathieu Geisert and Nicolas Mansard. “Trajectory generation for quadrotor based
systems using numerical optimal control”. In: 2016 IEEE international conference
on robotics and automation (ICRA). IEEE. 2016, pp. 2958–2964.

[Loi+16] Giuseppe Loianno, Chris Brunner, Gary McGrath, and Vijay Kumar. “Estimation,
control, and planning for aggressive flight with a small quadrotor with a single
camera and IMU”. In: IEEE Robotics and Automation Letters 2.2 (2016), pp. 404–
411.

155

References

[MVP16] Tim Mercy, Wannes Van Loock, and Goele Pipeleers. “Real-time motion planning
in the presence of moving obstacles”. In: 2016 European Control Conference (ECC).
IEEE. 2016, pp. 1586–1591.

[Mor+16] D Moreno-Salinas, N Crasta, M Ribeiro, B Bayat, AM Pascoal, and J Aranda.
“Integrated motion planning, control, and estimation for range-based marine vehicle
positioning and target localization”. In: IFAC-PapersOnLine 49.23 (2016), pp. 34–
40.

[RBR16] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments”. In: Robotics research.
Springer, 2016, pp. 649–666.

[Cho17] Ronald Choe. “Distributed cooperative trajectory generation for multiple autonomous
vehicles using pythagorean hodograph Bézier curves”. PhD thesis. University of Illi-
nois at Urbana-Champaign, 2017.

[Cic+17] Venanzio Cichella, Isaac Kaminer, Claire Walton, and Naira Hovakimyan. “Optimal
motion planning for differentially flat systems using Bernstein approximation”. In:
IEEE Control Systems Letters 2.1 (2017), pp. 181–186.

[Dai+17] Li Dai, Qun Cao, Yuanqing Xia, and Yulong Gao. “Distributed MPC for formation
of multi-agent systems with collision avoidance and obstacle avoidance”. In: Journal
of the Franklin Institute 354.4 (2017), pp. 2068–2085.

[Fal+17] Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza. “Ag-
gressive quadrotor flight through narrow gaps with onboard sensing and computing
using active vision”. In: 2017 IEEE international conference on robotics and au-
tomation (ICRA). IEEE. 2017, pp. 5774–5781.

[Gar+17] Divya Garg, Michael Patterson, William Hager, Anil Rao, David Benson, and Ge-
offrey Huntington. “An overview of three pseudospectral methods for the numerical
solution of optimal control problems”. In: (2017).

[Liu+17a] Chang Liu, Seungho Lee, Scott Varnhagen, and H Eric Tseng. “Path planning for
autonomous vehicles using model predictive control”. In: 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2017, pp. 174–179.

[Liu+17b] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. “Search-based
motion planning for quadrotors using linear quadratic minimum time control”. In:
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE. 2017, pp. 2872–2879.

[MVP17] Tim Mercy, Ruben Van Parys, and Goele Pipeleers. “Spline-based motion planning
for autonomous guided vehicles in a dynamic environment”. In: IEEE Transactions
on Control Systems Technology 26.6 (2017), pp. 2182–2189.

[MPB17] Mattia Montanari, Nik Petrinic, and Ettore Barbieri. “Improving the GJK algo-
rithm for faster and more reliable distance queries between convex objects”. In:
ACM Transactions on Graphics (TOG) 36.3 (2017), pp. 1–17.

156

References

[Näg+17] Tobias Nägeli, Lukas Meier, Alexander Domahidi, Javier Alonso-Mora, and Otmar
Hilliges. “Real-time planning for automated multi-view drone cinematography”. In:
ACM Transactions on Graphics (TOG) 36.4 (2017), pp. 1–10.

[Pre+17] James A Preiss, Karol Hausman, Gaurav S Sukhatme, and Stephan Weiss. “Trajec-
tory Optimization for Self-Calibration and Navigation.” In: Robotics: Science and
Systems. Vol. 13. 2017.

[VP17a] Ruben Van Parys and Goele Pipeleers. “Distributed model predictive formation
control with inter-vehicle collision avoidance”. In: 2017 11th Asian Control Confer-
ence (ASCC). IEEE. 2017, pp. 2399–2404.

[VP17b] Ruben Van Parys and Goele Pipeleers. “Distributed MPC for multi-vehicle systems
moving in formation”. In: Robotics and Autonomous Systems 97 (2017), pp. 144–
152.

[VP17c] Ruben Van Parys and Goele Pipeleers. “Spline-based motion planning in an ob-
structed 3D environment”. In: IFAC-PapersOnLine 50.1 (2017), pp. 8668–8673.

[Zan+17] Andrea Zanelli, Alexander Domahidi, J Jerez, and Manfred Morari. “FORCES NLP:
an efficient implementation of interior-point methods for multistage nonlinear non-
convex programs”. In: International Journal of Control (2017), pp. 1–17.

[Zho+17] Dingjiang Zhou, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager. “Fast,
on-line collision avoidance for dynamic vehicles using buffered voronoi cells”. In:
IEEE Robotics and Automation Letters 2.2 (2017), pp. 1047–1054.

[Gao+18] Fei Gao, William Wu, Yi Lin, and Shaojie Shen. “Online safe trajectory generation
for quadrotors using fast marching method and bernstein basis polynomial”. In:
2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2018, pp. 344–351.

[Liu+18] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. “Search-based
motion planning for aggressive flight in se (3)”. In: IEEE Robotics and Automation
Letters 3.3 (2018), pp. 2439–2446.

[NFK18] Yuanbo Nie, Omar Faqir, and Eric C Kerrigan. “ICLOCS2: Try this optimal con-
trol problem solver before you try the rest”. In: 2018 UKACC 12th international
conference on control (CONTROL). IEEE. 2018, pp. 336–336.

[SCP18] Bahareh Sabetghadam, Rita Cunha, and António Pascoal. “Cooperative motion
planning with time, energy and active navigation constraints”. In: 2018 IEEE/OES
Autonomous Underwater Vehicle Workshop (AUV). IEEE. 2018, pp. 1–6.

[HSS19] Shlomi Hacohen, Shraga Shoval, and Nir Shvalb. “Probability navigation function
for stochastic static environments”. In: International Journal of Control, Automa-
tion and Systems 17.8 (2019), pp. 2097–2113.

[LS19] Carlos E Luis and Angela P Schoellig. “Trajectory generation for multiagent point-
to-point transitions via distributed model predictive control”. In: IEEE Robotics
and Automation Letters 4.2 (2019), pp. 375–382.

157

References

[Sab+19] Bahareh Sabetghadam, Alfonso Alcantara, Jesus Capitan, Rita Cunha, Anibal Ollero,
and Antonio Pascoal. “Optimal trajectory planning for autonomous drone cine-
matography”. In: 2019 European Conference on Mobile Robots (ECMR). IEEE.
2019, pp. 1–7.

[ŞHA19] Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian. “Robust trajectory execu-
tion for multi-robot teams using distributed real-time replanning”. In: Distributed
autonomous robotic systems. Springer, 2019, pp. 167–181.

[Tan+19] Lvbang Tang, Hesheng Wang, Peng Li, and Yong Wang. “Real-time trajectory
generation for quadrotors using b-spline based non-uniform kinodynamic search”.
In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO).
IEEE. 2019, pp. 1133–1138.

[TLH19] Jesus Tordesillas, Brett T Lopez, and Jonathan P How. “Faster: Fast and safe tra-
jectory planner for flights in unknown environments”. In: 2019 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS). IEEE. 2019, pp. 1934–
1940.

[Zho+19] Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu, and Shaojie Shen. “Robust and effi-
cient quadrotor trajectory generation for fast autonomous flight”. In: IEEE Robotics
and Automation Letters 4.4 (2019), pp. 3529–3536.

[BB20] Tim Breitenbach and Alfio Borzi. “The Pontryagin maximum principle for solv-
ing Fokker–Planck optimal control problems”. In: Computational Optimization and
Applications 76.2 (2020), pp. 499–533.

[LVS20] Carlos E Luis, Marijan Vukosavljev, and Angela P Schoellig. “Online trajectory gen-
eration with distributed model predictive control for multi-robot motion planning”.
In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 604–611.

[Ros20] Isaac M Ross. “Enhancements to the DIDO optimal control toolbox”. In: arXiv
preprint arXiv:2004.13112 (2020).

[SCP20] Bahareh Sabetghadam, Rita Cunha, and António Pascoal. “Real-time trajectory
generation for multiple drones using bézier curves”. In: IFAC-PapersOnLine 53.2
(2020), pp. 9276–9281.

[TH20] Jesus Tordesillas and Jonathan P How. “MINVO basis: Finding simplexes with min-
imum volume enclosing polynomial curves”. In: arXiv preprint arXiv:2010.10726
(2020).

[Váz+20] José L Vázquez, Marius Brühlmeier, Alexander Liniger, Alisa Rupenyan, and John
Lygeros. “Optimization-based hierarchical motion planning for autonomous racing”.
In: arXiv preprint arXiv:2003.04882 (2020).

[WC20] Pawe l Woźny and Filip Chudy. “Linear-time geometric algorithm for evaluating
Bézier curves”. In: Computer-Aided Design 118 (2020), p. 102760.

158

References

[ZNS20] Vera Zeidan, Chadi Nour, and Hassan Saoud. “A nonsmooth maximum principle
for a controlled nonconvex sweeping process”. In: Journal of Differential Equations
269.11 (2020), pp. 9531–9582.

[RH21] Andriamahenina Ramanantoanina and Kai Hormann. “New shape control tools for
rational Bézier curve design”. In: Computer Aided Geometric Design 88 (2021),
p. 102003.

[SCP21] Bahareh Sabetghadam, Rita Cunha, and António Pascoal. “Trajectory Generation
for Drones in Confined Spaces using an Ellipsoid Model of the Body”. In: IEEE
Control Systems Letters 6 (2021), pp. 1022–1027.

[TH21] Jesus Tordesillas and Jonathan P How. “MADER: Trajectory planner in multiagent
and dynamic environments”. In: IEEE Transactions on Robotics (2021).

[Kie+22] Calvin Kielas-Jensen, Venanzio Cichella, Thomas Berry, Isaac Kaminer, Claire Wal-
ton, and Antonio Pascoal. “Bernstein Polynomial-Based Method for Solving Opti-
mal Trajectory Generation Problems”. In: Sensors 22.5 (2022), p. 1869.

[SCP22] Bahareh Sabetghadam, Rita Cunha, and António Pascoal. “A distributed algo-
rithm for real-time multi-drone collision-free trajectory replanning”. In: Sensors
22.5 (2022), p. 1855.

[DJ19] Alexander Domahidi and Juan Jerez. FORCES Professional. 2014–2019. url: https:
//embotech.com/FORCES-Pro.

[20] MultiDrone @ONLINE. 2016-2020. url: https://multidrone.eu/.

159

https://embotech.com/FORCES-Pro
https://embotech.com/FORCES-Pro
https://multidrone.eu/

	Introduction
	Motivation
	Autonomous Drone Cinematography
	AUV range-based positioning

	Related work
	Artificial Potential Field Methods
	Grid-based Search
	Sampling-based Methods
	Numerical Optimal Control
	Polynomial-based Methods

	Contribution
	Bézier parameterization and efficient evaluation of Inequality constraints
	Trajectory generation for drones in confined spaces using an ellipsoid model of the body
	Distributed trajectory generation framework

	Trajectory Generation using Computationally Efficient Optimal Control Methods
	Introduction
	Problem Description
	Numerical Methods for Optimal Control Problems
	Single Shooting Method
	Direct Multiple Shooting Method
	Direct Collocation Method
	Available tools for solving OCPs and NLPs

	Simulation Results
	Go-to-Formation Maneuver of 7 AUVs
	Minimum time maneuver with collision avoidance
	Trajectory optimization for range-based AUV positioning
	Autonomous Drone Cinematography
	Cooperative planning for multiple drones
	Trajectory re-planning in the receding horizon manner

	Bézier Curve-based Trajectory Generation Method for Differentially Flat Systems
	Introduction
	Differentially flat systems
	Polynomial parameterization of the flat output

	Bernstein polynomials and Bézier curves
	Bernstein Polynomial: definition and basic properties
	Bézier curves
	Evaluating Inequality constraints using B-spline and Bézier curves properties
	Quantitative bounds on the distance between a Bézier curve and its control polygon

	Case study
	Go-to-Formation maneuver
	Collision-avoidance constraints for an ellipsoid model of the drone body

	Distributed Algorithm for Real-time Multi-drone Trajectory Re-planning
	Literature Review
	problem formulation
	Decoupling the inter-vehicle collision avoidance constraint
	Finding the closest point to the goal position
	Continuity conditions

	Simulation Results

	Conclusion and Future Work
	Conclusion
	Summary

	Future Work
	Rational Bézier curves
	Computation delay compensation for real-time implementation

	Structure exploiting NLP solver
	FORCES Pro
	FORCES Pro High-Level Interface
	Expressing the optimization problem in python

	B-spline Curves
	B-spline basis functions: definition and properties
	B-spline curves: definition and properties
	Convergence under knot insertion

